Articles | Volume 18, issue 19
https://doi.org/10.5194/gmd-18-6623-2025
https://doi.org/10.5194/gmd-18-6623-2025
Development and technical paper
 | 
30 Sep 2025
Development and technical paper |  | 30 Sep 2025

Implementing a process-based representation of soil water movement in a second-generation dynamic vegetation model: application to dryland ecosystems (LPJ-GUESS-RE v1.0)

Wim Verbruggen, David Wårlind, Stéphanie Horion, Félicien Meunier, Hans Verbeeck, Aleksander Wieckowski, Torbern Tagesson, and Guy Schurgers

Related authors

Low sensitivity of three terrestrial biosphere models to soil texture over the South American tropics
Félicien Meunier, Wim Verbruggen, Hans Verbeeck, and Marc Peaucelle
Geosci. Model Dev., 15, 7573–7591, https://doi.org/10.5194/gmd-15-7573-2022,https://doi.org/10.5194/gmd-15-7573-2022, 2022
Short summary
Using terrestrial laser scanning to constrain forest ecosystem structure and functions in the Ecosystem Demography model (ED2.2)
Félicien Meunier, Sruthi M. Krishna Moorthy, Marc Peaucelle, Kim Calders, Louise Terryn, Wim Verbruggen, Chang Liu, Ninni Saarinen, Niall Origo, Joanne Nightingale, Mathias Disney, Yadvinder Malhi, and Hans Verbeeck
Geosci. Model Dev., 15, 4783–4803, https://doi.org/10.5194/gmd-15-4783-2022,https://doi.org/10.5194/gmd-15-4783-2022, 2022
Short summary
Contrasting responses of woody and herbaceous vegetation to altered rainfall characteristics in the Sahel
Wim Verbruggen, Guy Schurgers, Stéphanie Horion, Jonas Ardö, Paulo N. Bernardino, Bernard Cappelaere, Jérôme Demarty, Rasmus Fensholt, Laurent Kergoat, Thomas Sibret, Torbern Tagesson, and Hans Verbeeck
Biogeosciences, 18, 77–93, https://doi.org/10.5194/bg-18-77-2021,https://doi.org/10.5194/bg-18-77-2021, 2021
Short summary

Cited articles

Ahnert, K. and Mulansky, M.: Odeint – Solving ordinary differential equations in C++, AIP Conf. Proc. 1389, 1586–1589, https://doi.org/10.1063/1.3637934, 2011. 
Axelsson, C. R. and Hanan, N. P.: Rates of woody encroachment in African savannas reflect water constraints and fire disturbance, J. Biogeogr., 45, 1209–1218, https://doi.org/10.1111/jbi.13221, 2018. 
Barron-Gafford, G. A., Sanchez-Cañete, E. P., Minor, R. L., Hendryx, S. M., Lee, E., Sutter, L. F., Tran, N., Parra, E., Colella, T., Murphy, P. C., Hamerlynck, E. P., Kumar, P., and Scott, R. L.: Impacts of hydraulic redistribution on grass–tree competition vs. facilitation in a semi-arid savanna, New Phytol., 215, 1451–1461, https://doi.org/10.1111/nph.14693, 2017. 
Baudena, M., Dekker, S. C., van Bodegom, P. M., Cuesta, B., Higgins, S. I., Lehsten, V., Reick, C. H., Rietkerk, M., Scheiter, S., Yin, Z., Zavala, M. A., and Brovkin, V.: Forests, savannas, and grasslands: bridging the knowledge gap between ecology and Dynamic Global Vegetation Models, Biogeosciences, 12, 1833–1848, https://doi.org/10.5194/bg-12-1833-2015, 2015. 
Download
Short summary
We improved the representation of soil water movement in a state-of-the-art dynamic vegetation model. This is important for dry ecosystems, as they are often driven by changes in soil water availability. We showed that this update resulted in a better match with observations and that the updated model is more sensitive to soil texture. The new model can also simulate a groundwater table. This updated model can help us to better understand the future of dry ecosystems under climate change.
Share