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Abstract. The atmospheric forcing and the heat exchanges
between the ocean and the atmosphere represent one of the
major sources of uncertainty for numerical ocean recon-
structions and predictions, together with inaccuracies in ver-
tical mixing and solar radiation penetration. Air–sea heat
fluxes may suffer from inaccuracies in meteorological fields,
sea surface variables, and bulk formulations, which have
a strongly nonlinear dependence on the ocean state. Here,
state-dependent errors in heat fluxes are learned by artificial
neural networks (ANNs) from a dataset of heat flux correc-
tion terms, derived in turn from previous sea surface tem-
perature nudging experiments. The pre-trained model pre-
dictors include stationary fields, atmospheric forcing data,
ocean state, and stratification indices. Variable importance
scores emphasize the dependence of air–sea heat flux er-
rors on wind forcing. The pre-trained heat flux correction
model is then used to adaptively correct fluxes online, in a se-
ries of global ocean experiments performed with the NEMO
version 4 (Nucleus for European Modelling of the Ocean)
ocean general circulation model, augmented with ANN in-
ference capabilities in Fortran90. Results indicate the posi-
tive impact of the correction procedure, beyond the training
period, e.g. in independent observation–poor and –rich peri-
ods, leading to the same dynamic and subsurface signature as
in nudging experiments. Prediction experiments also indicate
the method’s potential for use in operational forecast applica-
tions. The method may also be adopted in coupled long-term
reanalyses, long-range predictions, and projections.

1 Introduction

The ocean and the atmosphere interact by exchanging mo-
mentum, heat, and freshwater. These interactions drive ocean
circulation and ventilation (e.g. Marzocchi et al., 2021) and
its energy and water budgets, which are crucial to under-
standing the ocean’s role in the Earth’s climate and its vari-
ability over a wide range of spatial and temporal scales (e.g.
Roberts et al., 2016; Small et al., 2019). Unfortunately, direct
measurements of these fluxes are only available in limited
buoy locations, making global and precise estimating of air–
sea fluxes a challenging problem (Cronin et al., 2019). Typi-
cally, air–sea fluxes are estimated using bulk flux parameteri-
zations, which rely on near-surface meteorological variables,
obtained from numerical weather prediction systems or at-
mospheric reanalyses (e.g. Yu, 2019). Bulk formulations are
strongly nonlinear, and there are significant uncertainties in
these parameterization-based flux estimates (e.g. Huber and
Zanna, 2017); when averaged over ocean basins, heat fluxes
may result in considerable imbalances (see e.g. Kato et al.,
2013; Storto et al., 2016a; Valdivieso et al., 2017). Inaccura-
cies in ocean model vertical mixing and solar radiation pene-
tration schemes interplay with the inaccuracies in the air–sea
fluxes and may amplify the sea surface errors (e.g. Deppen-
meier et al., 2020; Jia et al., 2021; Richards et al., 2009).

For both retrospective ocean simulations (e.g. OMIP,
Ocean Model Intercomparison Project; Griffies et al., 2016),
long-term reanalyses (Storto et al., 2021), and coupled model
simulations (e.g. CMIP, Coupled Model Intercomparison
Project, Small et al., 2019), systematic errors at the sea sur-
face affect ocean heat redistribution (convection, stratifica-
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tion, and large-scale circulation), potentially compromising
climate change signals (Storto et al., 2016a; Carton et al.,
2018). Errors at the air–sea interface thus remain among
the most critical sources of uncertainty for many numeri-
cal ocean applications, including climate monitoring (e.g.
Hakuba et al., 2024) and operational forecasting (e.g. Lewis
et al., 2019; Lin et al., 2023; Ohishi et al., 2024).

Attempts to empirically correct errors in the fluxes have
generally developed along two directions: (i) bias-correction
methodologies applied directly to ocean variables, i.e. cor-
recting the effects of air–sea heat flux systematic errors, see
e.g. Balmaseda et al. (2007); (ii) calibrating atmospheric
reanalyses through comparison with observed climatology
(Large and Yeager, 2009; Brodeau et al., 2010; Tsujino et al.,
2018). Both strategies have their merits and weaknesses.
Bias-correcting ocean variables requires an adequate and
dense ocean observing network – namely, the Argo float net-
work limited to the period from ∼ 2005 onwards – and can-
not be used for attributing ocean model errors to specific pro-
cesses. On the other hand, calibrating atmospheric reanalyses
can mitigate errors in the atmospheric forcing but not in the
bulk formula approximations, and, therefore, is only partially
able to improve air–sea heat fluxes. Stochastic approaches
can also, to some limited extent, improve the estimation of
air–sea heat fluxes through rectification of the mean ocean
state (Agarwal et al., 2023; Storto and Yang, 2023).

