Articles | Volume 18, issue 16
https://doi.org/10.5194/gmd-18-5413-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-5413-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ISWNM-NSCS v2.0: advancing the internal solitary wave numerical model with background currents and horizontally inhomogeneous stratifications
Yankun Gong
State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Xueen Chen
College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, 266100, China
Jiexin Xu
State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Zhiwu Chen
State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Qingyou He
State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Guangdong Key Lab of Ocean Remote Sensing, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Ruixiang Zhao
State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
Xiao-Hua Zhu
State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
Shuqun Cai
CORRESPONDING AUTHOR
State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
Related authors
Yankun Gong, Xueen Chen, Jiexin Xu, Jieshuo Xie, Zhiwu Chen, Yinghui He, and Shuqun Cai
Geosci. Model Dev., 16, 2851–2871, https://doi.org/10.5194/gmd-16-2851-2023, https://doi.org/10.5194/gmd-16-2851-2023, 2023
Short summary
Short summary
Internal solitary waves (ISWs) play crucial roles in mass transport and ocean mixing in the northern South China Sea. Massive numerical investigations have been conducted in this region, but there was no systematic evaluation of a three-dimensional model about precisely simulating ISWs. Here, an ISW forecasting model is employed to evaluate the roles of resolution, tidal forcing and stratification in accurately reproducing wave properties via comparison to field and remote-sensing observations.
Yankun Gong, Xueen Chen, Jiexin Xu, Jieshuo Xie, Zhiwu Chen, Yinghui He, and Shuqun Cai
Geosci. Model Dev., 16, 2851–2871, https://doi.org/10.5194/gmd-16-2851-2023, https://doi.org/10.5194/gmd-16-2851-2023, 2023
Short summary
Short summary
Internal solitary waves (ISWs) play crucial roles in mass transport and ocean mixing in the northern South China Sea. Massive numerical investigations have been conducted in this region, but there was no systematic evaluation of a three-dimensional model about precisely simulating ISWs. Here, an ISW forecasting model is employed to evaluate the roles of resolution, tidal forcing and stratification in accurately reproducing wave properties via comparison to field and remote-sensing observations.
Hao Huang, Pengyang Song, Shi Qiu, Jiaqi Guo, and Xueen Chen
Geosci. Model Dev., 16, 109–133, https://doi.org/10.5194/gmd-16-109-2023, https://doi.org/10.5194/gmd-16-109-2023, 2023
Short summary
Short summary
The Oceanic Regional Circulation and Tide Model (ORCTM) is developed to reproduce internal solitary wave dynamics. The three-dimensional nonlinear momentum equations are involved with the nonhydrostatic pressure obtained via solving the Poisson equation. The validation experimental results agree with the internal wave theories and observations, demonstrating that the ORCTM can successfully describe the life cycle of nonlinear internal solitary waves under different oceanic environments.
Zheen Zhang, Thomas Pohlmann, and Xueen Chen
Ocean Sci., 17, 393–409, https://doi.org/10.5194/os-17-393-2021, https://doi.org/10.5194/os-17-393-2021, 2021
Short summary
Short summary
In this study, we found that the interannual subsurface temperature and salinity variability of the Bay of Bengal (BoB) shows a remarkable delayed correlation with the Indian Ocean Dipole mode. We employed a regional model and determined the contributions of the coastal Kelvin waves and the westward-moving Rossby waves to this correlation. An analysis of the salinity budget revealed that the advection terms dominate the subsurface salinity changes in the BoB.
Cited articles
Adcroft, A., Campin, J. M., Dutkiewicz, S., Evangelinos, C., Ferreira, D., Forget, G., Fox-Kemper, B., Heimbach, P., Hill, C., Hill, E., Hill, H., Jahn, O., Losch, M., Marshall, J., Maze, G., Menemenlis, D., and Molod, A.: MITgcm user manual, Massachusetts Institute of Technology, http://hdl.handle.net/1721.1/117188 (last access: 27 August 2025), 2008.
