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S1. To comprehensively assess the reliability and efficacy of the Transformer_CNN model in estimating 

turbulent heat fluxes (H and LE), this study employed a Taylor diagram for comparative analysis with six 

other advanced artificial intelligence models.  

The Taylor diagram serves as an effective tool for quantifying the correlation and discrepancies between 

model predictions and observed data. Within the diagram, angles represent the correlation coefficient 

between model predictions and observed values; the bold dashed line signifies the standard deviation of 

model predictions, while the light-colored semi-circle dashed line represents the root mean square error 

(RMSE) between the model predictions and the actual values. As a reference benchmark, the EC (eddy 

covariance) observed values were used to evaluate the performance of each model. The results, as 

depicted in Fig. 1, detail the performance of each model on the test set. Encouragingly, the 

Transformer_CNN model's estimation of turbulent heat fluxes, whether viewed from the RMSE or 

correlation coefficient perspective, markedly surpasses the other six artificial intelligence models. 

Specifically, the Transformer_CNN model exhibits the smallest RMSE, with 0.29 for sensible heat flux 

and 0.31 for latent heat flux, while its model correlation coefficient consistently exceeds 0.94, again 

outperforming the other six AI models. These outcomes not only validate the model's exemplary 

performance in fitting turbulent heat fluxes but also underscore its superior generalization capability. 

Compared to traditional statistical methods and other artificial intelligence techniques, the 

Transformer_CNN model offers a more precise and robust solution, bearing significant practical 

implications for areas like climate research and meteorological forecasting. 

 

 



Fig. S1: The Taylor diagram displays the performance of seven models on the test set data: a) Sensible heat 

flux (H); b) Latent heat flux (LE). 

 

S2. Because of the limited length of the paper, in order to describe the LSTM, GRU and Transforme models 

more clearly, the specific parameters of the models are given here. 

S2.1 LSTM: 

S2.1.1 Architecture-Related Hyperparameters 

Number of Channels in Convolutional Layer (128): The input convolutional layer is set to have 128 

output channels. This number determines the amount of features the model can capture in the initial 

processing of input data. A higher number of channels can improve the model's ability to capture complex 

features. 

Hidden State Size of LSTM Layer (64): The dimension of the hidden state for the LSTM layer is set to 

64. This determines the capacity of LSTM units to remember information. For complex temporal data 

modeling tasks, choosing the appropriate size for the hidden state is key to balancing model complexity 

and performance. 

Number of LSTM Layers (3): The LSTM is configured with 3 layers. Multiple LSTM layers can enhance 

the model's learning ability, especially for data with complex temporal dependencies, but this also 

significantly increases the number of model parameters and the difficulty of training. 

Use of Bidirectional LSTM (bidirectional=True): Employing a bidirectional LSTM allows the model to 

learn both forward and backward dependencies in time series data, which has been proven beneficial in 

many time series analysis tasks, particularly in scenarios requiring capture of global temporal information. 

S2.1.2 Training-Related Hyperparameters 

Dropout Ratios (0.15 and 0.3): Dropout is a regularization technique used to prevent over fitting by 

randomly dropping a portion of neural network nodes during training. In this model, two different 

dropout ratios are used to provide varying degrees of regularization across different network layers. 

Non-linear Activation Functions between Linear and LSTM Layers (ReLU and GELU): ReLU and 

GELU activation functions are employed to introduce non-linearity, aiding the model in learning 

complex function mappings. GELU, compared to ReLU, can offer smoother gradients in certain cases, 

facilitating the learning process. 

S2.1.3 Loss Functions 



MSELoss and SmoothL1Loss: These two loss functions are used for different outputs of the model. MSE 

(Mean Squared Error) loss is highly sensitive to outliers, while Smooth L1 loss is a combination of MSE 

and L1 losses, aimed at reducing the impact of outliers while maintaining gradient stability. This 

combination is likely intended to balance model precision and robustness in predictions. 

 

S2.2 GRU: 

S2.2.1 Architecture-Related Hyperparameters 

Number of Channels in Convolutional Layer (128): The convolutional layer's output channels are set to 

128. This is because effective feature extraction is usually required before processing temporal data, and 

a higher number of channels helps the model capture a richer set of feature information. This is 

particularly important in dealing with complex turbulent heat flux data. 