In this work, we use a state-of-the-art ocean general
circulation model to demonstrate a neural-network-based
predictor–correction empirical relationship to correct the
non-solar component of air–sea heat fluxes and reduce sea
surface temperature (SST) biases. As neural networks have
been proven to be universal approximators of any function
(Hornik et al., 1989), they represent an obvious and flexi-
ble choice to model nonlinear relationships between the at-
mospheric and oceanic states and heat flux errors. Indeed,
previous work (Bonavita and Laloyaux, 2020; Chen et al.,
2022; Chapman and Berner, 2024) has shown their ability
to infer systematic errors in atmospheric models. The use
of data assimilation increments was also demonstrated to be
a robust strategy to learn such errors, with both theoretical
(e.g. Mitchell and Carrassi, 2015) and practical (Farchi et al.,
2021; Chapman and Berner, 2024) arguments. The relation-
ship is learned offline from present-day ocean model simula-
tions that exploit the availability of spaceborne SST to esti-
mate a corrective heat flux term. The correction is then tested
online in ocean model simulations, for periods beyond the
learned (training) one.

The article’s structure is as follows: after this Introduc-
tion, Sect. 2 describes the modelling system, the neural net-
work setup, the relevant datasets, and the experimental setup.
Section 3 summarizes the results of the reconstruction of the
corrective heat flux terms and online correction experiments,
while Sect. 4 discusses and concludes.

2 Materials and methods

2.1 The NEMO model and the nudging scheme

In this work, we use the NEMO ocean model (version 4.0.7,
Madec et al., 2017), including the sea ice dynamic and
thermodynamic model SI3. NEMO is implemented on the
ORCA1 grid (at 1° of horizontal resolution with refinement
in the tropics), with 75 vertical depth levels and partial steps
(Barnier et al., 2006). We use the same model configuration
as in the CIGAR reanalysis (Storto and Yang, 2024), briefly
recalled here. The surface boundary conditions are calcu-
lated through the CORE bulk formulas (Large and Yeager,
2009) implemented in the AEROBULK package (Brodeau
et al., 2016), using meteorological variables extracted from
the ECMWF ERA5 atmospheric reanalysis (Hersbach et al.,
2020). The river discharge from land is provided by the JMA
JRA-55-do reanalysis (Tsujino et al., 2018). The model setup
includes (i) a 3-band RGB scheme for the net shortwave radi-
ation, with extinction coefficients that depend on a monthly
climatology of chlorophyll; (ii) the turbulent kinetic energy
(TKE) scheme for the vertical mixing (Gaspar et al., 1990);
(iii) a Laplacian operator and a bi-Laplacian operator for
tracers and momentum, respectively.

In the NEMO model, the air–sea heat flux can be option-
ally corrected with a nudging scheme (see e.g. Storto et al.,
2016b). In practice, the net heat flux is decomposed into a
penetrative (solar) component and a non-penetrative (non-
solar) component. The non-solar component, which includes
latent, sensible, and net longwave heat flux, can be corrected
as:

Q′ns =Qns+Qrp =Qns+ κ(SSTo−SST) (1)

where the misfit between the observed (SSTo) and modelled
(SST) sea surface temperature, multiplied by the nudging co-
efficient (or strength) κ , represents the corrective flux Qrp
added to the uncorrected non-solar flux. SST nudging is
still a popular assimilation methodology for many climate-
scale applications, where the use of gap-filled SST data en-
sures temporal consistency in the simulated ocean state com-
pared to the direct assimilation of SST measurements (see
e.g. Yang et al., 2017). A 2000–2020 experiment (referred
to as REF) with nudging to the SST data from the UKMO
HadISST dataset (Rayner et al., 2003) was conducted, with a
nudging coefficient equal to 100 Wm−2 K−1, which roughly
corresponds to a 20 d relaxation time scale for a 50 m deep
mixed layer. Note that nudging coefficients may be related to
error characteristics and set up in a statistically optimal way
(e.g. Zou et al., 1992; Vidard et al., 2003), although here,
for the sake of simplicity, the nudging coefficient κ is spa-
tially and temporally constant. Additionally, preliminary ex-
periments tested the use of alternative SST datasets, for in-
stance, the NOAA DOISST v2.1 (Huang et al., 2021), but
those using HadISST provided the best results and are the
only ones considered in the remainder of the article.
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Table 1. List of predictors, grouped by categories, with their aggregated variable importance score (VIS), given as percent impact, both as
the impact on the pre-trained model (total VIS), and averaged over the global domain from the pointwise application (grid-point-averaged
local VIS). MLD: mixed layer depth; OHC: ocean heat content; SSS: sea surface salinity; OSC: ocean salt content; SSH: sea surface height;
the suffix _da refers to diurnal amplitude.

