Articles | Volume 18, issue 16
https://doi.org/10.5194/gmd-18-5051-2025
https://doi.org/10.5194/gmd-18-5051-2025
Model description paper
 | 
19 Aug 2025
Model description paper |  | 19 Aug 2025

A dynamical process-based model for quantifying global agricultural ammonia emissions – AMmonia–CLIMate v1.0 (AMCLIM v1.0) – Part 2: Livestock farming

Jize Jiang, David S. Stevenson, Aimable Uwizeye, Giuseppe Tempio, Alessandra Falcucci, Flavia Casu, and Mark A. Sutton

Related authors

A dynamical process-based model for quantifying global agricultural ammonia emissions – AMmonia–CLIMate v1.0 (AMCLIM v1.0) – Part 1: Land module for simulating emissions from synthetic fertilizer use
Jize Jiang, David S. Stevenson, and Mark A. Sutton
Geosci. Model Dev., 17, 8181–8222, https://doi.org/10.5194/gmd-17-8181-2024,https://doi.org/10.5194/gmd-17-8181-2024, 2024
Short summary
Analysis of atmospheric ammonia over South and East Asia based on the MOZART-4 model and its comparison with satellite and surface observations
Pooja V. Pawar, Sachin D. Ghude, Chinmay Jena, Andrea Móring, Mark A. Sutton, Santosh Kulkarni, Deen Mani Lal, Divya Surendran, Martin Van Damme, Lieven Clarisse, Pierre-François Coheur, Xuejun Liu, Gaurav Govardhan, Wen Xu, Jize Jiang, and Tapan Kumar Adhya
Atmos. Chem. Phys., 21, 6389–6409, https://doi.org/10.5194/acp-21-6389-2021,https://doi.org/10.5194/acp-21-6389-2021, 2021
Short summary
A climate-dependent global model of ammonia emissions from chicken farming
Jize Jiang, David S. Stevenson, Aimable Uwizeye, Giuseppe Tempio, and Mark A. Sutton
Biogeosciences, 18, 135–158, https://doi.org/10.5194/bg-18-135-2021,https://doi.org/10.5194/bg-18-135-2021, 2021
Short summary

Cited articles

Aarnink, A. J. A., Swierstra, D., van den Berg, A. J., and Speelman, L.: Effect of Type of Slatted Floor and Degree of Fouling of Solid Floor on Ammonia Emission Rates from Fattening Piggeries, J. Agr. Eng. Res., 66, 93–102, https://doi.org/10.1006/jaer.1996.0121, 1997. 
Andersen, H. M.-L., Kongsted, A. G., and Jakobsen, M.: Pig elimination behavior – A review, Appl. Anim. Behav. Sci., 222, 104888, https://doi.org/10.1016/j.applanim.2019.104888, 2020. 
Aneja, V., Bunton, B., Walker, J. T., and Malik, B. P.: Measurement and analysis of atmospheric ammonia emissions from anaerobic lagoons, Atmos. Environ., 35, 1949–1958, https://doi.org/10.1016/S1352-2310(00)00547-1, 2001. 
Ball, R., Keeney, D. R., Thoebald, P. W., and Nes, P.: Nitrogen Balance in Urine-affected Areas of a New Zealand Pasture 1, Agron. J., 71, 309–314, https://doi.org/10.2134/agronj1979.00021962007100020022x, 1979. 
Beaudor, M., Vuichard, N., Lathière, J., Evangeliou, N., Van Damme, M., Clarisse, L., and Hauglustaine, D.: Global agricultural ammonia emissions simulated with the ORCHIDEE land surface model, Geosci. Model Dev., 16, 1053–1081, https://doi.org/10.5194/gmd-16-1053-2023, 2023. 
Short summary
A special model called AMmonia–CLIMate (AMCLIM) has been developed to understand and calculate NH3 emissions from livestock farming. It is estimated that about 30 % of excreted N from livestock is lost due to NH3 emissions from housing, manure management and land application of manure. High NH3 volatilization often occurs in hot regions, while poor management practices also result in significant N losses through NH3 emissions.
Share