Hidden State Size of GRU Layer (64): The GRU (Gated Recurrent Unit) layer's hidden state size is set 

to 64, which determines the GRU unit's memory capacity when processing temporal data. Compared to 

LSTM, the GRU architecture is simpler and has fewer parameters but can still effectively capture long-

term dependencies in time series. 

Number of GRU Layers (3): The model includes three GRU layers. A multilayer structure helps learn 

more complex temporal features but also implies more parameters and a potential risk of over fitting. 

Use of Bidirectional GRU (bidirectional=True): Similar to the bidirectional LSTM, bidirectional GRU 

can learn the dependencies of time series data both forward and backward, which is very useful for 

understanding the full context of the time series. 

S2.2.2 Training-Related Hyperparameters 

Dropout Ratios (0.15 and 0.3): Dropout regularization is applied in the model to reduce over fitting. 

Different levels of dropout ratios might be to increase the model's generalization capability while 

maintaining model complexity. 

Non-linear Activation Functions Between Linear and GRU Layers (ReLU and GELU): The use of these 

activation functions aims to increase the model's non-linear capability, allowing it to learn more complex 

function mappings. GELU provides smooth gradients, aiding the optimization process, while ReLU is 

widely used for its computational efficiency. 

S2.2.3 Loss Functions 



MSELoss and SmoothL1Loss: These are used to assess the difference between the model's outputs and 

the target values. MSE loss is very sensitive to outliers, while Smooth L1 loss attempts to find a balance 

between the robustness of L1 loss and the efficiency of MSE loss. This combination is likely aimed at 

improving the model's accuracy and robustness in predicting turbulent heat flux data. 

 

S2.3 Transformer: 

S2.3.1 Architecture-Related Hyperparameters 

Output Channels of Convolutional Layer (128): This parameter determines the number of features that 

the convolutional layer can capture. For simulating complex physical processes like turbulent heat flux, 

choosing a higher number of channels helps the model capture a richer set of feature information. 

S2.3.2 Transformer Block Configuration: 

Dimension (128): The dimension of the Transformer directly impacts the model's capacity to process 

information. Higher dimensions mean that the model can store and process more information internally, 

which is crucial for complex problems. 

Dropout Rates (0.1, 0.25, and 0.5): Using different dropout rates in the Transformer module helps prevent 

over fitting while maintaining the model's ability to generalize data. Different dropout rates may be used 

to explore the model's performance under varying degrees of regularization. 

Use of Layer Normalization (True): Layer normalization helps stabilize the training process and 

accelerate convergence, a common practice in Transformer models. 

S2.3.3 Linear Layer Configuration: 

Input and Output Dimensions (128 to 128): These linear layers are used within the model to further 

process and transform features. Maintaining the same dimensions helps preserve the density of 

information flow, aiding in capturing complex relationships. 

S2.3.4 Training-Related Hyperparameters 

Dropout Ratios (0.15, 0.3): Different levels of dropout ratios help the model mitigate the risk of over 

fitting while maintaining complexity. Selecting different rates might be based on experimental outcomes 

or aimed at adjusting the model's fit to the training data. 

S2.3.5 Use of Loss Functions: 



MSELoss and SmoothL1Loss: These two loss functions are used for different outputs, aimed at balancing 

sensitivity to outliers and the smoothness of predictions. Using weighted loss functions can further adjust 

the model's focus on different types of samples. 

 

S3. Regarding the deep learning learning rate and stochasticity issues, this paper makes the following 

considerations. 

The initial learning rate utilized in this study is set to 0.0005, configured at the beginning of the training 

loop as the lr variable.  Subsequently, the paper employs a learning rate decay strategy to facilitate faster 

convergence and enhanced accuracy, whereby if epoch % 6 == 0 and lr >= 0.000025, the learning rate is 

reduced by half. This implies that every six epochs, provided the current learning rate is greater than or 

equal to 0.000025, the learning rate will be updated to half its present value, thus implementing learning 

rate decay. 

Regarding the treatment of randomness, measures have indeed been implemented within the code to 

establish a random seed, thereby ensuring the reproducibility of experiments.  Specifically, the random 

seed is set using the setup_seed (seed) function, affecting the randomness in PyTorch, Numpy, and 

CUDA. Setting a random seed guarantees that each execution of the code will consistently result in 

identical outcomes for random operations such as initial weight initialization and dataset splitting. 