Alford, M. H., Lien, R. C., Simmons, H., Klymak, J., Ramp, S., Yang, Y. J., Tang, D., and Chang, M. H.: Speed and evolution of nonlinear internal waves transiting the South China Sea, J. Phys. Oceanogr., 40, 1338–1355, https://doi.org/10.1175/2010JPO4388.1, 2010.
Alford, M. H., Peacock, T., MacKinnon, J. A., Nash, J. D., Buijsman, M. C., Centurioni, L. R., Chao, S. Y., Chang, M. H., Farmer, D. M., Fringer, O. B., Fu, K. H., Gallacher, P. C., Graber, H. C., Helfrich, K. R., Jachec, S. M., Jackson, C. R., Klymak, J. M., Ko, D. S., Jan, S., Shaun Johnston, T. M., Legg, S., Lee, I. H., Lien, R. C., Mercier, M. J., Moum, J. N., Musgrave, R., Park, J. H., Pickering, A. I., Pinkel, R., Rainville, L., Ramp, S. R., Rudnick, D. L., Sarkar, S., Scotti, A., Simmons, H. L., St Laurent, L. C., Venayagamoorthy, S. K., Wang, Y. H., Wang, J., Yang, Y. J., Paluszkiewicz, T., and Tang, T. Y.: The formation and fate of internal waves in the South China Sea, Nature, 521, 65–69, https://doi.org/10.1038/nature14399, 2015.
Álvarez, Ó., Izquierdo, A., González, C. J., Bruno, M., and Mañanes, R.: Some considerations about non-hydrostatic vs. hydrostatic simulation of short-period internal waves. A case study: The Strait of Gibraltar, Cont. Shelf Res.,181, 174–186, https://doi.org/10.1016/j.csr.2019.05.016, 2019.
Benney, D. J.: Long non-linear waves in fluid flows, Journal of Mathematics and Physics, 45, 52–63, https://doi.org/10.1002/sapm196645152, 1966.
Buijsman, M. C., McWilliams, J. C., and Jackson, C. R.: East-west asymmetry in nonlinear internal waves from Luzon Strait, J. Geophys. Res.-Oceans, 115, C10057, https://doi.org/10.1029/2009JC006004, 2010.
Burchard, H., Bolding, K., and Villarreal, M. R.: Three-dimensional modelling of estuarine turbidity maxima in a tidal estuary, Ocean Dynam., 54, 250–265, https://doi.org/10.1007/s10236-003-0073-4, 2004.
Caruso, M., Gawarkiewicz, G. G., and Beardsley, R.: Interannual variability of the Kuroshio Current intrusion in the South China Sea, J. Oceanogr., 62, 559–575, https://doi.org/10.1007/s10872-006-0076-0, 2006.
Centurioni, L. R., Niiler, P. P., and Lee, D. K.: Observations of inflow of Philippine Sea surface water into the South China Sea through the Luzon Strait, J. Phys. Oceanogr., 34, 113–121, https://doi.org/10.1175/1520-0485(2004)034<0113:OOIOPS>2.0.CO;2, 2004.
Chao, S. Y., Ko, D. S., Lien, R. C., and Shaw, P. T.: Assessing the west ridge of Luzon Strait as an internal wave mediator, J. Oceanogr., 63, 897–911, https://doi.org/10.1007/s10872-007-0076-8, 2007.
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216, https://doi.org/10.1016/j.pocean.2011.01.002, 2011.
DeCarlo, T. M., Karnauskas, K. B., Davis, K. A., and Wong, G. T. F.: Climate modulates internal wave activity in the Northern South China Sea, Geophys. Res. Lett., 42, 831–838, https://doi.org/10.1002/2014gl062522, 2015.
Du, T., Tseng, Y. H., and Yan, X. H.: Impacts of tidal currents and Kuroshio intrusion on the generation of nonlinear internal waves in Luzon Strait, J. Geophys. Res.-Oceans, 113, https://doi.org/10.1029/2007JC004294, 2008.
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic ocean tides, J. Atmos. Ocean. Tech., 19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002.
Grimshaw, R., Pelinovsky, E., Talipova, T., and Kurkina, O.: Internal solitary waves: propagation, deformation and disintegration, Nonlin. Processes Geophys., 17, 633–649, https://doi.org/10.5194/npg-17-633-2010, 2010.