Category Predictors Total VIS (%) Grid-point-averaged local VIS (%)

Stationary Lon, Lat, Time 30 7
Temperature SST, OHC, SST_da 22 12
Salinity SSS, OSC 4 1
Heat flux Qlat, Qsen, Qlw, Qsw, Qemp 11 18
Freshwater flux Precip, Runoff, Salt flux, 6 16
Wind forcing Stress modulo, Wind speed, SSH 26 44
MLD MLD, MLD_da 1 2

Correcting air–sea heat fluxes effectively accounts for
multiple sources of bias in the modelled SST, including po-
tential errors in vertical mixing and other oceanic processes.
Since the bias is assessed against observations without possi-
ble attribution to a specific error source, the method serves as
a general SST bias correction strategy. Additionally, the cor-
rection is applied to the air–sea heat flux rather than directly
modifying the SST tendency. Direct SST tendency correc-
tions are generally unsatisfactory, as they require arbitrary as-
sumptions about vertical propagation – such as confinement
within the mixed layer – or risk being nullified by air–sea
interactions (see e.g. Waters et al., 2015; Storto and Oddo,
2019). Adjusting air–sea heat fluxes is therefore a customary
and physically consistent practice in ocean general circula-
tion models; similar approaches are also used by state esti-
mation systems, such as ECCO4 (Forget et al., 2015), which
employs observations to correct heat flux components.

2.2 Artificial neural networks

The artificial neural network (ANN) employs a feed-forward
architecture to infer the corrective fluxQrp using several pre-
dictors. The gridded predictors (ocean model fields) are un-
rolled to form independent columns (grid-point-wise data),
and the geographical information is retained through the ad-
dition of longitude and latitude as predictors. This approach
is referred to as column neural networks (e.g. Bonavita and
Laloyaux, 2020). In the ANN, Qrp will not depend any
longer on SST observations but on several input predictors,
representative of atmospheric and oceanic states, and de-
tailed below.

We grouped the predictors into several categories, listed in
Table 1, to present different sources of errors: (i) stationary
errors (location and day of the month); (ii) surface tempera-
ture and its diurnal cycle; (iii) heat flux components; (iv) at-
mospheric wind forcing; (v) surface salinity and freshwater
components; (vi) ocean stratification and its diurnal cycle.
Within the ANN training, the input variables are taken as
daily means from the REF experiment (with SST nudging
enabled), except the variables referring to diurnal amplitudes

(defined as the maximum value minus the minimum value, at
an hourly frequency, within each day). The output fields used
for training the ANNs are theQrp fields from the REF exper-
iment, taken as the average between the same day as the pre-
dictors and the following day, assuming it is nominally valid
at the end of each daily window (midnight UTC).

Over sea-ice-covered areas, the heat flux corrections van-
ish, due to the use of a sea-ice-based weighting function –
that zeroes the correction for non-zero values of the sea ice
concentration – in the construction of the Qrp fields in the
nudging experiment. The nudging experiment is also used
in the training of the ANN, thus resulting in negligible cor-
rections therein. Additionally, no sea ice predictors are used.
This is because SST data beneath sea ice are extrapolated
from sea ice concentration data and are less reliable (Rayner
et al., 2003).

After a preliminary comparison of different model archi-
tectures (not shown), the best-scoring neural network model
was found to include 3 hidden layers (5 total), 256 neurons
(considering an input size of 24 features and an output size
of 1), and uses the rectified linear unit (ReLU) activation
function in all layers but the last one. All input and output
variables were normalized by their global mean and standard
deviation. During the training, we used daily means, subsam-
pled every 5 d during the period 2003–2017; while, at the
same temporal frequency, the years 2001, 2002, 2017, and
2018 were used for validation within the ANN training, and
2019–2020 were used as independent test datasets.

We tested the impact of the correction frequency and train-
ing dataset’s timescale in preliminary experiments with the
NEMO model and the online ANN’s correction of Qrp; we
aimed to assess the impact of high temporal frequency in
the inference step, ranging from monthly to daily sets of
predictors and corrections, and to investigate the impact of
varying the inference frequency in NEMO, from daily to 3-
hourly. The results are summarized in Fig. 1, in terms of
global SST root mean square error (RMSE), during the in-
dependent verification period 2019–2020. We progressively
improve the performance of the ANN-based inference in
NEMO, closely approaching the REF experiment with SST
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Figure 1. Sea surface temperature globally averaged RMSE for the
preliminary experiments, over the independent verification period
2019–2020. M-∗ experiments and D-∗ experiments refer to the use
of monthly versus daily averaged nudging increments in the ANN
training; the second string in the experiment name (30 d, 20 d, . . . ,
3 h) refers to the length of the predictor rolling archive; the last let-
ter refers to the frequency of the update in the online experiments
(“D” as daily, “S” as sub-daily, namely every 3 h).

nudging, by increasing both the temporal frequency of the
predictor–correction datasets and the temporal frequency of
the inference step. The best results are obtained for daily
sets of predictors and corrections and the 3-hourly inference
step frequency. Note that we cannot increase it further, be-
cause 3 h is the frequency of the surface boundary condition
calculation in our configuration of NEMO.

