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Abstract. Dryland ecosystems are globally important, yet
state-of-the-art dynamic vegetation models often lack spe-
cific processes or parameterizations that are critical for accu-
rately simulating dryland dynamics. These missing processes
include a realistic calculation of soil water movement, de-
tailed plant–water relations, or a representation of deep water
uptake. In this study, we show how including a process-based
soil hydrology scheme in the LPJ-GUESS (Lund-Potsdam-
Jena General Ecosystem Simulator) model can improve its
usefulness for simulating the functioning of dryland ecosys-
tems. By replacing the default 15-layer bucket representation
of soil hydrology in LPJ-GUESS v4.1 with a mechanistic de-
scription of soil water movement based on the 1D Richards
equation, we show that the model is better able to capture
seasonal patterns of water cycling through dryland ecosys-
tems at both the site and regional levels. In addition, the in-
clusion of a new set of bottom boundary conditions, such as
a permanent groundwater layer, further expands the range of
ecosystems the LPJ-GUESS model can simulate. We show
that soil bottom boundary conditions, in particular varying
levels of groundwater depth, can have a large influence on
vegetation composition and water cycling. Our new model
developments open new avenues to simulate dryland ecohy-
drology more realistically.

1 Introduction

Dryland ecosystems are globally important, as they account
for about 40 % of Earth’s terrestrial surface and net carbon
uptake, while sheltering more than 30 % of the human popu-
lation (Gilbert, 2011; Grace et al., 2006; Wang et al., 2012).
Drylands have been shown to drive the interannual variability
and long-term trend of the global land carbon sink (Ahlstrom
et al., 2015; Poulter et al., 2014), and a 10 % increase in veg-
etation cover in semi-arid lands has been observed globally
over the past decades (Ruehr et al., 2023). Recently, it has
been shown that more than 30 % of global dryland ecosys-
tems are dependent on access to groundwater, including sev-
eral important global biodiversity hotspots, while more than
half of these groundwater-dependent ecosystems are located
in regions with declining groundwater trends (Rohde et al.,
2024). Unsurprisingly, drylands are known to support trees
with the deepest root systems over all biomes globally, with
observed rooting depths down to 60 m in the soil, providing
access to the groundwater table (Do et al., 2008; Fan et al.,
2017).

Dynamic vegetation models (DVMs) are process-based
tools that can help to gain deeper insights into the functioning
of dryland ecosystems and their link with soil hydrology. By
integrating a multitude of processes from the leaf level (e.g.
photosynthesis) up to the ecosystem level (e.g. competition,
carbon cycling), these models help to quantify the role of var-
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ious biomes in the global carbon and water cycle, study vege-
tation demographic changes, and predict ecosystem response
to future climate scenarios (Prentice et al., 2007). Several
studies used DVMs to study dryland ecosystems, either as
their main biome of focus or within the context of global
studies (Ahlstrom et al., 2015; Baudena et al., 2015; Boke-
Olén et al., 2018; Brandt et al., 2017, 2018; Dashti et al.,
2021; Haverd et al., 2017; Hickler et al., 2005; Lehsten et al.,
2016; Meunier et al., 2022; Scheiter et al., 2020; Seaquist et
al., 2009; Verbruggen et al., 2021a, b, 2024). However, only
a few studies updated the parameterization and evaluated the
performance of DVMs for drylands specifically (Dashti et al.,
2021; Verbruggen et al., 2021a, b). Furthermore, only lim-
ited attention has been given to identifying the important pro-
cesses for reliably simulating dryland ecohydrology (Whitley
et al., 2017).

In this study we focus on the Lund-Potsdam-Jena General
Ecosystem Simulator (LPJ-GUESS) version 4.1 dynamic
vegetation model (Smith et al., 2001, 2014). This model
was used in several of the earlier mentioned dryland stud-
ies, where it was shown to be capable of simulating tree–
grass co-existence in savannas, reasonably simulating carbon
and water fluxes at the site and regional level, and capturing
the overall greening trends in the Sahel (Hickler et al., 2005;
Verbruggen et al., 2021a, 2024). The model’s hydrological
representations have also been evaluated favourably against
global data products of runoff, evapotranspiration, and near-
surface soil moisture (SM) (Gerten et al., 2004; Zhou et al.,
2024).

Despite its good overall performance, a few important pro-
cesses are still missing in LPJ-GUESS to capture dryland
ecohydrology reliably. These developments are needed to
make the model more useful and realistic for future projec-
tions of drylands under changing climatic conditions, as well
as correctly capturing the competition for soil water of dif-
ferent vegetation types. A first fundamental limitation of the
model is its oversimplified representation of soil hydraulics,
i.e. the dynamics of soil water through the different layers.
Plant water uptake from the soil through their roots is a crit-
ical process for water-limited ecosystems such as drylands.
Therefore, if the basic physics of soil water dynamics are
poorly represented in an ecosystem model, the model will
struggle to correctly capture and project the vegetation re-
sponse to changes in soil water conditions, such as drought
or high rainfall extremes. While the current version (v4.1) of
LPJ-GUESS already improved the resolution of the soil lay-
ers from two coarse layers of 0.5 and 1.0 m thickness (v4.0)
(Gerten et al., 2004) to 15 layers of 0.1 m thickness (Zhou
et al., 2024), and while the global model output is evalu-
ated favourably against observations, the dynamics of water
percolation between the simulated soil layers are based on a
bucket model. However, most of the DVMs today represent
soil water movement based on gradients of soil water poten-
tial (Richards equation) (Bonan, 2019; Medvigy et al., 2009).

In this paper we show that the bucket model simplifica-
tion in LPJ-GUESS creates unrealistic soil water dynamics
for drylands, as well model artefacts, such as a discontinu-
ous average soil water profile that enables the model to sim-
ulate tree–grass coexistence for the wrong reasons. We solve
these issues by implementing a new soil hydrology scheme
for the LPJ-GUESS model. This new soil hydrology sim-
ulates mass-conservative movement of soil water based on
gradients in water potential by adopting the implementation
of Ireson et al. (2023) to solve the Richards equation in LPJ-
GUESS. We keep the number of soil layers fixed to 15, but
the thickness of the different layers can now be changed,
opening up the model to simulate different soil depths. Our
new model version also allows the simulation of two addi-
tional bottom boundary conditions, besides the default free
drainage condition: bedrock and aquifer. The bedrock con-
dition does not allow for any water to percolate out of the
system by baseflow runoff, while the aquifer condition sim-
ulates an additional layer of groundwater beneath the bottom
layer. These improvements allow the model to simulate a va-
riety of drylands conditions, ranging from shallow soils to
deep groundwater-dependent ecosystems.

After introducing these new model developments, we eval-
uate the new model against observations of dryland carbon
and water cycles. In particular, we compare the model out-
puts with site-level flux tower data from Senegal as well as
global data products, focusing on the Sudan-Sahel region. Fi-
nally, we perform a few sensitivity tests on the new model. In
earlier work we have shown that terrestrial biosphere mod-
els have only low sensitivity to soil texture in the tropics
(Meunier et al., 2022), and in this current paper we test
whether changing the soil hydrology has any impact on this
sensitivity. For a second sensitivity test we investigated how
changing groundwater table depths (GWTDs) may influence
simulated vegetation cover and surface hydrology. By do-
ing this we show how our new hydrology scheme opens up
the model capability for simulating soil water dynamics in
groundwater-dependent dryland ecosystems.

2 Methods

2.1 Focus area: Sudan-Sahel region and the Dahra flux
tower site

The Sudan-Sahel region is an ecoclimatic transition zone lo-
cated between the Sahara Desert and the humid Guinean
zone (Fig. 1). The northern Sahel region is defined by the 150
and 600 mm mean annual precipitation (MAP) levels as its
northern and southern boundaries. For the southern Sudanian
zone the annual rainfall varies between 600 and 1000 mm on
average (Karlson and Ostwald, 2016) (Fig. 1). The vegetation
cover follows this strong north–south precipitation gradient,
varying from grassy savannas and shrublands in the north to
open dry forests in the south (Souverijns et al., 2020). Most
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rainfall occurrence is limited to a short wet season, which
usually takes place between June and October.

For the site-scale simulations and model evaluation we
focused on the Dahra flux tower site, located in the Sahe-
lian zone of Senegal (15°24′10′′ N, 15°25′56′′W). This site
is a grazed semi-arid savanna with a mean annual rainfall
of 416 mm, which mainly occurs during a short rainy season
(July–September). It is equipped with sensors measuring me-
teorological and hydrological conditions, as well as an eddy
covariance system for continuously measuring carbon, water,
and energy fluxes from 2010 (Tagesson et al., 2015; Wieck-
owski et al., 2024).