Gong, Y.: MITgcm code for ISWFM v2.0, Zenodo [code], https://doi.org/10.5281/zenodo.14847454, 2025a.
Gong, Y.: ISWFM v2.0: An updated three-dimensional MITgcm model of Internal solitary waves in the northern South China Sea, Zenodo [data set], https://doi.org/10.5281/zenodo.14842090, 2025b.
Gong, Y., Chen, X., Xu, J., Xie, J., Chen, Z., He, Y., and Cai, S.: An internal solitary wave forecasting model in the northern South China Sea (ISWFM-NSCS), Geosci. Model Dev., 16, 2851–2871, https://doi.org/10.5194/gmd-16-2851-2023, 2023.
Holloway, P. E., Pelinovsky, E., Talipova, T., and Barnes, B.: A nonlinear model of internal tide transformation on the Australian North West Shelf, J. Phys. Oceanogr., 27, 871–896, https://doi.org/10.1175/1520-0485(1997)027<0871:ANMOIT>2.0.CO;2 , 1997.
Hu, S., Sprintall, J., Guan, C., McPhaden, M. J., Wang, F., Hu, D., and Cai, W.: Deep-reaching acceleration of global mean ocean circulation over the past two decades, Science Advances, 6, eaax7727, https://doi.org/10.1126/sciadv.aax7727, 2020.
Huang, X., Zhang, Z., Zhang, X., Qian, H., Zhao, W., and Tian, J.: Impacts of a mesoscale eddy pair on internal solitary waves in the northern South China Sea revealed by mooring array observations, J. Phys. Oceanogr., 47, 1539–1554, https://doi.org/10.1175/JPO-D-16-0111.1, 2017.
Jachec, S. M.: Understanding the evolution and energetics of internal tides within Monterey Bay via numerical simulations, PhD thesis, Stanford University, https://searchworks.stanford.edu/view/6970615 (last access: 27 August 2025), 2007.
Jackson, C. R. and Apel, J.: An atlas of internal solitary-like waves and their properties, Contract, 14(03-C), 0176, https://www.internalwaveatlas.com/Atlas2_PDF/IWAtlas2_FrontMatter.pdf (last access: 27 August 2025), 2004.
Jiang, S., Dai, D., Wang, D., Wang, S., Li, Y., Guo, J., and Qiao, F.: Inferring diapycnal mixing using the internal wave continuum from the high resolution ocean model, Ocean Model., 195, 102525, https://doi.org/10.1016/j.ocemod.2025.102525, 2025.
Lai, Z., Jin, G., Huang, Y., Chen, H., Shang, X., and Xiong, X.: The generation of nonlinear internal waves in the South China Sea: A three-dimensional, nonhydrostatic numerical study, J. Geophys. Res.-Oceans, 124, 8949–8968, https://doi.org/10.1029/2019JC015283, 2019.
Lamb, K. G.: Theoretical descriptions of shallow-water solitary internal waves: Comparisons with fully nonlinear waves, in The 1998 WHOI/IOSA/ONR Internal Solitary Wave Workshop: Contributed Papers, Tech. Rep. WHOI-99-07, edited by T. F. Duda and D. M. Farmer, Woods Hole Oceanogr. Inst., Woods Hole, Mass, https://apps.dtic.mil/sti/tr/pdf/ADA368664.pdf#page=208 (last access: 27 August 2025), 1999.
Lamb, K. G. and Xiao, W.: Internal solitary waves shoaling onto a shelf: Comparisons of weakly-nonlinear and fully nonlinear models for hyperbolic-tangent stratifications, Ocean Model., 78, 17–34, https://doi.org/10.1016/j.ocemod.2014.02.005, 2014.
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32, 363–403, https://doi.org/10.1029/94RG01872, 1994.
Legg, S. and Huijts, K. M.: Preliminary simulations of internal waves and mixing generated by finite amplitude tidal flow over isolated topography, Deep-Sea Res. Pt. II, 53, 140–156, https://doi.org/10.1016/j.dsr2.2005.09.014, 2006.