Next, we show in Fig. 2 the error maps of the in-
ferred heat flux corrections from the test (i.e. independent)
data. The normalized RMSE (Fig. 2a) shows errors smaller
than 10 %, and on average equal to 4 % (corresponding to
1.36 Wm−2); while errors peak in areas of large mesoscale
activity (western boundary currents and the Antarctic Cir-
cumpolar Current, ACC), other non-obvious local peaks ex-
ist. The systematic error of the ANN reconstructions is very
low (Fig. 2c), generally not exceeding 0.7 Wm−2, indicat-
ing that the RMSE is explained primarily by random er-
rors (Fig. 2d shows the standard deviation of the differ-
ences). Note that the grid-point-wise correction implies that
the smoothness of the ANN-based correction depends on
that of the predictors, i.e. the model fields; we verified the
high consistency between the original output and the ANN-
inferred one even in individual snapshots (not shown).

Table 1 reports the list of predictors, grouped into cate-
gories, together with their impact in terms of variable im-

portance scores (VIS). The VIS for the predictors are cal-
culated using the permutation-based method proposed by
Fisher et al. (2019), using the vip R package (Greenwell
and Boehmke, 2020), applied either to the entire pre-trained
model or pointwise at each model grid point (see Table 1’s
caption for details). The total VIS refers to the VIS over the
full columnar ANN model, while the local VIS is calculated
for each grid point by fixing the longitude–latitude pair to the
corresponding grid point. The different VIS results respond
to different questions – i.e. the total VIS indicates the global
impact of each predictor on the final ANN. Diagnosing the
local VIS allows investigating regional patterns in variable
impact, and Table 1 also reports its spatial average values.

The explainability results for the entire pre-trained model
suggest a large impact from static data, wind forcing, and
temperature; a significant impact from the heat flux compo-
nents; and a relatively smaller impact from salinity, freshwa-
ter fluxes, and ocean stratification. There may be, however,
non-exclusive attributions of errors to predictors, as impor-
tant correlations between parameters exist. For instance, the
VIS for temperature may partly indicate errors in climatolog-
ical flux (due to the climatological state of the sea surface) or
air–sea heat flux (e.g. the upward longwave heat flux); wind
forcing may also explain systematic errors in e.g. latent heat
flux, and so on for other correlated fields. Due to the strong
multivariate nonlinearities in air–sea interactions (e.g. wind
stress depends on both near-surface winds and local tempera-
tures via nonlinear bulk formulas), these correlations are not
reducible. Hence, we take a practical approach by diagnos-
ing their impact using VIS metrics. In some cases, predictors
respond to very similar processes but which are not identical
(e.g. wind stress and wind speed differ from the use of sea
surface currents in the former).

Figure 3 shows the most impactful predictors as a func-
tion of longitude and latitude (both individual predictors and
categories). This indicates that in most of the global ocean,
the most important predictor is associated with wind forcing
(either wind speed or stress). Interestingly, mesoscale active
areas (e.g. western boundary current regions and the Antarc-
tic Circumpolar Current) exhibit turbulent heat fluxes (latent
and sensible heat) as the dominant predictor, consistent with
the large influence of ocean mesoscale dynamics in the air–
sea exchanges therein (see e.g. Frolov et al., 2021). In many
coastal regions, the most important predictor is associated
with freshwater fluxes. Only a few grid points exhibit another
dominant predictor.

Figure 4 shows the individual impact of each predictor
(in %), disclosing interesting spatial patterns, closely related
to physical and dynamical processes. For instance, the mixed
layer depth appears important near the Equator, likely related
to ENSO (El Niño–Southern Oscillation) variability; precip-
itation’s impact is relevant in correspondence to the ITCZ
(Intertropical Convergence Zone), likely due to its possible
misplacement, and around the maritime continent. Eastern
boundary upwelling systems are impacted by the solar heat
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Figure 2. Error maps of the reconstructed heat flux correction with test data, i.e. independent data from the training during 2019–2020.
(a) Normalized RMSE (dimensionless); (b) RMSE in units of heat flux (W m−2); (c) bias (W m−2); (d) standard deviation of the differences
between the original heat flux corrections and those reconstructed with the ANN (W m−2).

flux and diurnal and seasonal variability (namely, the SST
diurnal amplitude and the day of the year, respectively). The
salinity flux is relevant over marginal ice zones – in both po-
lar regions – associated with ice-ocean freshwater and heat
exchanges; river runoff impacts flux errors in the proximity
of shorelines.

2.3 Experimental setup

Several experiments were run using the NEMO ocean model
equipped with new functionalities to store in a rolling array
the predictors at the desired temporal frequency (see Sect. 2.2
and Fig. 1). We use an in-house Fortran90 library (see the
Code Availability section) for online inference from the pre-
trained model,as the NEMO model is coded in Fortran. This
eases the online inference step. In other words, the prediction
step is natively implemented in Fortran90 as an additional
NEMO module to avoid the need for external software inter-
faces. The pre-trained model is loaded at the beginning of the
NEMO model integration; then, every 3 h, the inference rou-
tine is called, with the predictors average over the latest 24 h
as input. The inferred corrective flux is then added to the un-
corrected (bulk formula–derived) non–solar heat flux com-
ponent every 3 h.

