Articles | Volume 18, issue 14
https://doi.org/10.5194/gmd-18-4625-2025
https://doi.org/10.5194/gmd-18-4625-2025
Development and technical paper
 | 
29 Jul 2025
Development and technical paper |  | 29 Jul 2025

Interpolating turbulent heat fluxes missing from a prairie observation on the Tibetan Plateau using artificial intelligence models

Quanzhe Hou, Zhiqiu Gao, Zexia Duan, and Minghui Yu

Related authors

Gap filling of turbulent heat fluxes over rice–wheat rotation croplands using the random forest model
Jianbin Zhang, Zexia Duan, Shaohui Zhou, Yubin Li, and Zhiqiu Gao
Atmos. Meas. Tech., 16, 2197–2207, https://doi.org/10.5194/amt-16-2197-2023,https://doi.org/10.5194/amt-16-2197-2023, 2023
Short summary
Estimating vertical wind power density using tower observation and empirical models over varied desert steppe terrain in northern China
Shaohui Zhou, Yuanjian Yang, Zhiqiu Gao, Xingya Xi, Zexia Duan, and Yubin Li
Atmos. Meas. Tech., 15, 757–773, https://doi.org/10.5194/amt-15-757-2022,https://doi.org/10.5194/amt-15-757-2022, 2022
Short summary
A high-resolution monitoring approach of canopy urban heat island using a random forest model and multi-platform observations
Shihan Chen, Yuanjian Yang, Fei Deng, Yanhao Zhang, Duanyang Liu, Chao Liu, and Zhiqiu Gao
Atmos. Meas. Tech., 15, 735–756, https://doi.org/10.5194/amt-15-735-2022,https://doi.org/10.5194/amt-15-735-2022, 2022
Short summary
Large-scale synoptic drivers of co-occurring summertime ozone and PM2.5 pollution in eastern China
Lian Zong, Yuanjian Yang, Meng Gao, Hong Wang, Peng Wang, Hongliang Zhang, Linlin Wang, Guicai Ning, Chao Liu, Yubin Li, and Zhiqiu Gao
Atmos. Chem. Phys., 21, 9105–9124, https://doi.org/10.5194/acp-21-9105-2021,https://doi.org/10.5194/acp-21-9105-2021, 2021
Short summary

Related subject area

Atmospheric sciences
Carbon dioxide plume dispersion simulated at the hectometer scale using DALES: model formulation and observational evaluation
Arseniy Karagodin-Doyennel, Fredrik Jansson, Bart J. H. van Stratum, Hugo Denier van der Gon, Jordi Vilà-Guerau de Arellano, and Sander Houweling
Geosci. Model Dev., 18, 4571–4599, https://doi.org/10.5194/gmd-18-4571-2025,https://doi.org/10.5194/gmd-18-4571-2025, 2025
Short summary
Low-level jets in the North and Baltic seas: mesoscale model sensitivity and climatology using WRF V4.2.1
Bjarke T. E. Olsen, Andrea N. Hahmann, Nicolas G. Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
Geosci. Model Dev., 18, 4499–4533, https://doi.org/10.5194/gmd-18-4499-2025,https://doi.org/10.5194/gmd-18-4499-2025, 2025
Short summary
SynRad v1.0: a radar forward operator to simulate synthetic weather radar observations from volcanic ash clouds
Vishnu Nair, Anujah Mohanathan, Michael Herzog, David G. Macfarlane, and Duncan A. Robertson
Geosci. Model Dev., 18, 4417–4432, https://doi.org/10.5194/gmd-18-4417-2025,https://doi.org/10.5194/gmd-18-4417-2025, 2025
Short summary
Chempath 1.0: an open-source pathway analysis program for photochemical models
Daniel Garduno Ruiz, Colin Goldblatt, and Anne-Sofie Ahm
Geosci. Model Dev., 18, 4433–4454, https://doi.org/10.5194/gmd-18-4433-2025,https://doi.org/10.5194/gmd-18-4433-2025, 2025
Short summary
PALACE v1.0: Paranal Airglow Line And Continuum Emission model
Stefan Noll, Carsten Schmidt, Patrick Hannawald, Wolfgang Kausch, and Stefan Kimeswenger
Geosci. Model Dev., 18, 4353–4398, https://doi.org/10.5194/gmd-18-4353-2025,https://doi.org/10.5194/gmd-18-4353-2025, 2025
Short summary

Cited articles

Agarwal, D., Pastorello, G., Poindexter, C., Papale, D., Trotta, C., Ribeca, A., Canfora, E., Faybishenko, B., and Samak, T.: The data post-processing pipeline for AmeriFlux data products, Agu Fall Meeting, Moscone Convention Center, San Francisco, California, USA, 15–19 December 2014, https://ui.adsabs.harvard.edu/abs/2014AGUFM.B53A0159A (last access: 25 December 2023), 2014. 
Alavi, N., Warland, J. S., and Berg, A. A.: Filling gaps in evapotranspiration measurements for water budget studies: Evaluation of a Kalman filtering approach, Agr. Forest Meteorol., 141, 57–66, https://doi.org/10.1016/j.agrformet.2006.09.011, 2006. 
Arlot, S. and Celisse, A.: A survey of cross-validation procedures for model selection, Statistics Surveys, 4, 40–79, https://doi.org/10.1214/09-SS054, 2010. 
Baldocchi, D.: Measuring fluxes of trace gases and energy between ecosystems and the atmosphere – the state and future of the eddy covariance method, Glob. Change Biol., 20, 3600–3609, https://doi.org/10.1111/gcb.12649, 2014. 
Baotian, P., Jijun, L., and Fahu, C.: Qinghai-Tibetan Plateau: a Driver and Amplifier of Global Climatic Changes – Basic Characteristics of Climatic Changes in Cenozoic Era, Journal of Lanzhou University (Natural Sciences), 32, 108–115, https://doi.org/10.13885/j.issn.0455-2059.1995.03.024, 1996. 
Download
Short summary
This study evaluates various machine learning and statistical methods for interpolating turbulent heat flux data over the Tibetan Plateau. The Transformer model showed the best performance, leading to the development of the Transformer_CNN model, which combines global and local attention mechanisms. Results show that Transformer_CNN outperforms the other models and was successfully applied to interpolate heat flux data from 2007 to 2016.
Share