 

S4. In order to have a clearer understanding of the mechanism of KNN interpolating environmental driving 

quantities, the KNN-impute distance calculation method is given as： 

This study opts to employ the K-Nearest Neighbors (K-NN) method for imputing missing data in 

environmental drivers, with one significant advantage of K-NN being its distance-based weighting 

mechanism. This allows observations closer in feature space to exert a greater influence on the imputation 

outcome, enabling more accurate prediction of missing values—an advantage not shared by Random 

Forest. The choice of 3 as the number of neighbors is grounded in the fact that a smaller number of 

neighbors can reduce computational complexity and enhance the efficiency of imputation while 

maintaining accuracy. This method strikes a balance between imputation quality and computational 

efficiency of the algorithm, making it both practical and efficient for handling missing environmental 

driver data. 

Various distance calculation methods are available within the K-NN algorithm, commonly including: 



Euclidean Distance: The most frequently used distance metric, calculated as the square root of the sum 

of the squared differences between dimensions. It is suitable for numerical data. 

Manhattan Distance: Calculates the sum of the absolute differences between points in a standard 

coordinate system. It is applicable to grid layout path planning and scenarios where differences in each 

dimension are equally important. 

Chebyshev Distance: The distance between two points is defined as the maximum value among their 

coordinate differences. It is suitable for situations where the most extreme difference needs to be 

considered. 

The choice of distance metric in K-NN depends on the data type and application context. For 

environmental drivers of turbulent heat flux measured over time scales, and where the primary concern 

is the distance between time points, Euclidean distance is an apt choice. 

In this study, by setting the weights="distance" parameter, the KNN imputation (KNNImputer) utilizes 

a weighted Euclidean distance formula for calculation. This means that for each missing value, the 

algorithm identifies the nearest "n_neighbors" (3 neighbors) and uses their values, weighting them by 

the inverse of their distances to the point of imputation to estimate missing values. 

The weighted Euclidean distance formula is used to calculate the distance between two points, taking 

into account the importance or weight of each dimension. Given two points P = (p1, p2, ..., pn) and Q = 

(q1, q2, ... , qn), along with weights for each dimension W = (w1, w2, ... , wn), the weighted Euclidean 

distance dw(P,Q) is defined as: 

𝑑𝑤(𝑃, 𝑄)  =  √𝑤1(𝑝1 − 𝑞1)2 + 𝑤2(𝑝2 − 𝑞2)2 + ⋯ + 𝑤𝑛(𝑝𝑛 − 𝑞𝑛)2                     S1 

When using the weights="distance" parameter in KNN-Imputer, weights are calculated based on the 

inverse of the distance between points. Here, Wi represents the weight for the ith dimension. In the context 

of time series imputation with KNN, weighting typically refers to weighting each neighbor's contribution 

according to the distance, rather than applying weights directly in the distance formula. For each missing 

value, the imputed value is calculated based on the values of the nearest neighbors, where the contribution 

of each neighbor is weighted by the inverse of their distance to the missing data point, meaning shorter 

distances contribute more heavily. This indicates that specific weights are dynamically calculated based 

on the actual distances between data points, rather than being pre-specified. 

 



S5. To be more explicit about the popularity of Transformer_CNN, the driver model was driven with basic 

weather elements and applied to other sites. 

Below are the imputation results using Transformer_CNN at the QOMS and SETORS sites (with the 

year 2012 as the test set), employing basic meteorological elements. These elements include single-layer 

air temperature, pressure, single-layer air humidity, single-layer wind speed, single-layer wind direction, 

site hourly average precipitation, ground net radiation, single-layer soil temperature, and single-layer soil 

moisture content. 

Table S1. Imputation results using the Transformer_CNN model at the QOMS and SETORS sites, employing 

basic meteorological elements, with the year 2012 as the test set. 

 

S6. To make the Transformer_CNN model more convincing，we have now completed the iterative validation 

of simulating turbulent heat flux data over a decade. 

The results indicate that, except for underperforming slightly in comparison to the Transformer model in 

2016, the Transformer_CNN model emerged as the best model for simulating turbulent heat flux in all 

other years, further validating the effectiveness of Transformer_CNN as a viable tool for imputing 

turbulent heat flux data. 