The experiments with the ANN-based heat flux correc-
tion, presented hereafter, are named NNC (neural-network-
based correction) and cover four different scenarios: (i) val-

idation in the training phase (self-consistency), i.e. during
the period 2002–2018; (ii) validation in the test phase (in-
dependent verification), i.e. during the period 2019–2020,
after the training period; (iii) validation in earlier periods,
where no dense SST data were available (1961–1979), to test
the impact of the new method for retrospective simulations
and reanalyses, without any memory in the ocean state ini-
tialization; (iv) validation in prediction experiments, namely,
7 d forecasts initialized every 10 d in 2021 and 2022, using
the data assimilation–enabled CIGAR reanalysis (Storto and
Yang, 2024) and forced at the sea surface by ECMWF op-
erational forecasts, which replace the ERA5 reanalyses used
in the scenarios (i)–(iii). These setups allow us to provide a
full assessment of the methodology for different applications
(such as long- or short-term simulations, historical reanaly-
ses, and operational oceanography).

Further to NNC, we show results from REF (standard
SST nudging enabled), CTRL (no corrections), and CLIMC
(climatological corrections). The latter corrects air–sea heat
fluxes with a monthly climatology of corrections derived
from the REF experiment, representing a linear benchmark
for the methodology used in the NNC experiment.
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Figure 3. Dominant predictors identified using variable importance scores (by individual predictor, a, and by predictor categories, b), from
the optimal pre-trained model described in the text. The predictors’ list is as in Table 1, but for the sake of clarity, only those predictors with
at least one dominant grid point are considered in (a).

3 Results

3.1 Contemporary simulations

The reconstruction of corrective fluxes with the pre-trained
model is shown in Fig. 5, which indicates the close cor-
respondence between the SST nudging–derived and neural
network–inferred fields, during the full period 2001–2020.
Large corrections occur in mesoscale active areas (given the
large but not exclusive role of turbulent heat fluxes; see
Figs. 3 and 4), the North Atlantic subpolar gyre (given the
significant role of freshwater-related predictors; see Fig. 4),
in the tropical ocean and Southern Ocean. Signs are in
general reversed in the Northern Hemisphere and Southern
Hemisphere during the winter and summer seasons (namely,
non-solar heat fluxes are underestimated in wintertime and
over-estimated in summertime, because of generally cold and
warm biases in SST, respectively). The seasonality of the cor-
rections in deep convection areas also suggests the systematic
misrepresentation of the convective processes therein, with
much too deep mixed layers in the North Atlantic Ocean,
and more complex patterns in the Southern Ocean and ACC
region.

The application of the correction leads to satisfying bias
correction during the independent verification period 2019–
2020, as shown in Fig. 6. Large negative biases in the Gulf
Stream, Kuroshio Extension, central tropical Pacific, and
parts of the Southern Ocean, present in CTRL are equally
mitigated in REF and NNC. Likewise, warm biases in the
eastern regions of the tropical basins, in the Indian Ocean,
and locally elsewhere are also mitigated. Over the mid-
latitudes, SST biases approach zero, while elsewhere, the re-
maining biases that the SST data ingestion was not able to
mitigate in the REF experiment are reproduced also in the
NNC experiment. The global mean absolute error (MAE)
over 2019–2020 decreases from 0.37 °C in CTRL to 0.20
and 0.19 °C in NNC and REF, respectively, while CLIMC
exhibits a MAE of 0.23 °C. Differences between NNC and
REF experiments are very small and limited only to polar
areas (north of 60° N and south of 60° S), where the NNC
corrections are small by construction.

The effects of the correction are also well reproduced in
the ocean stratification, shown in Fig. 7 in terms of mixed
layer depth differences in March and September 2020 com-
pared to the CTRL experiment. Either the SST assimilation
or the neural-network-based heat flux corrections induce an
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Figure 4. The variable importance score (in % values) for each predictor used in the neural network pre-trained model, shown as a function
of grid point (i.e. at fixed longitude and latitude values). VIS maps are used to locally attribute different sources of air–sea heat flux errors to
the predictors.

identical shift in the deep convection areas. In the South-
ern Ocean, during September 2020, a westward shift is vis-
ible in the Pacific sector; other local adjustments are visible
in both the Atlantic and Indian sectors of the ACC region.
Adjustments are also visible in the Atlantic subpolar gyre,
where enhanced convection occurs in the Iceland basin and
Irminger Sea, equally present in both REF and NNC exper-
iments, along with attenuated mixing south of the Labrador
Sea.