Li, Q., Wang, B., Chen, X., Chen, X., and Park, J.-H.: Variability of nonlinear internal waves in the South China Sea affected by the Kuroshio and mesoscale eddies, J. Geophys. Res.-Oceans, 121, 2098–2118, https://doi.org/10.1002/2015jc011134, 2016.
Liu, Y., Yuan, Y., Su, J., and Jiang, J.: Circulation in the South China Sea in summer of 1998, Chinese Sci. Bull., 45, 1648–1655, https://doi.org/10.1007/BF02898979, 2000.
Liu, Y., Weisberg, R. H., and Yuan, Y.: Patterns of upper layer circulation variability in the South China Sea from satellite altimetry using the self-organizing map, Acta Oceanol. Sin., 27, 129–144, https://digitalcommons.usf.edu/msc_facpub/332/ (last access: 27 August 2025), 2008.
Marshall, J., Hill, C., Perelman, L., and Adcroft, A.: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modelling, J. Geophys. Res.-Oceans, 102, 5733–5752, https://doi.org/10.1029/96JC02776, 1997.
Mellor, G. L. and Yamada, T.: Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys., 20, 851–875, https://doi.org/10.1029/RG020i004p00851, 1982.
Min, W., Li, Q., Xu, Z., Wang, Y., Li, D., Zhang, P., Robertson, R., and Yin, B.: High-resolution, non-hydrostatic simulation of internal tides and solitary waves in the southern East China Sea, Ocean Model., 181, 102141, https://doi.org/10.1016/j.ocemod.2022.102141, 2023.
Nagai, T. and Hibiya, T.: Internal tides and associated vertical mixing in the Indonesian Archipelago. J. Geophys. Res.-Oceans, 120, 3373–3390, https://doi.org/10.1002/2014JC010592, 2015.
Park, J.-H. and Farmer, D.: Effects of Kuroshio intrusions on nonlinear internal waves in the South China Sea during winter, J. Geophys. Res.-Oceans, 118, 7081–7094, https://doi.org/10.1002/2013jc008983, 2013.
Plato, E. A., Boller, R. A., Baynes, K., Wong, M. M., Rice, Z., Mc-Gann, M., King, B. A., and Pressley, N. N.: Highlighting Recent Uses of the NASA Worldview Mapping Application, in: AGU Fall Meeting, No. GSFC-E-DAA-TN76137-1, https://ui.adsabs.harvard.edu/abs/2019AGUFMIN21B..04P/abstract, 2019 (data available at: https://worldview.earthdata.nasa.gov, last access: 27 August 2025).
Simmons, H., Chang, M. H., Chang, Y. T., Chao, S. Y., Fringer, O., Jackson, C. R., and Ko, D. S.: Modeling and prediction of internal waves in the South China Sea, Oceanography, 24, 88–99, 2011.
Shang, X.-D., Liang, C.-R., and Chen, G.-Y.: Spatial distribution of turbulent mixing in the upper ocean of the South China Sea, Ocean Sci., 13, 503–519, https://doi.org/10.5194/os-13-503-2017, 2017.
Shaw, P. T., Ko, D. S., and Chao, S. Y.: Internal solitary waves induced by flow over a ridge: With applications to the northern South China Sea, J. Geophys. Res.-Oceans, 114, C02019, https://doi.org/10.1029/2008JC005007, 2009.
Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Rev., 91, 99–164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963.
Stastna, M. and Lamb, K. G.: Sediment resuspension mechanisms associated with internal waves in coastal waters, J. Geophys. Res.-Oceans, 113, C10016, https://doi.org/10.1029/2007JC004711, 2008.
Stastna, M. and Legare, S.: Simulations of shoaling large-amplitude internal waves: perspectives and outlook, Flow, 4, E11, https://doi.org/10.1017/flo.2024.9, 2024.
Stewart, K. D., Hogg, A. M., Griffies, S. M., Heerdegen, A. P., Ward, M. L., Spence, P., and England, M. H.: Vertical resolution of baroclinic modes in global ocean models, Ocean Model., 113, 50–65, https://doi.org/10.1016/j.ocemod.2017.03.012, 2017.