2.2 Baseline model

2.2.1 LPJ-GUESS v4.1

The Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-
GUESS) v4.1 is a dynamic vegetation model which simu-
lates global vegetation cover and functioning, together with
its associated water, carbon, and nitrogen cycles (Smith et
al., 2001, 2014). Global vegetation is represented by a set
of plant functional types (PFTs) which group all terrestrial
vegetation species into broad classes of functional similar-
ity. Heterogeneity in size–age classes within each PFT is ac-
counted for using cohorts as the basic vegetation unit in the
model. Vegetation growth is primarily driven by photosyn-
thesis and modulated by competition for light, soil water,
and soil nitrogen between cohorts. The smallest unit of ex-
plicit spatial information is the grid cell, whose size depends
on the spatial resolution of the meteorological and soil input
data (here 0.1°×0.1°). Within each grid cell, the model sim-
ulates a large number (here 100) of replicate patches (size
1000 m2) in order to average out the impact of patch-level
stochastic disturbance events, which will create different life
histories between patches. Plant ecophysiological processes
and soil hydrology are resolved at a daily time step, while
carbon allocation and vegetation dynamics are accounted for
at the end of each simulated year.

The model couples the calculation of leaf-level photosyn-
thesis with stomatal conductance. Plant water status is rep-
resented as the ratio between root-zone water supply and
canopy water demand. Low values of this ratio will cause
the vegetation to be drought stressed, leading to a reduction
of photosynthesis by stomatal closure. This ratio will also
modulate the carbon allocation between the above- and be-
lowground plant tissues, as well as trigger leaf growth and
abscission for raingreen PFTs. The PFT parameters of the
LPJ-GUESS model have previously been updated for the
Sudan-Sahel region, both across a network of site-level flux
towers (Verbruggen et al., 2021a) and at the regional scale
(Verbruggen et al., 2021b, 2024). For this study we again
use this updated regional parameter set, simulating the fol-
lowing PFTs: C4 grass, Tropical Evergreen Trees, Tropical

Raingreen Trees, and Tropical Shrubs (Table S1 in the Sup-
plement).

2.2.2 Standard soil hydrology

Soil hydrology in the default version of LPJ-GUESS v4.1
is represented by either a two-layer model or a multi-layer
model. The original two-layer scheme simulated two soil lay-
ers of thickness 50 and 100 cm respectively (Gerten et al.,
2004), while the multi-layer scheme provides a greater ver-
tical resolution by simulating 15 layers of 10 cm thickness
each (Zhou et al., 2024). The soil water available for plants
in each layer is modelled as the fraction of water content
(0≤ wcont≤ 1) between the wilting point (θWP) and field
capacity (θFC):

wcont=
θ − θWP

θFC− θWP
, (1)

where θ is the soil water content (m3 m−3) in each layer
and is limited to [θWP,θFC] (see also Sect. S1.1 in the Sup-
plement). For each patch and each daily time step, plants
can transpire water from all layers, depending on soil wa-
ter content and PFT root fraction for each soil layer, as
well as patch-level water demand, cohort water stress sta-
tus, cohort foliar projective cover (FPC), and a PFT pa-
rameter emax (mmd−1), which will limit daily transpiration
(Sect. S1.2 in the Supplement) (Sitch et al., 2003). Verti-
cal root distribution is modelled by an asymptotic equation
(RDcumul = 1−βzroot), which calculates the cumulative root
fraction (RDcumul) downward as a function of depth (z) and
a PFT-specific shape parameter βroot (Jackson et al., 1996).
If this cumulative fraction does not reach unity at the bottom
layer, the missing root biomass fraction is assigned to the bot-
tom layer. Water can evaporate from the top two soil layers
(20 cm) depending on remaining water content, atmospheric
water demand (daily equilibrium evaporation) and the bare-
soil fraction of the patch (Gerten et al., 2004; Rost et al.,
2008). See Sect. S1.3 in the Supplement for more details.

Rainfall adds water to the system, part of which will be
intercepted by the vegetation leaf cover, from which it evap-
orates. Remaining rainwater and snowmelt reach the upper
soil layers (0–50 cm), which are replenished according to
their water-holding capacity. Excess water above field capac-
ity is removed from the system as surface runoff. Percolation
transports water downward to deeper soil layers and is calcu-
lated as a power law as a function of available water content:

perc(l)= pb ·wcont(l)pe , (2)

where perc represents the fraction of plant-available water
(wcont) that is transported between layers in one simula-
tion time step, and pb and pe = 2 are shape parameters (see
Sect. S1.1). For both model configurations, water percolates
from the upper soil layers (0–50 cm) to the lower layers (50–
150 cm). For the multi-layer representation, the percolated
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Figure 1. Map of the Sudan-Sahel region in West and Central Africa, including the mean annual precipitation levels that define the Sahelian
(150–600 mm) and the Sudanian (600–1000 mm) regions. Rainfall was obtained from ERA5-Land data (Muñoz-Sabater et al., 2021) and
averaged over the entire time span (1950–2022). Location of the Dahra, Senegal, eddy covariance flux tower (15°24′10′′ N, 15°25′56′′W) is
marked by an asterisk.

water is distributed between the sublayers, according to their
water holding capacity. Notably, percolation is limited to
days for which the sum of rainfall and snowmelt is higher
than 0.1 mm (hard-coded) (Nord et al., 2021). A fraction of
plant-available water in the lower layers (50–150 cm) further
percolates out of the system as baseflow runoff, based on the
percolation equation (Eq. 2) divided by a factor of 2. In ad-
dition, excess water in the lower layers dissipates out of the
system as lateral flow runoff, similar to surface runoff (Hax-
eltine and Prentice, 1996).

Further water loss from the system occurs in the form of
surface evaporation (Es), transpiration from root-zone soil
layers (Et=

∑
iEti), and interception loss (Ei) (Sect. S1 in

the Supplement). The sum of these components is the total
evaporation (E = Es+Et+Ei) (see also Miralles et al. (2020)
for a discussion on this terminology).

Calculated soil hydraulic properties include the water con-
tent at wilting point and field capacity, as well as the pa-
rameters of the percolation power law. These parameters are
calculated by pedotransfer functions from soil textural data,
which are given as an input for the model and are assumed to
be constant over all soil layers (Cosby et al., 1984; Gerten et
al., 2004); see Sect. S1.1.

2.3 Soil hydrology model updates

2.3.1 Soil layer structure and water representation

By default, our updated version of the model, presented in
this paper, still uses 15 soil layers of 10 cm thickness. How-
ever, the number and thickness of soil layers can now be
adjusted individually without affecting the simulated hydro-
logical processes; i.e. all layers – except the top and bottom
layers – are processed equally, and no layers are grouped to-
gether. Soil water content θ can vary between the water con-
tent at wilting point (θWP) and saturation (θS). The model
simultaneously tracks θ , the soil water potential ψ (m), and
the hydraulic conductivity k (ms−1) for each layer, based on
the Campbell (1974) relations:

ψ = ψs(θ/θs)
−b (3)

K =Ks(θ/θs)
2b+3, (4)

where ψS,θS, and KS are parameters which represent the
soil water potential (m), content (m3 m−3), and soil hydraulic
conductivity (ms−1) at saturation, respectively. b is an em-
pirical parameter (Campbell, 1974). These four parameters
are derived from soil texture using pedotransfer functions
from Cosby et al. (1984) and Romano and Santini (2002)
(Sect. S1.1). To retain compatibility with processes outside
soil hydrology (e.g. plant water uptake), the water content
fraction wcont is still calculated from θ using Eq. (1). Soil
textural data and the derived soil hydraulic parameters are as-
sumed to be constant over all layers, but this can be changed
by making a few modifications to the model code.

2.3.2 Soil water dynamics based on the Richards
equation

Soil water movement between layers is based on gradients
in soil water potential, together with a gravitational term. It
is calculated by integrating the change in ψ over every daily
model time step, using a ψ-based form of the 1D Richards
equation:

C(ψ)
∂ψ

∂t
=
∂

∂z

(
K(ψ)

(
∂ψ

∂z
− 1

))
− S, (5)

where the specific moisture capacity C(ψ)= dθ/dψ and hy-
draulic conductivity K(ψ) are calculated from the Campbell
relations above (Eqs. 3 and 4) (Celia et al., 1990; Ireson et
al., 2023), and the sink term S represents volumetric wa-
ter uptake by plant roots in our model, although this term
can include water release as well (e.g. to account for hy-
draulic lift) in a future version of the model. To obtain a nu-
merical solution of this partial differential equation (Eq. 5),
we first used the method of lines to discretize this equation,
resulting in Eq. (6). We then based our implementation on
the mass-conservative “openRE” approach, using an explicit
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sub-daily adaptive time step ordinary differential equation
(ODE) solver (Ireson et al., 2023). The following workflow
is modified from Ireson et al. (2023) in order to account for
variable layer thickness (1z; units: m).