The global ocean heat content (OHC) anomaly interan-
nual variations are visible in Fig. 8 and show that NNC
and REF lead to the same linear trends and seasonal and
interannual variations. Neglecting air–sea heat flux correc-
tions in CTRL produces underestimated global ocean warm-
ing (0.15 Wm−2), which is identically corrected in NNC and
REF (0.41 and 0.43 Wm−2, respectively). Using climatolog-
ical corrections only partly mitigates the warming under-
estimation (0.33 W m−2), resulting in an intermediate solu-
tion. The correlation of OHC anomalies with respect to in-
dependent datasets such as the CIGAR reanalysis is also

equally improved (from 0.48 in CTRL to 0.92 in NNC and
REF). This suggests that the subsurface signature of the cor-
rection method is identical to the original nudging experi-
ment.

Similarly, the global overturning circulation (Fig. 9) also
shows the same behaviour for the REF and NNC experi-
ments, indicating that the dynamical signature of our ap-
proach provides the same results as in the assimilation ex-
periment, REF. The assimilation of the SST observations
in REF reduces the Northern Hemisphere–Southern Hemi-
sphere contrast of the overturning circulation (Fig. 9b),
which is equally found in NNC.

Finally, the impact is evaluated against fully independent
data, namely, in situ profiles extracted from the UKMO EN4
dataset (Good et al., 2013), during the period 2019–2020.
This is shown in Fig. 10 (left panels), where the RMSE of
CTRL is shown, together with the differences in RMSE be-
tween REF or NNC minus CTRL. Negative (positive) values
indicate an improvement (deterioration) borne by the correc-
tion method. The figure indicates the comparable impact of
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Figure 5. Reconstructed heat flux correction fields versus the original ones from the REF (a, b) and NNC (c, d) experiments, for JFM
(January, February, and March) (a, c) and JJA (June, July, and August) (b, d) seasonal climatologies, during the 2002–2020 period.

the SST nudging and neural network correction on reducing
the errors in the subtropical and mid-latitude regions, with
the subsurface tropics less impacted by the corrections.

3.2 Retrospective simulations

Retrospective simulations were conducted to evaluate the
potential of the method for long-term historical simula-
tions, e.g. for OMIP- and CMIP-like exercises, and in multi-
decadal reanalyses where the paucity of observation data in
early periods limits the impact of conventional data assimila-
tion and cannot take advantage of spaceborne satellite mea-
surements of SST. To this end, the same set of experiments
presented earlier is performed for the period 1961–1979, us-
ing the same initial conditions from 1961 taken from the pre-
vious simulations.

We show the impact of NNC in terms of RMSE decrease
versus the CTRL experiment in Fig. 10, compared also, as an
independent reference, to the CIGAR reanalysis (Storto and
Yang, 2024) that assimilates all in situ surface and subsur-
face observations and includes a deep-ocean large-scale bias-
correction scheme. Improvements are present everywhere in
NNC, except in the high-latitude 100–300 m depth layer;
however, the improvements are smaller than those seen in
CIGAR, especially in the Northern Hemisphere. The total
average improvement (RMSE decrease) in the top 300 m
of depth, compared to CTRL, is 22 % for CIGAR and 7 %

for NNC, meaning that about one-third of the improvement
caused by assimilating the full oceanic observing network
and applying conventional bias correction is achieved with
the neural-network-based correction. The improvement is re-
markable at all latitudes, also in the subsurface tropical re-
gion where the correction over the more recent years 2019–
2020 failed to provide significant improvement (middle-left
panel in Fig. 10). Finally, Fig. 10 also shows a 1961–1979
experiment with nudging to COBE SST (Ishii et al., 2005;
experiment NDG); the results show a positive impact for the
nudging scheme, although it is generally smaller than the use
of ANN to correct sea surface biases.

3.3 Forecast experiments

Forecast experiments are set up with the same model con-
figuration but different initialization and forcing as detailed
in Sect. 2.3. The correction is then applied online within
the forecasts, as a proof-of-concept for operational purposes.
Unlike the nudging scheme, which depends on observational
data and cannot be used in forecasts, the ANN-based cor-
rection depends only on the oceanic and atmospheric states;
thus, it can be adopted in operational forecasting systems.

Sea surface temperature errors (verified against mapped
satellite data from DOISST v2.1, Huang et al., 2021) as a
function of forecast lead time (Fig. 11) indicate that NNC
provides improvements comparable to nudging – shown as a
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Figure 6. SST bias over the independent period 2019–2020 against
the SST observations (from UKMO HadISST), for the three exper-
iments CTRL (a), REF (b), and NNC (c).

benchmark – except in the Northern Hemisphere extratrop-
ics, likely because of intense mesoscale variability. The cli-
matological corrections (CLIMC) fail to improve the CTRL
experiment, as they cannot adapt to the variations in atmo-
spheric forcing in the forecast experiments. Compared to
CTRL, and considering the errors given by the climatology
(dashed lines in the panels of Fig. 11), the NNC scheme ex-
tends the horizon of useful forecasts by about 1 d in all re-
gions. The impact of the method increases with the forecast
lead time, suggesting that the approach might be fruitfully
applied in long-range forecasting systems (sub-seasonal and
beyond), although it should be demonstrated that coupled
feedbacks in the case of Earth system models do not com-
promise the algorithm.

