Articles | Volume 18, issue 15
https://doi.org/10.5194/gmd-18-4789-2025
https://doi.org/10.5194/gmd-18-4789-2025
Development and technical paper
 | 
04 Aug 2025
Development and technical paper |  | 04 Aug 2025

Correction of sea surface biases in the NEMO ocean general circulation model using neural networks

Andrea Storto, Sergey Frolov, Laura Slivinski, and Chunxue Yang

Related authors

Regional sea level trend budget over 2004–2022
Marie Bouih, Anne Barnoud, Chunxue Yang, Andrea Storto, Alejandro Blazquez, William Llovel, Robin Fraudeau, and Anny Cazenave
Ocean Sci., 21, 1425–1440, https://doi.org/10.5194/os-21-1425-2025,https://doi.org/10.5194/os-21-1425-2025, 2025
Short summary
Variability in manometric sea level from reanalyses and observation-based products over the Arctic and North Atlantic oceans and the Mediterranean Sea
Andrea Storto, Giulia Chierici, Julia Pfeffer, Anne Barnoud, Romain Bourdalle-Badie, Alejandro Blazquez, Davide Cavaliere, Noémie Lalau, Benjamin Coupry, Marie Drevillon, Sebastien Fourest, Gilles Larnicol, and Chunxue Yang
State Planet, 4-osr8, 12, https://doi.org/10.5194/sp-4-osr8-12-2024,https://doi.org/10.5194/sp-4-osr8-12-2024, 2024
Short summary
Skin sea surface temperature schemes in coupled ocean–atmosphere modelling: the impact of chlorophyll-interactive e-folding depth
Vincenzo de Toma, Daniele Ciani, Yassmin Hesham Essa, Chunxue Yang, Vincenzo Artale, Andrea Pisano, Davide Cavaliere, Rosalia Santoleri, and Andrea Storto
Geosci. Model Dev., 17, 5145–5165, https://doi.org/10.5194/gmd-17-5145-2024,https://doi.org/10.5194/gmd-17-5145-2024, 2024
Short summary
MESMAR v1: a new regional coupled climate model for downscaling, predictability, and data assimilation studies in the Mediterranean region
Andrea Storto, Yassmin Hesham Essa, Vincenzo de Toma, Alessandro Anav, Gianmaria Sannino, Rosalia Santoleri, and Chunxue Yang
Geosci. Model Dev., 16, 4811–4833, https://doi.org/10.5194/gmd-16-4811-2023,https://doi.org/10.5194/gmd-16-4811-2023, 2023
Short summary
Using canonical correlation analysis to produce dynamically based and highly efficient statistical observation operators
Eric Jansen, Sam Pimentel, Wang-Hung Tse, Dimitra Denaxa, Gerasimos Korres, Isabelle Mirouze, and Andrea Storto
Ocean Sci., 15, 1023–1032, https://doi.org/10.5194/os-15-1023-2019,https://doi.org/10.5194/os-15-1023-2019, 2019
Short summary

Related subject area

Climate and Earth system modeling
Representing lateral groundwater flow from land to river in Earth system models
Chang Liao, L. Ruby Leung, Yilin Fang, Teklu Tesfa, and Robinson Negron-Juarez
Geosci. Model Dev., 18, 4601–4624, https://doi.org/10.5194/gmd-18-4601-2025,https://doi.org/10.5194/gmd-18-4601-2025, 2025
Short summary
FINAM is not a model (v1.0): a new Python-based model coupling framework
Sebastian Müller, Martin Lange, Thomas Fischer, Sara König, Matthias Kelbling, Jeisson Javier Leal Rojas, and Stephan Thober
Geosci. Model Dev., 18, 4483–4498, https://doi.org/10.5194/gmd-18-4483-2025,https://doi.org/10.5194/gmd-18-4483-2025, 2025
Short summary
The Detection and Attribution Model Intercomparison Project (DAMIP v2.0) contribution to CMIP7
Nathan P. Gillett, Isla R. Simpson, Gabi Hegerl, Reto Knutti, Dann Mitchell, Aurélien Ribes, Hideo Shiogama, Dáithí Stone, Claudia Tebaldi, Piotr Wolski, Wenxia Zhang, and Vivek K. Arora
Geosci. Model Dev., 18, 4399–4416, https://doi.org/10.5194/gmd-18-4399-2025,https://doi.org/10.5194/gmd-18-4399-2025, 2025
Short summary
Enhancing winter climate simulations of the Great Lakes: insights from a new coupled lake–ice–atmosphere (CLIAv1) system on the importance of integrating 3D hydrodynamics with a regional climate model
Pengfei Xue, Chenfu Huang, Yafang Zhong, Michael Notaro, Miraj B. Kayastha, Xing Zhou, Chuyan Zhao, Christa Peters-Lidard, Carlos Cruz, and Eric Kemp
Geosci. Model Dev., 18, 4293–4316, https://doi.org/10.5194/gmd-18-4293-2025,https://doi.org/10.5194/gmd-18-4293-2025, 2025
Short summary
Modelling emission and transport of key components of primary marine organic aerosol using the global aerosol–climate model ECHAM6.3–HAM2.3
Anisbel Leon-Marcos, Moritz Zeising, Manuela van Pinxteren, Sebastian Zeppenfeld, Astrid Bracher, Elena Barbaro, Anja Engel, Matteo Feltracco, Ina Tegen, and Bernd Heinold
Geosci. Model Dev., 18, 4183–4213, https://doi.org/10.5194/gmd-18-4183-2025,https://doi.org/10.5194/gmd-18-4183-2025, 2025
Short summary

Cited articles

Agarwal, N., Small, R. J., Bryan, F. O., Grooms, I., and Pegion, P. J.: Impact of stochastic ocean density corrections on air-sea flux variability, Geophys. Res. Lett., 50, e2023GL104248, https://doi.org/10.1029/2023GL104248, 2023. 
Balmaseda, M. A., Dee, D., Vidard, A., and Anderson, D. L. T.: A multivariate treatment of bias for sequential data assimilation: Application to the tropical oceans, Q. J. Roy. Meteor. Soc., 133, 167–179, https://doi.org/10.1002/qj.12, 2007. 
Barnier, B., Madec, G., Penduff, T., Molines, J.-M., Treguier, A.-M., Le Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval, C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud, M., McClean, J., and De Cuevas, B.: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution, Ocean Dynam., 56, 543–567, https://doi.org/10.1007/s10236-006-0082-1, 2006. 
Bonavita, M. and Laloyaux, P.: Machine learning for model error inference and correction, J. Adv. Model. Earth Sy., 12, e2020MS002232, https://doi.org/10.1029/2020MS002232, 2020. 
Brodeau, L., Barnier, B., Treguier, A.-M., Penduff, T., and Gulev, S.: An ERA40-based atmospheric forcing for global ocean circulation models, Ocean Model., 31, 88–104, https://doi.org/10.1016/j.ocemod.2009.10.005, 2010. 
Download
Short summary

Inaccuracies in air–sea heat fluxes severely degrade the accuracy of ocean numerical simulations. Here, we use artificial neural networks to correct air–sea heat fluxes as a function of oceanic and atmospheric state predictors. The correction successfully improves surface and subsurface ocean temperatures beyond the training period and in prediction experiments.

Share