We assume a system of N soil layers, with an index i that
varies between the surface (i = 1) and the bottom layer (i =
N ). The rate of change in soil water potential ψi (m) for each
soil layer i is given by

∂ψ

∂t

∣∣∣∣
i

=−
1

C(ψi)

∂q

∂z

∣∣∣∣
i

=
1

C(ψi)

qi−1,i − qi,i+1−Eti
1zi

, (6)

where ∂q is approximated by the balance of incoming
(qi−1,i) and outgoing (qi,i+1) water fluxes. Eti is the imple-
mentation of the sink term (S) in Eq. (5), here accounting
for plant transpiration from layer i (md−1), and 1zi is the
thickness (m) of layer i. Note that Eti was divided by 1zi to
obtain the units of change in volumetric water content, so in
Eq. (6) it is Eti/1zi which corresponds to S in Eq. (5). For
the internal layers (i ∈ [2,N−1]) the incoming and outgoing
fluxes have a similar functional form, as the flux from layer
j to layer k is given by

qj,k =−
K(ψk)+K(ψj )

2

(
ψk −ψj

1zj,k
− 1

)
, (7)

where 1zj.k = (1zj +1zk)/2 is the centre-to-centre layer
distance between both layers. Note that these fluxes can go in
any direction, so the “incoming” flux may as well be an out-
going water flux from layer k to j if the water potential gra-
dient is strong enough. As discussed by Ireson et al. (2023),
we use the arithmetic mean of K at the layer centre points,
but other formulations, such as the harmonic mean, are pos-
sible as well (Ireson et al., 2023). The fluxes at the top and
bottom layers (i ∈ {1,N}) are determined by the boundary
conditions.

2.3.3 Boundary conditions

The incoming water flux for the top layer (q1) consists of
the incoming net infiltrating water and snowmelt from the
surface (Win), minus the outgoing soil surface evaporation
(Es) from this first layer, both with units of md−1:

q1 =Win−Es. (8)

For the bottom boundary condition (qN ) we provide three
possible options: free-drainage, bedrock, or aquifer.

Under the free-drainage condition we assume that the lay-
ers below the bottom layer are in hydrological equilibrium
with the bottom layer; i.e. they have the same hydraulic con-
ductance KN and water potential ψN as the bottom layer.
Hence, there is no water potential gradient, and water per-
colation is therefore solely driven by gravity. Setting ψj =
ψk = ψN in Eq. (7), we obtain

qN =K(ψN ). (9)

For the bedrock boundary condition, we model an artificial
bedrock layer below the bottom layer through which no water
can be transported. This is implemented by the condition that
the flux from the bottom layer to the layers below is zero:

qN = 0. (10)

Finally, for the aquifer bottom boundary, we assume that the
layers below the bottom layer are fully saturated, i.e.ψk = ψs
in Eq. (7), which then reduces to

qN =−
Ks+K(ψN )

2

(
ψs−ψN

1zN/2
− 1

)
, (11)

whereKs =K(ψs) is again the hydraulic conductivity at sat-
uration, and 1zN/2 is the distance between the bottom layer
centre and the aquifer. This boundary condition can act as an
additional source of soil water, as water can be transported
upward into drier soil layers above whenever a strong gradi-
ent in soil water potential emerges.

2.3.4 Evaporation and runoff

The calculation of evaporation components is unaltered from
the original model version, with the difference that sur-
face evaporation only occurs from the top layer (by default
10 cm). The removal of water by Es and Et is implemented
inside the ODE solver routine, as described earlier. Precip-
itation (P ) that is not intercepted reaches the top soil layer
and replenishes the water content of this layer until it reaches
saturation (θsat). Any excess above θsat is removed as surface
runoff (Rsurf), so the net water infiltration (Win) is given by

Win = P −Ei−Rsurf. (12)

At the end of each simulated day, a fraction (fdrain) of excess
water content above field capacity in each layer i is removed
as lateral drainage (Rdrain,i), following a similar implemen-
tation in the Community Land Model version 5 (Lawrence
et al., 2019). This fraction is calculated as the tangent of the
terrain slope, multiplied by a lateral flow parameter (default
value 1). Terrain slope is set to a fixed value 2° but the code
can be easily adapted to read this value from a map for each
grid cell. The drainage fraction therefore has a default value
of fdrain = 0.034 in the current implementation, so by de-
fault 3.4 % of the excess water is removed as lateral drainage.
Together with the baseflow runoff from the bottom layer
(Rbase = qN ), these three components form the total runoff
(R = Rsurf+Rdrain+Rbase, where Rdrain =

∑
iRdrain,i).

2.3.5 Numerical integration and water mass balance

The LPJ-GUESS v4.1 model runs with a daily time step,
during which hydrological processes – such as surface evap-
oration, plant transpiration, and runoff – as well as several
vegetation-related processes are calculated. Between these
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daily time steps, our updated soil hydrology scheme calcu-
lates the percolation between layers using the framework de-
scribed above, using an ODE solver with an adaptive sub-
daily time step in order to minimize integration errors (see
further) (Ireson et al., 2023). During each time step of the
LPJ-GUESS model, the daily hydrological processes used in
the equations above (Win, Et, Es) are passed on as constants
to the sub-daily RE integrator, which automatically converts
them from daily to subdaily rates, depending on the num-
ber of sub-daily integration time steps (NTS) the ODE solver
uses (i.e. multiplication by dt = 1/NTS).

At every daily time step, the water mass balance error
(εWB) for the entire soil column is calculated as the dif-
ference between the different incoming and outgoing water
fluxes and the total soil column water storage 1θ term:

εWP = P −E−R−1θ, (13)

where the storage term 1θ represents the change in soil wa-
ter content compared to the previous daily time step, and this
will be the main contributor to εWB due to numerical integra-
tion errors in the solution of the Richards equation.

To allow for calculating water mass balance, we follow the
procedure from Ireson et al. (2023). We include the cumula-
tive boundary fluxes (Q1 and QN ) to our system of ODEs,
which are calculated as the sum of q1 and qN over all daily
time steps [t0. . .tT ] since the start of the simulation,

Qj =

T∑
i=0

qj (ti), (14)

for j ∈ {1,N}. Therefore, the complete system of ODEs that
is integrated over any given daily time step t is given by

dQ1
dt

dψ1
dt

dψ2
dt
...

dψN−1
dt

dψN
dt

dQN
dt


=



q1

−
1

C(ψ1)
∂q
∂z

∣∣∣
1

−
1

C(ψ2)
∂q
∂z

∣∣∣
2

...

−
1

C(ψN−1)
∂q
∂z

∣∣∣
N−1

−
1

C(ψN )
∂q
∂z

∣∣∣
N

qN



. (15)

The ODE integrator solves this system for the water poten-
tials ψi in each soil layer i, as well as the cumulative bound-
ary fluxes Q1 and QN . To integrate this system of ODEs
we used the explicit Runge–Kutta Cash–Karp adaptive time
stepper (runge_kutta_cash_karp54) from the odeint library
in the boost C++ package (Ahnert and Mulansky, 2011; Cash
and Karp, 1990). A code snippet with an overview of the ba-
sic implementation is given in Sect. S2 in the Supplement,
and the full model code can be accessed from a Zenodo
archive (Verbruggen et al., 2025).

2.4 Model setup and forcing data

To assess the impact of these changes in the hydrological
scheme on dryland ecosystem dynamics, model simulations
were performed at two distinct spatial scales. Site-scale sim-
ulations were run for the Dahra flux tower site in Senegal,
while we also performed regional simulations over the en-
tire Sudan-Sahel region (Fig. 1). The parameterization of the
plant functional types in LPJ-GUESS has previously been
optimized for both the site level (Dahra, Senegal) and the
Sudan-Sahel region, and we continued to use these param-
eters for both the site-level and regional simulations (Ver-
bruggen et al., 2021a, 2024). An overview of these parame-
ters is given in Sect. S3 in the Supplement.

The LPJ-GUESS v4.1 model is driven by daily averages
of air temperature (°C) at 2 m height, incoming shortwave ra-
diation (Wm−2), and precipitation rate (mmd−1). Site-level
simulations used the meteorological data from the Dahra flux
tower site in Senegal, which were measured at 30 min inter-
vals for the 2002–2022 period (Tagesson et al., 2015). We
averaged these measurements over each day and used a gap-
filling procedure to obtain a continuous driver data set for
the entire period 2002–2022 (Sect. S3). Soil texture input
(95.04 % sand, 4.61 % silt, 0.35 % clay) was obtained from
the average of local soil sample measurements at six sites in
the vicinity of the flux tower, where five sites were sampled
in the top 20 cm and a sixth site was sampled at 10, 20, 30,
and 40 cm depth (Tagesson et al., 2015).

Regional scale simulations were driven by daily averaged
ERA5-Land meteorological data for the 1950–2022 period
at a 0.1° spatial resolution (Muñoz-Sabater et al., 2021). Re-
gional soil texture data were obtained from the 250 m res-
olution ISRIC Africa SoilGrids database for six soil depths
(Hengl et al., 2015). We averaged these soil texture data over
all depths and regridded the data to match the meteorolog-
ical driver grid (Sect. S3.3 in the Supplement). Most grid
cells contained a relatively high sand fraction, with low vari-
ation in sand and silt fractions over the soil depths in the
database (median CV= 0.05 for sand and silt). Clay content
showed a higher variation between the six soil depths (me-
dian CV= 0.13 for clay) (Figs. S3–S5 in the Supplement).

For both spatial scales, we started the model simulations
from bare soil with a 500-year spinup phase, at which the at-
mospheric CO2 level was fixed at 296 ppm, corresponding to
the 1901 level. For the site scale we used the first 10 years
of the Dahra flux tower meteorological driver time series in
a cycle for the spinup, while for the regional scale we used
the first 30 years of the ERA5-Land data product. Air tem-
perature was detrended for both spinup drivers. This spinup
phase was followed by a historical simulation (1901–2022)
using the historical increase in the atmospheric CO2 level
(Friedlingstein et al., 2023) but still using the shortened me-
teorological drivers from the spinup-phase. Once the starting
date of the original meteorological data is reached (i.e. the
year 2002 for the Dahra drivers and 1951 for the ERA5-Land
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data product) the full meteorological time series are used to
drive the model simulations until the year 2022.