Stips, A., Bolding, K., Pohlmann, T., and Burchard, H.: Simulating the temporal and spatial dynamics of the North Sea using the new model GETM (general estuarine transport model), Ocean Dynam., 54, 266–283, https://doi.org/10.1007/s10236-003-0077-0 , 2004.
Stips, A. K., Bolding, K., and Lilover, M.: Scenario simulations of recent Baltic Sea inflows using the hydrodynamic transport model GETM, in: 2008 IEEE/OES US/EU-Baltic International Symposium, Tallinn, Estonia, 27 May 2008, 1–6, https://doi.org/10.1109/BALTIC.2008.4625527 , 2008.
Sun, H., Yang, Q., Zhao, W., Liang, X., and Tian, J.: Temporal variability of diapycnal mixing in the northern South China Sea, J. Geophys. Res.-Oceans, 121, 8840–8848, https://doi.org/10.1002/2016JC012044, 2016.
Thakur, R., Arbic, B. K., Menemenlis, D., Momeni, K., Pan, Y., Peltier, W. R., Skitka, J., Alford, M. H., and Ma, Y.: Impact of vertical mixing parameterizations on internal gravity wave spectra in regional ocean models, Geophys. Res. Lett., 49, e2022GL099614, https://doi.org/10.1029/2022GL099614, 2022.
Tiessen, M., Nauw, J., Ruardij, P., and Gerkema, T.: Numerical modeling of physical processes in the North Sea and Wadden Sea with GETM/GOTM, University of Twente, https://doi.org/10.3990/2.197, 2012.
Vlasenko, V., Stashchuk, N., and Hutter, K.: Baroclinic tides: theoretical modeling and observational evidence, Cambridge University Press, https://doi.org/10.1017/CBO9780511535932, 2005.
Vlasenko, V., Stashchuk, N., Guo, C., and Chen, X.: Multimodal structure of baroclinic tides in the South China Sea, Nonlin. Processes Geophys., 17, 529–543, https://doi.org/10.5194/npg-17-529-2010, 2010.
Vlasenko, V., Stashchuk, N., and Nimmo-Smith, W. A. M.: Three-dimensional dynamics of baroclinic tides over a seamount, J. Geophys. Res.-Oceans, 123, 1263–1285, https://doi.org/10.1002/2017JC013287, 2018.
Xie, J., He, Y., Chen, Z., Xu, J., and Cai, S.: Simulations of internal solitary wave interactions with mesoscale eddies in the northeastern South China Sea, J. Phys. Oceanogr., 45, 2959–2978, https://doi.org/10.1175/jpo-d-15-0029.1, 2015.
Xie, J., Fang, W., He, Y., Chen, Z., Liu, G., Gong, Y., and Cai, S.: Variation of internal solitary wave propagation induced by the typical oceanic circulation patterns in the northern South China Sea deep basin, Geophys. Res. Lett., 48, e2021GL093969, https://doi.org/10.1029/2021GL093969, 2021.
Yang, Q., Zhao, W., Liang, X., and Tian, J.: Three-dimensional distribution of turbulent mixing in the South China Sea, J. Phys. Oceanogr., 46, 769–788, https://doi.org/10.1175/JPO-D-14-0220.1, 2016.
Zhang, Z., Fringer, O. B., and Ramp, S. R.: Three-dimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea, J. Geophys. Res.-Oceans, 116, C05022, https://doi.org/10.1029/2010JC006424, 2011.
Zheng, Q., Susanto, R. D., Ho, C. R., Song, Y. T., and Xu, Q.: Statistical and dynamical analyses of generation mechanisms of solitary internal waves in the northern South China Sea, J. Geophys. Res.-Oceans, 112, C03021, https://doi.org/10.1029/2006JC003551, 2007.
Short summary
A new internal solitary wave (ISW) numerical model in the northern South China Sea (ISWNM-NSCS v2.0) improves ISW predictions by incorporating background currents and inhomogeneous stratifications. Additionally, viscosity and diffusivity coefficients are optimized to maintain stable stratifications, extending the forecasting period. Sensitivity experiments show that ISWNM-NSCS v2.0 significantly enhances predictions of various wave properties.
A new internal solitary wave (ISW) numerical model in the northern South China Sea (ISWNM-NSCS...