Similar results are found in the verification against in situ
profiles for the upper ocean (sea surface to 50 m of depth),
shown in Fig. 12. The top 50 m exhibit significant improve-
ment in the southern extratropics and the tropics, with the
improvement borne by NNC increasing with forecast lead
time. In the northern extratropics, the ANN correction leads
to negligible improvements.

4 Summary and discussion

In this work, we propose an algorithm to correct air–sea heat
fluxes by letting a neural network pre-trained model learn the
relationships between oceanic and atmospheric state predic-
tors and heat flux corrective terms, estimated from a previous
experiment that adopted SST nudging to estimate and apply
such terms. The predictors include several oceanic and at-
mospheric variables representative of heat, freshwater, mo-
mentum fluxes, ocean temperature and salinity, and stratifi-
cation. A feed-forward column neural network architecture is
adopted, and the NEMO ocean general circulation model is
augmented with online inference capability to collect predic-
tors and infer corrections to the air–sea heat fluxes, based on
the pre-trained model. Variable importance scores indicate
the large impact that wind forcing has on errors in most parts
of the global ocean, with other variables dominating locally,
e.g. turbulent fluxes in mesoscale active areas and freshwater
fluxes near the coasts.

The online use of the correction in the experiments indi-
cates that the approach successfully reproduces the surface,
subsurface, and dynamical signature of the SST correction,
even beyond the training data period. The corrections are
by construction representative of all SST errors that are cor-
rected in the nudging experiments, i.e. not only the heat flux
inaccuracies but also other errors, related, for instance, to ver-
tical mixing and solar radiation penetration.

Next, the approach is demonstrated in early periods (1960s
and 1970s), where surface temperature data are sparse, to
mimic a long-term simulation or reanalysis application. In
this context, the methodology provides a significant improve-
ment in subsurface temperature errors, roughly equal to one-
third of the improvement in a corresponding reanalysis sys-
tem, where all available observations are directly assimilated.

We also demonstrate the application of the method in
short-range prediction experiments, where observations can-
not be used to correct the forecast step; the methodology is
proven to significantly reduce surface and subsurface tem-
perature errors, at a negligible extra computational cost and
without the use of any observational information, increasing
the SST predictability by about 1 d at all latitudes. Subsurface
errors are also mitigated everywhere except in the northern
extratropics.

We have also demonstrated the significant impact of on-
line inference, which enables high-frequency (3-hourly) up-
dates to the correcting fields. For this reason, testing different
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Figure 7. Mixed layer depth differences with respect to the CTRL experiment during March 2020 (a, c) and September 2020 (b, d), for
experiments REF (a, b) and NNC (c, d).

Figure 8. Global ocean heat content anomaly vertically integrated
over the period 2001–2020 for the four experiments presented in the
text, as monthly (thin lines) and yearly (thick lines) means.

model architectures, e.g. those relying on convolutional lay-
ers, which require MPI (message passing interface) commu-
nication across NEMO domains inside the convolutional fil-
ters, was technically complex and demanding. It is not obvi-
ous whether convolutional layers are beneficial compared to
grid-point-wise corrections (see e.g. different conclusions in
Chen et al., 2022; Chapman and Berner, 2024), as the poten-

tial advantage of retaining horizontal patterns is balanced by
the increased computational needs associated with coarsen-
ing the spatial resolution. In the future, more sophisticated in-
ference libraries and tools for online prediction are expected
to be available, paving the way for testing different neural
network architectures.

While ANNs cannot provide improvements compared to
the data assimilative experiments that they are learning from,
their use is appealing for several applications that cannot
rely on observational input, such as simulations and pro-
jections, and multi-decadal reanalyses spanning early peri-
ods with scarce observations, as demonstrated in this arti-
cle. However, applying this method within a coupled ocean–
atmosphere model may benefit climate drift correction (e.g.
Gupta et al., 2013), but it introduces additional complexi-
ties due to nonlinear coupled feedback. In a coupled model,
the atmosphere could respond to modified fluxes in a non-
linear and potentially unpredictable manner. Heat flux cor-
rections that work well in an uncoupled system may intro-
duce unintended biases when the atmosphere reacts dynami-
cally, potentially leading to unrealistic SST adjustments. At-
mospheric variability (e.g. cloud cover, wind stress, and hu-
midity) will alter in response to changes in SST, which could
impact the efficacy of the ANN-based correction. Correc-
tions applied at short timescales may also have long-term
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Figure 9. Reconstructed global overturning circulation (in Sverdrups, with 1 Sv= 1× 10+6 m3 s−1) for CTRL (a), and as a difference
between CTRL and REF (b), or NNC (c) experiments.

impacts on coupled modes of variability (e.g. ENSO or MJO
(Madden–Julian oscillation)).