All simulations were performed for the model versions
with the original (“Default”) and the updated (“RE”) soil
hydrology schemes, in order to enable comparison of both
model versions and to analyse the impacts of the new model
developments on dryland ecohydrology. For evaluating the
models against observation-based data products (see next
section), we only used the “free drainage” bottom boundary
condition for the RE-based model, as this condition is the
closest to the one used by the original model.

2.5 Evaluation data

To evaluate the two model versions at the site level, we used
water and carbon fluxes, as well as soil moisture data from
the Dahra flux tower site, which were measured simultane-
ously with the meteorological drivers using the eddy covari-
ance technique and soil moisture sensors (Tagesson et al.,
2015; Wieckowski et al., 2024). From these we also cal-
culated and evaluated the water use efficiency (WUE), de-
fined as the ratio of daily gross primary productivity (GPP)
to ET (WUE= GPP

ET ) after filtering out days with an ET be-
low 0.01 mm. At the regional scale we evaluated the model
against the GLEAM v3.8a data product over the period
1980–2022 (Martens et al., 2017; Miralles et al., 2011).
We averaged model output (originally at 0.1° resolution) to
match the 0.25° grid used by GLEAM and compared total
evaporation (E), soil evaporation (Es), and plant transpiration
(Et). The GLEAM data product also includes assimilated sur-
face (0–10 cm) soil moisture from the Climate Change Initia-
tive (CCI) programme of the European Space Agency (ESA)
(Dorigo et al., 2017; Gruber et al., 2017), as well as simu-
lated root-zone soil moisture (0–100 cm for low vegetation
types, e.g. grasslands) (Martens et al., 2017). Both were used
for evaluating our soil moisture simulations, after averaging
simulated soil moisture over the corresponding soil layers in
our model. We also compared total vegetation leaf area index
(LAI) as a function of MAP against remotely sensed mea-
surements from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) (Myneni et al., 2021), which were ob-
tained using the “appEEARS” software package (Hufkens,
2023).

2.6 Model sensitivity tests

2.6.1 Soil texture

Soil hydraulic properties in the LPJ-GUESS v4.1 model
are derived from soil texture using pedotransfer functions
(Cosby et al., 1984; Smith et al., 2014). These include soil
water content at wilting point (θWP), field capacity (θFC), sat-
uration (θSAT), hydraulic conductivity at saturation (KS), and
the slope (b) of the soil water retention curve (Sect. S1). We
tested the model sensitivity to soil texture for both soil hy-

drology representations. To do so, we made a series of simu-
lations for the Dahra flux tower site in Senegal, where we re-
placed the actual soil texture by all possible combinations of
sand–clay–silt contents and analysed the simulated ecosys-
tem response. Note that resulting soil hydraulic properties are
the same between both model versions: the only difference is
due to the different soil hydrology processes. For the RE-
based model we used the “free drainage” bottom boundary
condition, which matches the bottom boundary condition of
the default model version the most closely. For the response
variables we analysed vegetation leaf cover (LAI) and the
different evaporation components. We compared the sensi-
tivity of the default model version with our RE-based update
by calculating the mean, standard deviation, and coefficient
of variation of the model outputs over all soil textures, based
on the averaged values over all years. Results were visual-
ized using ternary plots, including a scaling by the maximum
(over all soil textures) value of model output, in order to facil-
itate comparison of the sensitivities of the different analysed
output variables to soil texture.

2.6.2 Groundwater table depth

The new model version allows for using different bottom
boundary conditions at any soil depth. For a second sensi-
tivity test we analysed the impact of GWTD on dryland veg-
etation by activating the aquifer bottom boundary condition
and running the model for different soil depths. Soil depth
was varied by keeping the number of layers constant to 15
but changing the thickness of the bottom 10 layers. We again
used the site simulation for Dahra as baseline, but now im-
posing an aquifer at depths ranging from 0.75 to 6 m in steps
of 0.25 m, and analysed the simulated vegetation cover (LAI)
and evaporation components, as well as the different runoff
components as a function of water table depth. We also anal-
ysed the influence of groundwater depth on soil moisture and
root water uptake for each soil layer, separated into the dry
and wet season.

3 Results

3.1 Model performance at Dahra flux tower site

A comparison of the average annual cycles of the evaporation
and runoff components revealed significant differences be-
tween both model versions (Fig. 2). The sum of the evapora-
tion total (E) over the year was similar (around 300 mmyr−1)
for both model versions, comprising a significant portion of
average yearly rainfall (416 mm). While the updated model
version had a higher E (values up to 3.9 mmd−1) during the
rainy season, compared to the default model (3.5 mmd−1),
this increase was compensated for by a shorter tail in E af-
ter the rainy season (Fig. 2b). The higher wet-season E in
the RE model was caused by a higher soil surface evapora-
tion rate (Es), while the longer subsequent tail in the default
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model was caused by dry-season transpiration (Et) by tree
PFTs from deeper soil layers. Transpiration during the wet
season was also overall lower (by 0.15 mmd−1 on average)
in the RE model version. Interception losses were negligi-
ble in both model versions (< 4 mmyr−1). Woody vegeta-
tion cover was strongly reduced in the updated model ver-
sion, resulting in a higher grass cover and a lower total veg-
etation cover overall (Fig. S6 in the Supplement). Especially
evergreen trees, being the woody PFT with the highest cover
(7.6 %) in the default model version, saw a strong reduction
to 0.6 % in the RE-based version. The overall lower vegeta-
tion cover resulted in a higher fraction of bare soil (42.0 % in
the new model), leading to an overall higher soil evaporation
rate (Fig. 2b). Our new model version also simulated an over-
all reduced surface runoff during rainfall peaks, from aver-
ages of 61.9 mmyr−1 for the default model to 57.1 mmyr−1

for the RE-based model (Fig. 2c). Also baseflow runoff was
reduced (2.31 mmyr−1 for default model to 1.85 mmyr−1 for
RE-based model), while lateral flow had an increase over the
entire rainy season, compared to the default model version
(from 3.05 mmyr−1 for the default model to 11.1 mmyr−1

for the RE-based model).
To assess the model’s response to different boundary con-

ditions, we applied the same setup as above but now alter-
ing the bottom boundary at 1.5 m depth from “free drainage”
to “bedrock” and “aquifer”. These boundary conditions are
not intended to give a realistic representation of the Dahra
flux tower site conditions. Our new model version showed a
very distinct average seasonal cycle in soil moisture content
when comparing the new boundary conditions (Fig. 3). The
default model hydrology simulated a buildup of soil moisture
with depth for both the shallow (0–50 cm) and the deep (50–
150 cm) soil layers, except for the bottom soil layer which
was drained. Simulated soil moisture showed a clear discon-
tinuity around 50 cm soil depth, in both magnitude and tim-
ing (Fig. 3a). In contrast, the RE-based model versions simu-
lated a continuous soil moisture profile, decaying with layer
depth and following the timing of the rainy season (Fig. 3b–
d).

We found little difference between the “free drainage” and
“bedrock” bottom boundary conditions (Fig. 3b and c). How-
ever, the “aquifer” boundary condition showed a strong up-
ward capillary movement of water from the imposed satu-
rated layer below the bottom layer. This resulted in a year-
round soil moisture availability below 60 cm depth, with val-
ues higher than the soil water added by the rainy season pre-
cipitation (Fig. 3d). The impacts of this aquifer on the sim-
ulated vegetation cover are discussed in detail further in this
paper (Sect. 3.5) where we show the results of GWTD sensi-
tivity tests.

Evaluating both model versions (with free drainage)
against in situ measurements of carbon and water fluxes
showed only small differences in model performance, for
both the full-year and wet-season metrics (Fig. 4, Table 1).
Simulated GPP by both model versions underestimated the

Figure 2. Average yearly cycle of simulated hydrology at the Dahra
site in Senegal for 2002–2022, comparing the default LPJ-GUESS
v4.1 multi-layer soil hydrology (Default; dotted line) with the up-
dated soil hydrology based on Richards equations with the “free
drainage” bottom boundary condition (RE; solid line). Figures show
5 d moving averages of (a) in situ-measured daily rainfall for refer-
ence, (b) simulated daily evaporation components, and (c) simu-
lated daily runoff components.

eddy-covariance-derived GPP overall. The start of the grow-
ing season around day 180 was much more abrupt in both
models, compared to the smoother transition in the measure-
ments. This is because all raingreen plants become active
with full leaf cover at the same time in the model, while
in reality there will be some variability in leaf flushing be-
tween individuals, as well as a more gradual leaf growth.
Dry-season GPP fluxes were underestimated by both mod-
els and close to zero overall, although the default model ver-
sion had a larger tail in GPP after the end of the rainy sea-
son (Fig. 4a). Ecosystem respiration fluxes (Reco) during
the rainy season were slightly better represented in the up-
dated model version, having lower RMSE and higher corre-
lation with observations than the default version, while dry-
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Figure 3. Average yearly cycle of soil moisture (m3 m−3) for the
Dahra flux tower site, as simulated by the different soil hydrol-
ogy modules in (a) the default version of LPJ-GUESS v4.1 and
(b–d) the updated version based on the Richards equation with the
available bottom boundary conditions. Boundary conditions include
(b) free drainage (the default used for model evaluations), (c) im-
permeable bedrock, and (d) a permanent aquifer below the bottom
layer.

season respiration was relatively well captured by both mod-
els (Fig. 4b, Table 1). As the sum of these components, the
total net ecosystem exchange (NEE) was poorly represented
by both models, underestimating the observed net produc-
tivity in the rainy season and simulating a small source of
CO2 during the dry season, in contrast to the observed sink
(Fig. 4c). In contrast to carbon fluxes, water fluxes (E) were
fairly well represented by both models (Fig. 4d, Table 1).
The new RE-based model showed a better agreement with
the peak evaporation during the wet season, while slightly
overestimating the early wet season and underestimating its
tail. Similar to its GPP performance, the default model ver-
sion better captured the fluxes at the start of the dry season
(Fig. 4d). Water use efficiency was underestimated by both
models during the core growing season, mostly due to the un-
derestimation of GPP. However, simulated WUE values were
close to the measurements during the first month of the grow-
ing season. On the other hand, the low ET values in the late
growing season and the dry season led to a significant overes-
timation of WUE in those periods (Fig. 4e). For both models,
simulated WUE was the closest to observation-derived WUE
during the wet season, where the default model had a lower
RMSE, but the RE-based model had a slightly higher corre-
lation (Table 1). For reference, full time series are shown in
the Supplement (Fig. S7).

Soil moisture in the two upper layers (5, 10 cm) was over-
estimated by the RE-based model, while the default version
underestimated soil moisture in these layers (Fig. 5a and b).
The best agreement with observations was found at 30 cm
soil depth, where both models captured the soil moisture rel-
atively well during the rainy season (Fig. 5c). For the deeper
layers the models start to diverge from each other and from
observations. At 50 cm depth the soil moisture peak by the
start of the rainy season is relatively well captured by the de-
fault model, although soil moisture content is underestimated
during the rainy season and overestimated in the early dry
season. In contrast, the RE-based version shows a delayed
rise in soil moisture but captures the tail of the rainy season
and the start of the dry season relatively well (Fig. 5d). At
100 cm depth neither model version reproduces the observed
soil moisture. The RE-based version underestimates – and
negatively correlates with – measurements, while the default
model version overestimates soil moisture, and its peak is
delayed by about 20 d (Fig. 5e, Table 1). While observed soil
moisture still clearly shows a peak caused by the rainy season
at 100 cm depth, both model versions have lost most of the
rainy season fingerprint at this depth, especially its timing.
Full time series are provided in the Supplement (Fig. S8).

Finally, all model versions showed a good water mass
balance closure, as the sum of the rainfall, evaporation and
runoff components each year nearly matched the change in
water column storage, resulting in an overall low accumu-
lated water balance error (Eq. 13, Fig. S9 in the Supplement).
The aquifer bottom boundary condition showed a higher wa-
ter mass balance error than the other model setups, with an
accumulated error equal to 0.14 % of the accumulated rain-
fall over the years 2002–2022, while the other model versions
performed better (< 0.002 %) (Fig. S9).

3.2 Regional performance

In line with the MAP levels, the simulated total evapo-
ration (sum of plant transpiration, bare-soil evaporation,
and interception loss) of the RE-based LPJ-GUESS model
showed a strong north–south gradient across the entire re-
gion, when averaged over the period 1980–2022 (Fig. 6a).
Evaporation values ranged from 100 mmyr−1 in the north
to 960 mmyr−1 in the southern parts. The updated model
matched the GLEAM total evaporation data product rela-
tively well: the average difference between the model and
GLEAM over all grid cells was −6.2 mmyr−1, with a spa-
tial standard deviation of 93.7 mmyr−1 (Figs. 6b and 7a).
The strongest underestimations by the model were found
near water bodies (e.g. along the Senegalese coastline) as the
GLEAM total evaporation also includes open-water evapora-
tion. The evaluation also showed strong spatial gradients, as
the model output tended to be lower than GLEAM evapora-
tion in the northern and western parts, while being higher in
the southern parts and east of 15° E (Fig. 6b). The correla-
tions between our model and GLEAM over 1980–2022 were
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Figure 4. Average yearly cycle of measured vs. simulated (a–c) carbon, (d) water fluxes, and (e) water use efficiency at the Dahra site in
Senegal for the period 2010–2020. Both the standard (“Default”) and the updated (“RE”) model versions of LPJ-GUESS v4.1 are compared
against measurements of (a) GPP, (b) Reco, (c) NEE, and (d) ET, as well as the derived WUE (e). Figures show 5 d moving averages.

Table 1. Numerical evaluation of the standard (“Default”) and updated (“RE”) versions of the LPJ-GUESS v4.1 model against measurements
made at the Dahra site in Senegal. Carbon and water fluxes span the period 2010–2020, while soil moisture measurements (5–100 cm) cover
2002–2022. Metrics used are the RMSE and Pearson correlation coefficient (R), calculated over the entire time series for both the complete
years and the rainy seasons separately. The start and end of the rainy season are based on the climatological anomalous accumulation. All
correlations are significant (p < 10−3) except where indicated in bold with a cross (×). Units for RMSE values are gCm−2 d−1 for carbon
fluxes (GPP, Reco, NEE), mmd−1 for ET, and m3 m−3 for soil moisture.

Variable RMSE R

Full year Rainy season Full year Rainy season

Default RE Default RE Default RE Default RE

GPP 2.71 2.70 3.94 3.90 0.799 0.785 0.528 0.519
Reco 1.87 1.73 2.46 2.32 0.754 0.785 0.369 0.487
NEE 1.75 2.06 2.50 2.98 0.397 0.295 0.318 0.202
ET 0.898 0.983 1.00 1.20 0.869 0.869 0.718 0.725
WUE 2.24 2.28 0.98 1.31 −0.204 −0.00× 0.124 0.133
SM 5 cm 0.0224 0.0235 0.0367 0.0397 0.767 0.804 0.711 0.699
SM 10 cm 0.0211 0.0217 0.0326 0.0357 0.788 0.814 0.725 0.707
SM 30 cm 0.0176 0.0236 0.0229 0.0349 0.799 0.668 0.568 0.356
SM 50 cm 0.0166 0.0258 0.0200 0.0375 0.711 0.435 0.547 0.275
SM 100 cm 0.0277 0.0337 0.0312 0.0509 0.097 −0.138 0.194 −0.130

positive overall, with a few negative correlations in the east-
ern and western parts of the region. The average correlation
was 0.34, with a standard deviation of 0.26 (Figs. 6c and 7b).
The performance of the evaporation simulated by the de-
fault model was very close to that of the updated model ver-
sion, showing nearly identical model–GLEAM differences
and correlations (Fig. 7a and b).

Similar to the total evaporation, averages of yearly simu-
lated plant transpiration also followed a strong north–south
gradient across the region, with values ranging from 32 to
880 mmyr−1 (Fig. 8a). Our RE-based model tended to simu-
late higher transpiration rates than GLEAM, especially in the
eastern parts of the region, with a spatially averaged value of
48 mmyr−1 and a spatial standard deviation of 71 mmyr−1

(Figs. 8b and 7c). The new model version performed bet-
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Figure 5. Average yearly cycle of measured vs. simulated volumet-
ric soil moisture content at the Dahra site in Senegal for 2002–2022.
Panels show 5 d moving averages of results at different soil layer
depths (5–100 cm). Simulated results were interpolated to match
observed layer depths.

ter than the default version, as the latter simulated transpira-
tion rates that were 108± 61 mmyr−1 higher than GLEAM
(Fig. 7c). The correlations between either model version and
the GLEAM transpiration time series over 1980–2022 were
overall positive but low on average (R = 0.25 for both mod-
els) because there are also several grid cells that showed
an anticorrelation, e.g. in the western parts of the region
(Fig. 8c). This spatial pattern of correlations was similar to
that of the total evaporation (Figs. 8c and 7d).

Complementary to the general overestimations of sim-
ulated transpiration, time-averaged bare-soil evaporation
was overall underestimated (−59± 61 mmyr−1) by the RE
model across most of the region, except in the southeast-
ern part (Fig. 8d and e). Correlations between the model and
GLEAM time series were overall positive (R = 0.19± 0.24)
and followed a strong north–south gradient, where the grid

cells showing the highest correlations were found in the
northern parts, and most grid cells with a negative corre-
lation were found in the south (Fig. 8f). Soil evaporation
simulated by the RE-based model performed better than
the default model, overall showing smaller differences (De-
fault: −96± 51 mmyr−1) and larger correlations (Default:
0.13± 0.2) with the GLEAM soil evaporation data product
(Fig. 7e and f).