To make the ANN approach more suitable for coupled
applications, it could be retrained using data from coupled
model reanalyses (e.g. CMIP simulations or CERA reanal-
ysis datasets; Laloyaux et al., 2016), or observations (e.g.
Zhou et al., 2024). This would allow the ANN to learn heat
flux corrections in a system that accounts for atmospheric re-
sponses, analogous to flux correction or flux adjustment tech-
niques (e.g. Sausen et al., 1988). The ANN-based correction
could be implemented to maintain the overall coupled energy
balance while addressing systematic errors.

Additionally, the algorithm could include corrections also
to freshwater and momentum fluxes, subject to long and reli-
able datasets of e.g. sea surface salinity and currents, to first
estimate their corrections, whose availability is limited now.

The method represents the first attempt to leverage data as-
similation correction increments, in this case from SST nudg-
ing, to learn systematic errors in ocean models. It is also ex-
pected that higher-resolution implementations than that pre-
sented here may further benefit from the ANN compared
to climatological corrections, due to their higher spatial and
temporal variability. While providing good results in hind-
cast mode compared to the control experiment, climatologi-
cal corrections fail in predictive experiments without proper
retuning and re-computation through computationally expen-
sive re-forecast experiments. This in turn suggests the pos-
sibility of extending the approach for calibrating forecasts
without the need for long re-forecasts.

Further extension of the approach will consider full col-
umn increments for three-dimensional corrections, not only

associated with heat fluxes but also vertical physics and
model parameterizations; while this has been proven suc-
cessful in atmospheric (e.g. Chen et al., 2022) and sea ice
(Gregory et al., 2023) applications, ocean implementations
are more challenging due to scarce observing networks in
the ocean interior, potentially hampering the use of analysis
increments at depth, which is an active area of investigation
at the moment.

Code availability. The NEMO model is available through the
official website at https://www.nemo-ocean.eu (last access:
30 July 2025). In-house modifications to the NEMO model code
(version 4.0.7) as used in the experiments presented here – in-
cluding the module for ANN-based corrections, plus other mod-
ifications – are available as a Git repository at https://baltig.
cnr.it/nemo_ismar-rm/nemo_4.0.7/-/tree/3.0?ref_type=tags (Storto,
2025). There are several additional modifications other than just
the ANN correction routine, which can be found in the dnnq-
corr module. The ANN correction routine can, however, be iso-
lated by taking only the module dnnqcorr.F90 and adding the call
to dnn_qcorr in sbcmod. The library for online inference in For-
tran90 used in our NEMO experiments is available as a Git reposi-
tory at https://baltig.cnr.it/andrea.storto/nnt4nemo/-/tree/main/F90_
Inference (last access: 30 July 2025). It includes the ANNIF module
for reading pre-trained ANN in the NetCDF format, in addition to
inference routines and their tangent linear and adjoint versions. The
frozen versions of both source codes, together with the scripts and
the data to analyse and plot the results presented in the figures, are
available as a dataset at https://doi.org/10.5281/zenodo.13380698
(Storto, 2024).
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Figure 10. Temperature RMSE as a function of latitude and depth for the CTRL experiments (top panels) and for the period 2019–2020
(left) and 1961–1979 (right), and the differences between CTRL and REF or NNC (left) and NNC or REA or NDG (right) for their respective
periods. REA is the CIGAR reanalysis, while NDG only ingests mapped in situ SST data from the COBE dataset (Ishii et al., 2005).

Data availability. Atmospheric fields from ECMWF to force the
ocean have been taken from the Climate Data Store (CDS, https:
//doi.org/10.24381/cds.adbb2d47, Hersbach et al., 2023) archive
(ERA5) and the operational archive (operational forecasts, see
https://www.ecmwf.int, last access: 30 July 2025). SST data are
available from the U.K. Met Office Hadley Centre (https://www.
metoffice.gov.uk/hadobs/hadisst, Rayner et al., 2003). For verifi-
cation purposes, we used SST analyses from the NOAA DOIS-
STv2 dataset (https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.
highres.html, Huang et al., 2021) and in situ profiles from the UK
Met Office EN4 dataset (https://www.metoffice.gov.uk/hadobs/en4/
download-en4-2-2.html, Good et al., 2013).
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Figure 11. Forecast skill score metrics (RMSE), for sea surface temperature at different latitudinal bands, as a function of forecast lead time,
for the experiments presented in the text. The dashed line corresponds to the RMSE of climatology, i.e. for values of RMSE greater than the
climatology, the forecasts are not useful. Note that the REF experiment is shown as a benchmark, but its setup cannot be used in operational
experiments, as it relies on future observations.

Figure 12. As Fig. 11 but for the verification against in situ profiles in the top 50 m of depth.
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