Simulated surface and root-zone soil moisture showed
very similar geographical patterns, with overall lower soil
moisture values in the northern areas of the region, espe-
cially around 10° E, while the highest soil moisture val-
ues were found in the southern and eastern areas (Fig. 9a
and d). Yet, the RE-based model tended to overestimate
GLEAM soil moisture in the northern parts, while under-
estimating it in the southern half, with an average error
of −0.012± 0.047 m3 m−3 for surface soil moisture and
−0.025± 0.050 m3 m−3 for root-zone soil moisture (Fig. 9b
and e). Correlation with GLEAM time series was mostly pos-
itive throughout the entire region (R = 0.52± 0.21 for sur-
face SM, R = 0.42± 0.20 for root-zone SM) (Fig. 9c and f).
Simulated surface soil moisture by the RE-based model per-
formed better than the default model version, showing both a
smaller error and a better correlation with the GLEAM data
product (Fig. 7g and h), while the performance of simulated
root-zone soil moisture was comparable between both mod-
els (Fig. 7i and j). Similar to the result for the Dahra site, the
average yearly cycle of the soil moisture profile (here addi-
tionally averaged over all grid cells) was highly distinct be-
tween the old and the new model versions, showing similar
results to those for the Dahra site-level study (Fig. S10 in the
Supplement).

3.3 Impacts on simulated regional vegetation cover

Changing the soil hydrology in LPJ-GUESS had a large im-
pact on simulated vegetation cover across the entire Sudan-
Sahel region (Figs. 10 and S11–S15 in the Supplement).
Average total vegetation leaf area index (LAI) over the pe-
riod 2000–2022 decreased over the arid parts of the Sahel
but increased in the more humid parts after implementing
the model updates, amounting to an overall average increase
of 0.204 m2 m−2 (Fig. 10). Both model versions overesti-
mated the averaged MODIS LAI measurements but remained
within the 5–95 percentile range over all grid cells in each
MAP bin (Fig. 10). These spatial patterns were mainly driven
by changes in C4 grass LAI (+0.47 m2 m−2 overall) and trop-
ical shrub LAI (+0.39 m2 m−2), which followed the overall
north–south gradient in LAI changes (Figs. S12–S13). Es-
pecially shrub cover increased significantly in the southern
parts, with changes in LAI up to 3.32 m2 m−2 for southern
Chad and Sudan (Fig. S13). This shrub cover mostly replaced
raingreen tree PFT, which decreased overall (−0.48 m2 m−2)
and especially in southern Chad and Sudan, with reductions
in LAI down to−2.75 m2 m−2 (Figs. 10 and S13). Evergreen
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Figure 6. Regional simulation of yearly total evaporation by the updated LPJ-GUESS v4.1 model for the period 1980–2022. (a) Multiyear
model averages over this time period, (b) difference between multiyear averaged model and GLEAM data, and (c) Pearson correlation
between model and GLEAM for yearly totals over 1980–2022. For panel (b) all outlier values saturate at ±300 mmyr−1 to avoid distorting
the colour scale.

tree LAI also decreased overall (−0.15 m2 m−2) in the new
model version but saw a slight increase in southern Chad and
Sudan (Figs. 10 and S14).

3.4 Soil texture sensitivity

In this section we present the results of our soil texture sensi-
tivity analysis for which we used the meteorological drivers
from the Dahra flux tower site but artificially varied the soil
texture across all possible sand–silt–clay combinations.

Focusing on the RE-based model, we found that soil tex-
ture had a significant influence on the multiyear averaged
simulations of the evaporation components (Fig. 11, Table 2).
Total evaporation mainly varied with clay content for the
new model, ranging from ∼ 320 mmyr−1 for low-clay soils
to 183 mmyr−1 on clay soils (Figs. 11 and S16 in the Sup-
plement). Interception loss was similarly dependent on clay
content, with a preference for more silty soils when clay con-
tent was low, while soil evaporation was mostly dependent on
silt content (48–73 mmyr−1). Transpiration showed a simi-
lar pattern to that of total evaporation, being its main con-
tributor. Transpiration was highest (268 mmyr−1) for low-
clay soils for higher silt content (> 60 % silt) and lowest
(112 mmyr−1) for clayey soils (Figs. 11 and S16). Total
evaporation, transpiration, and interception loss were highly
correlated (R > 0.94, p < 0.0001) with plant-available wa-
ter capacity (θawc), while soil evaporation showed an anti-
correlation with θawc (R =−0.65, p < 0.0001) (Fig. S17

in the Supplement). The correlation between the evapora-
tion components and the shape parameter b was also high
and of the opposite sign, whereas total evaporation, tran-
spiration, and interception loss had a strong anti-correlation
(R <−95, p < 0.0001) and soil evaporation had a high cor-
relation (R = 0.66, p < 0.0001) (Fig. S17). Other hydraulic
parameters, such as θwp and θfc were either related to θawc or
had a low (Ks) or insignificant (θsat) correlation with evapo-
ration (Fig. S17). Surface runoff was the highest contributor
to total runoff and was strongly anti-correlated (R =−0.96,
p < 0.0001) with θawc, as soils with a high soil water capac-
ity can absorb more water before they saturate, leading to
lower surface runoff rates (Fig. S17).

The marked influence of soil texture on soil hydrology
was coupled with a similar influence on simulated vegetation
cover and composition (Fig. 12). In the RE-based model, C4
grass LAI mainly varied with soil clay content, leading to a
higher C4 grass cover on soils that were low in clay content,
while woody vegetation LAI was highest for silt-rich soil
types (silt, silt loam, silty clay loam) and was significantly
lower (near zero) over all other soil types (Figs. 12 and S18
in the Supplement). Total vegetation LAI had a strong cor-
relation (R = 0.95, p < 0.0001) with plant-available water
capacity θawc and a strong anti-correlation (R =−0.98, p <
0.0001) with the shape parameter b. Both were mainly driven
by C4 grass LAI, as woody vegetation cover was overall low
for the RE-based model (Fig. S19 in the Supplement).
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Figure 7. Comparison of the hydrology performance of the standard (Default) and updated (RE) versions of the LPJ-GUESS model against
the GLEAM data product. The left column shows the distribution of time-averaged differences between the model and GLEAM over all grid
cells, while the right column shows the distribution of correlations with GLEAM, both for the period 1980–2022. The evaluated variables
are yearly (a, b) total evaporation, (c, d) transpiration, (e, f) soil evaporation, (g, h) surface soil moisture, and (i, j) root-zone soil moisture.

Table 2. Mean, standard deviation (SD), and coefficient of variation (CV) of different time-averaged evaporation components and vegetation
LAI. Statistics calculated over all soil texture combinations, for a site-level simulation based on the Dahra meteorological drivers. Units refer
to mean and SD, while the coefficient of variation (CV= SD/mean) is unitless.

Model output Mean Standard Coefficient of
deviation variation

Default RE Default RE Default RE

Evap. (mmyr−1) Evaporation total 295 267 13.9 34.9 0.047 0.131
Interception loss 3.47 2.42 0.383 0.872 0.110 0.360
Soil evaporation 35.8 62.0 5.84 6.73 0.163 0.109
Transpiration 256 202 19.3 39.2 0.075 0.194

LAI (m2 m−2) Total 1.80 1.630 0.088 0.324 0.049 0.198
C4 grass 1.47 1.570 0.088 0.301 0.060 0.192
Shrubs 0.08 0.021 0.043 0.047 0.538 2.20
Tree deciduous 0.07 0.003 0.032 0.012 0.415 3.39
Tree evergreen 0.15 0.012 0.038 0.010 0.255 0.812
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Figure 8. Regional simulation of yearly total transpiration (a–c) and soil evaporation (d–f) by the updated LPJ-GUESS v4.1 model for the
period 1980–2022. (a, d) Multiyear averages over this time period, (b, e) difference between multiyear averaged model and GLEAM data,
and (c, f) Pearson correlation between model and GLEAM over 1980–2022. For panels (b) and (e) all outlier values saturate at±300 mmyr−1

to avoid distorting the colour scale.

Figure 9. Regional simulation of surface soil moisture (a–c) and root-zone soil moisture (d–f) by the updated LPJ-GUESS v4.1 model
for the period 1980–2022. (a, d) Multiyear model averages over this time period, (b, e) difference between multiyear averaged model and
GLEAM data, and (c, f) Pearson correlation between model and GLEAM over 1980–2022. For panels (b) and (e) all outlier values saturate
at ±0.25 m3 m−3 to avoid distorting the colour scale.

Comparing both models revealed an overall higher sensi-
tivity to soil texture in the RE-based model than the default
model (Table 2). The coefficient of variation of evaporation
and vegetation cover over all soil textures was higher in the
RE-based model than the default model for all variables, ex-
cept for soil evaporation (Table 2). This was also reflected
in the ternary plots of both variables, which showed an over-
all higher variation for the RE-based model, as well as more
defined (less patchy) patterns of variation with soil texture
(Figs. 11 and 12). Simulated hydrology components by the
new model also had a higher range and steeper slope to varia-
tions in θawc and b, compared to the default model (Fig. S17).

For simulated vegetation cover this was only the case for total
LAI and C4 grass LAI, as woody vegetation LAI was overall
lower in the RE-based model (Fig. S18). Overall, the sim-
ulated vegetation differences between the RE-based model
and the default model resembled those from the reference
Dahra simulations shown earlier.

As expected, sandy soil types resulted in the lowest er-
ror (RMSE) between simulations and measurements of soil
moisture from the Dahra site, as evaluated for each soil layer
independently (Fig. S20 in the Supplement).
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Figure 10. Simulated vegetation LAI (yearly maxima) as a function
of MAP over the Sudan-Sahel region for both versions of the LPJ-
GUESS model. Model output and rainfall data were averaged over
2000–2022 and further averaged into MAP bins of 100 mm. The red
dash-dotted line and the red shaded area represent the MODIS LAI
data (2000–2022) average and 5–95 percentile range over all MAP
bins, respectively.

3.5 Groundwater table depth influence

Here we show the modelled sensitivity of dryland vegeta-
tion to GWTD, for which we used the RE-based model
with the “aquifer” bottom boundary condition at various
depths. Changing the bottom boundary condition to repre-
sent a groundwater layer below the bottom layer already had
a large impact on the soil water profile for the default soil
depth (150 cm) (Fig. 3). Varying groundwater location over
a range of depths (75–600 cm) had a large impact on simu-
lated vegetation cover and surface hydrology, as total veg-
etation cover was sensitive to GWTD variations down to
200 cm, while vegetation composition became nearly insen-
sitive to GWTD below 350 cm (Fig. 13). Simulated tropical
evergreen tree cover was largely impacted by this change in
water availability, as these deeper-rooted tree PFTs now had
access to an unlimited water supply. This PFT could photo-
synthesize and transpire throughout the year and became the
main vegetation cover, with an LAI of more than 3 m2 m−2

(Fig. 13a). This effect became even more pronounced for
shallower groundwater depths, increasing evergreen tree LAI
up to 4.5 m2 m−2 for a groundwater depth of 75 cm. On the
other hand, for simulations with a deeper groundwater table,
the evergreen tree LAI declined rapidly with groundwater
depth, and C4 grass became the dominant vegetation cover
again for water table depths below 225 cm (Fig. 13a).

Evaporation components followed this relationship with
groundwater depth, and total evaporation was again mainly
driven by transpiration during both seasons (Fig. 13b). Dur-
ing the rainy season, total evaporation was invariant (∼
2.4 mmd−1) to GWTD for levels below 200 cm. Plant tran-
spiration accounted for 75 % of total evaporation, while the
remainder came from bare-soil evaporation. Rainy season to-
tal evaporation increased sharply for shallower GWTD, with

an increasing contribution by transpiration (up to 90 %) due
to the higher vegetation cover. During the dry season, all
evaporation was due to transpiration, as no surface soil wa-
ter was available for evaporation. Transpiration rates were
near zero for GWTD below 250 cm but again increased
sharply for more shallow groundwater depths, up to rates that
matched rainy season transpiration (Fig. 13b).

Surface runoff and lateral flow runoff components were
not influenced by groundwater depth, except for baseflow
runoff, which was negative as water entered the soil through
the bottom layer, rather than exiting the soil (Fig. 13c). This
baseflow “runon” component had the same relationship to
groundwater depth as transpiration, for both seasons. For
groundwater depths below 200 cm the baseflow rate varied
only little with groundwater depth. However, for more shal-
low groundwater depths the baseflow runon rates increased
again sharply to compensate for the soil water lost by tran-
spiration (Fig. 13c).

Transpiration during the rainy season mainly occurred
from the upper soil layers, peaking near the surface and
declining down to ∼ 50 cm for all simulated groundwater
depths. However, during the dry season, transpiration shifted
to deeper soil layers, peaking between 85–150 cm for all
GWTDs deeper than 200 cm and at more shallow layers
for GWTD above 200 cm (Fig. 14). For groundwater depths
above 300 cm there was also a peak in transpiration from the
bottom soil layer. This peak grew in importance for more
shallow groundwater depths, reaching 25 % of all transpi-
ration for simulations where groundwater was located more
shallow than 150 cm. Note that the values in Fig. 14 are not
weighted by layer size, and larger layers will naturally con-
tribute a higher percentage due to their size (see Fig. S21 in
the Supplement for a weighted version).

All of these results can be explained by intersecting the
soil water profile with the root distribution over all layers.
Soil water content increased with layer depth during the dry
season (Fig. S22 in the Supplement), while root distribution
decreased (Fig. S23 in the Supplement), leading to a local
maximum in root water uptake where both functions cross.
However, for soil depths of 200 cm and less, an increasing
amount of root biomass is assigned to the bottom layer in
LPJ-GUESS (see Methods). Especially for soil depths more
shallow than 100 cm, the bottom layer will host the largest
fraction of tree PFT root biomass. Therefore, for shallow soil
depths (which the model originally was not designed for),
this buildup of root biomass in the bottom layer further am-
plified the contribution to transpiration of this layer, due to
its high soil water availability.

Finally, re-evaluating the yearly cycle of soil moisture
against site-level measurements showed that introducing a
groundwater table did not significantly improve the match
with observed soil moisture content for the sampled depths
at the Dahra site, for any of the simulated GWTDs (Fig. S24
in the Supplement).
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Figure 11. Simulated sensitivity of evaporation components (columns) to soil texture for both model versions (rows), based on the Dahra
meteorological drivers. Sensitivities represented by ternary plots of time series average evaporation component values for each soil type.
Values are divided by maximum evaporation value over all soil types (Valuemax), calculated for each model version and each evaporation
component separately. Soil textures found in the Sudan-Sahel region are marked in white.

Figure 12. Simulated sensitivity of the different dryland PFTs (columns) to soil texture for both model versions (rows), based on the Dahra
meteorological drivers. Sensitivities represented by ternary plots of time series average LAI for each soil type. Values are divided by the
maximum LAI value over all soil types (LAImax), calculated for each model version and each PFT separately. Soil textures found in the
Sudan-Sahel region are marked in white.

4 Discussion

Based on ecosystem-level evaluations against site-level mea-
surements and regional data products, updating the soil water
dynamics in LPJ-GUESS resulted in an overall lower bias
and higher correlation with observations. However, the im-
provements were only small overall, especially so for the
site-level simulations. This indicates that other factors limit
overall ecosystem-level model performance for this region.
Given the high human population in the Greater Sahel, an-
thropogenic factors such as land use (change) and animal
grazing can have a large impact on the ecosystem, yet they
are not accounted for in the model (Brandt et al., 2017; Lin-
deskog et al., 2013; Souverijns et al., 2020). In our simula-
tions we also did not account for fire, which would further in-
crease the realism of the model (Axelsson and Hanan, 2018;

Sankaran et al., 2008). For the model evaluation, we only
used the “free drainage” boundary condition with a fixed soil
depth for the updated model. As we showed, including a
groundwater table and varying soil depth can have a large
impact on the simulated vegetation and associated fluxes,
especially for soil depths shallower than 300 cm. Including
these boundary conditions, e.g. based on maps of water ta-
ble depth, may therefore further improve the overall regional
model performance without further changes to the soil repre-
sentation itself.

The default LPJ-GUESS model already underestimated
dry-season transpiration and photosynthesis, and this is even
more so for the updated model version, for which these fluxes
are nearly zero. This can be explained by the lower simulated
tree cover. Both tree PFTs were overall strongly reduced in
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Figure 13. Influence of groundwater depth on simulated vegetation cover and surface hydrology at the Dahra flux tower site. Results are
averaged over all simulated years (2002–2022) and further separated into the dry and wet season for the surface hydrology results. Panels
include (a) vegetation cover as given by the LAI of the different PFTs, (b) evaporation components, and (c) runoff. All results as a function
of separate simulations of various groundwater depths.

Figure 14. Contribution of each soil layer to the simulated total
plant transpiration at the Dahra flux tower site, for a selection of
groundwater depths, ranging from 75–600 cm (panels). Results are
averaged over all simulated years (2002–2022) and further sepa-
rated into the dry and wet season. Results are not weighted by soil
layer size.

the new model version, causing sharper decline in total tran-
spiration after the rainy season ends, which is now mostly
driven by more shallow-rooted grass. The timing of plant
transpiration therefore mainly follows the surface soil mois-
ture availability, driven by the timing of the rainy season.
Nevertheless, we also showed that dry-season transpiration

can be largely influenced by groundwater access in the new
model version, simulating values that well exceed flux tower
measurements when assuming an (unrealistic) shallow water
table depth.

Our results also clarify why the default model version
supports evergreen trees in drylands, as the year-round high
availability of soil water at deeper soil layers (down to
−1.4 m) in this model enables these PFTs to stay produc-
tive during the dry season. However, it is highly question-
able as to whether this simulated soil water availability is
realistic, as we showed that a more advanced soil percola-
tion scheme does not support such a layer. Nevertheless, even
the original percolation function of the default model would
not suggest supporting such a layer either. The answer lies
in the model code, which contains a condition that percola-
tion can only occur during days for which the sum of rainfall
and snowmelt is higher than 0.1 mm (Nord et al., 2021). This
condition causes any buildup of deep soil moisture during
the wet season to remain in place until the next rainy season,
while slowly being depleted by evergreen tree transpiration.
Our new model version does not contain such a condition
and therefore does not suffer from this issue. Therefore, the
default version of LPJ-GUESS should be used with caution
when simulating vegetation in regions with a highly seasonal
climate, especially drylands.

Despite all this, our RE-based model improved the match
with observed soil moisture only for the upper (30 cm) soil
layers. For the deeper layers the footprint of the rainy season
disappears too quickly in both model versions, as both mod-
els smooth out the changes in soil moisture much sooner than
what is found in soil moisture observations. This suggest that
the pedotransfer functions (e.g. for calculating soil hydraulic
conductivity) need to be fine-tuned for this region. These are
still based on the original parameterization of Cosby et al.
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(1984), while more advanced versions have become avail-
able since then (Van Looy et al., 2017; Weber et al., 2024).
We suggest that future model developments, of LPJ-GUESS
as well as several other DVMs that still use the Cosby et
al. (1984) parameterizations, take these into account (Meu-
nier et al., 2022). Another option would be to use soil hy-
draulic traits from aggregated trait maps directly, rather than
deriving them from aggregated soil texture maps (Montzka
et al., 2017). Nevertheless, other unaccounted processes can
also play a large role in dryland soil moisture dynamics, such
as hydraulic redistribution (Barron-Gafford et al., 2017; Bo-
gie et al., 2018; Wang et al., 2023) and preferential water
flow along stems and roots, as well as through macropores
and channels created by decaying roots (Devitt and Smith,
2002; Li et al., 2009). These processes may also significantly
contribute to the rainy season footprint that is visible in the
data but not in the model. We could account for these by us-
ing a double-porosity water retention curve (Chen and Feng,
2023). Our model also simplifies soil representation by as-
suming vertically homogeneous hydraulic properties in each
soil column. We showed that most grid cells in our regional
simulation contain a relatively high sand fraction, with only
a low vertical variation in sand content. However, the verti-
cal variation in clay contents was higher, and our soil texture
sensitivity analysis showed that this may have an impact on
soil water dynamics and the general outcome of our simula-
tions. Accounting for vertical heterogeneity in soil properties
requires a few significant, yet straightforward, changes to the
model code, which we suggest prioritizing for further model
development.

Our new developments open up the LPJ-GUESS model
for simulating dryland ecohydrology more realistically. The
percolation scheme based on gradients in water potential im-
proves the model’s soil moisture dynamics, and it is largely
based on physically measurable quantities (Bonan, 2019; Ire-
son et al., 2023). The resulting average soil moisture pro-
file is more physically realistic, as it does not contain any
of the sharp gradients that the default model version suffers
from due to its layer grouping. Our new percolation scheme
also allows water to move upwards against gravity, which
becomes particularly important when simulating the aquifer
bottom boundary condition. The option to simulate different
soil depths and different bottom boundary conditions gives
the model more flexibility.

This increased flexibility was highlighted by our sensitiv-
ity tests. Activating the aquifer bottom boundary condition
and varying the depth of this layer had a large impact on sim-
ulated vegetation cover and surface hydrology. These simula-
tions suggest that dryland ecosystems like the one we studied
here could shift from a groundwater-dependent (bottom sup-
ply) to a rainfall-dependent (top supply) ecosystem depend-
ing on changes in GWTD and root distribution (Fan et al.,
2017; Rohde et al., 2024). Using the bedrock boundary con-
dition could have a similar effect for ecosystems with higher
rainfall and shallow soil depth, but we did not make any tests

on the potential of this boundary condition. Our sensitivity
test on soil texture also revealed a higher overall sensitivity
of total vegetation cover and C4 grasses to soil texture, es-
pecially when the latter is translated into plant-available wa-
ter capacity. This further opens up the model to simulate a
higher range in dryland plant cover, which can also be en-
hanced by updating the pedotransfer functions (Meunier et
al., 2022). Woody plants also had a larger year-to-year vari-
ability in vegetation cover in our new model version, but their
sensitivity to soil texture is obscured by to the lower mean
woody PFT leaf cover overall.

From a practical perspective, the new model code is rel-
atively simple and easy to transfer to other branches of the
LPJ-GUESS model, as well as to other vegetation models
(Ireson et al., 2023). The model does not need any new pa-
rameters to function and is flexible for specifying soil depth
and using different bottom boundary conditions. Computing
a solution to the Richards equation is computationally rela-
tively expensive. We did not perform any systematic bench-
marks, but from our experience the model takes about 5
times longer to run with the new model hydrology. Using the
aquifer bottom boundary condition further increased this run-
time by an additional factor of 10, caused by the large gradi-
ent in soil moisture that requires shorter (i.e. more) subdaily
time steps. This also resulted in the larger water mass balance
error for the aquifer boundary condition. Using an implicit
matrix-based approach to solving Richards equations would
be a way forward towards increasing the computational effi-
ciency, for example using a predictor–corrector method (Bo-
nan, 2019). Providing the ODE solver with the Jacobian spar-
sity matrix has also been reported to improve computational
efficiency if the ODE solver is capable of using this matrix
as an input (Ireson et al., 2023).

The model development that we present here does not
solve all challenges of LPJ-GUESS for simulating dryland
ecohydrology correctly. We identified at least two additional
developments that need to be merged with our model in order
to simulate plant–water dynamics in arid ecosystems realis-
tically. After improving the soil hydrology (LPJ-GUESS-RE
v1.0) the next milestone will implement a better representa-
tion of plant hydraulics. For dryland ecosystems it is impor-
tant to have a highly resolved representation of drought stress
and hydraulic dynamics through the soil–plant–atmosphere
continuum (Medlyn et al., 2016; Xu et al., 2016). Fortu-
nately, a new plant hydraulics scheme was recently devel-
oped for LPJ-GUESS, including drought-induced mortality
due to cavitation (Papastefanou et al., 2020, 2024). This
model version has been shown to capture drought-induced
vegetation mortality in the Amazon much more realistically
than the default version (Papastefanou et al., 2024). Merging
this development with our model version is foreseen in the
next update of our model.

Another ecohydrological limitation for simulating dryland
ecosystems with LPJ-GUESS stems from the static root ar-
chitecture in the model, where root biomass is distributed
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based on an exponential equation (Jackson et al., 1996) and
limited to a soil depth of 150 cm. However, dryland vege-
tation is known to have extended root systems, and dryland
trees are known to develop a taproot that can access the deep
water table (Do et al., 2008; Fan et al., 2017). This allows
dryland evergreen trees to sustain carbon assimilation and
transpiration throughout the dry season (Bowman and Prior,
2005; Nepstad et al., 1994; Oliveira et al., 2005; Whitley et
al., 2017) as well as hydraulically redistributing water from
moist to dry soil layers (Maeght et al., 2013; Wang et al.,
2023). One of the current hypotheses in the development of
deep roots states that dryland trees benefit from occasional
wet years using the temporary increase in soil moisture as
a window of opportunity to grow roots beyond the other-
wise “dry gap” in the soil (Holmgren et al., 2013; Wang et
al., 2023). The static representation of root architecture and
root depth prevents ecosystem models such as LPJ-GUESS
from simulating these dynamics, eventually underestimating
the resilience of dryland trees to drought. Indeed, our results
suggest that root architecture can play a large role in deter-
mining the locations of soil water uptake. The current rep-
resentation is based on a power law (Jackson et al., 1996),
and updating it to include dynamic rooting depth, deep tap-
roots, or an adaptive root biomass distribution scheme will
allow our model to sustain evergreen dryland trees and dry-
season transpiration, even for deep groundwater levels (Do et
al., 2008; Maeght et al., 2013; Sakschewski et al., 2021).

5 Conclusion

In this work we presented an update to the LPJ-GUESS dy-
namic global vegetation model, in which we implemented
a process-based representation of soil water movement by
solving the Richards equation. This development is impor-
tant for simulating dryland ecohydrology realistically, as soil
water forms the reservoir for plans to take up water from. We
showed that this update resulted in a generally better match
with observations of carbon and water fluxes, although the
improvements were overall small. We also showed that the
updated model is more sensitive to soil texture than the de-
fault version. Furthermore, the new bottom boundary condi-
tions opened up the model to simulate more ecosystem types,
such as groundwater-dependent ecosystems. Tree cover was
overall lower in the new model, in favour of increased grass
and shrub cover. We argued that including (1) a better rep-
resentation of root architecture, including deep roots, and
(2) an improved plant hydraulics scheme could re-introduce
simulated dryland trees in the model. Taken together, these
developments will allow the LPJ-GUESS model to simulate
dryland ecohydrology more realistically, enabling the scien-
tific community to better understand and project the future
of drylands under global change. The work presented in this
paper forms the first milestone towards this goal.

Code and data availability. The RE-based branch of the LPJ-
GUESS model can be downloaded from the following open-access
Zenodo archive: https://doi.org/10.5281/zenodo.15024130
(Verbruggen et al., 2025). The default version of the
model can be downloaded from the following archive:
https://doi.org/10.5281/zenodo.8065737 (Nord et al., 2021).
Meteorological driver and evaluation data can be obtained from
the respective official repositories (Martens et al., 2017; Muñoz-
Sabater et al., 2021; Tagesson et al., 2015; Wieckowski et al.,
2024).
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