Table S2. Model performance evaluation (RMSE and MAE) for SVR, KNN, XGBoost, LSTM, GRU, 

Transformer and Transformer_CNN on the 2007 dataset. Bold values highlight the best performance. 

 QOMS SETORS 

       Sets H LE H LE 

 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 

Transformer 34.76 4.36 0.74 37.58 4.77 0.69 39.96 5.28 0.70 42.48 4.79 0.67 

Transformer_CNN 29.34 3.44 0.83 30.25 3.93 0.78 31.66 4.83 0.80 34.22 4.61 0.79 

 H LE 

       Sets Training Validation Test Training Validation Test 

 RMSE MAE RMSE MAE RMES MAE RMSE MAE RMSE MAE RMES MAE 



Table S3. Model performance evaluation (RMSE and MAE) for SVR, KNN, XGBoost, LSTM, GRU, 

Transformer and Transformer_CNN on the 2008 dataset. Bold values highlight the best performance. 

Table S4. Model performance evaluation (RMSE and MAE) for SVR, KNN, XGBoost, LSTM, GRU, 

Transformer and Transformer_CNN on the 2009 dataset. Bold values highlight the best performance. 

SVR 20.61 2.521 24.88 3.443 27.68 4.145 26.32 3.093 21.12 3.174 19.98 3.693 

KNN 22.37 3.546 24.20 3.864 30.67 4.421 18.49 2.961 19.55 2.377 20.91 3.315 

XGBoost 28.64 4.644 29.85 4.841 31.28 4.929 19.85 3.044 20.77 3.087 25.13 3.944 

LSTM 23.18 3.451 25.99 4.018 29.17 4.547 17.98 3.348 21.47 3.571 24.22 3.816 

GRU 22.15 3.051 22.57 3.244 26.37 3.968 17.55 2.257 20.91 2.753 23.35 3.646 

Transformer 19.53 2.848 20.07 3.056 23.29 3.433 18.67 2.978 19.37 3.145 19.24 3.118 

Transformer_CNN 15.67 2.476 17.57 3.168 20.87 3.355 17.62 2.946 18.39 2.876 18.95 2.993 

 H LE 

       Sets Training Validation Test Training Validation Test 

 RMSE MAE RMSE MAE RMES MAE RMSE MAE RMSE MAE RMES MAE 

SVM 20.46 2.942 21.69 3.056 27.89 3.662 26.88 3.461 29.15 3.841 30.75 4.025 

KNN 21.44 3.018 22.87 3.246 26.35 3.428 23.18 3.143 24.85 3.386 28.54 3.757 

XGBoost 21.38 3.007 24.91 3.582 27.16 3.659 23.55 3.277 25.55 3.568 29.33 3.954 

LSTM 22.63 3.144 25.75 3.458 28.33 3.881 20.86 3.155 23.91 3.347 25.88 3.552 

GRU 20.44 2.988 23.24 3.528 26.99 3.699 19.71 3.048 23.45 3.257 24.13 3.848 

Transformer 15.77 2.544 18.62 2.876 23.47 3.258 19.15 2.883 19.10 3.079 19.57 3.130 

Transformer_CNN 14.84 2.668 17.88 2.759 21.83 2.954 18.18 2.784 20.25 3.092 18.47 2.836 

 H LE 

       Sets Training Validation Test Training Validation Test 

 RMSE MAE RMSE MAE RMES MAE RMSE MAE RMSE MAE RMES MAE 

SVM 19.71 3.456 20.29 3.60 27.49 3.955 24.89 3.062 25.76 3.284 29.24 3.856 

KNN 21.75 3.701 26.15 3.641 32.12 4.112 25.34 3.277 28.62 3.577 30.65 3.888 

XGBoost 26.39 3.666 25.22 4.419 29.18 4.906 23.51 2.983 24.57 3.147 28.36 3.743 

LSTM 25.77 3.451 25.43 4.183 29.10 4.752 24.19 3.248 26.47 3.335 29.09 3.842 



Table S5. Model performance evaluation (RMSE and MAE) for SVR, KNN, XGBoost, LSTM, GRU, 

Transformer and Transformer_CNN on the 2010 dataset. Bold values highlight the best performance. 

Table S6. Model performance evaluation (RMSE and MAE) for SVR, KNN, XGBoost, LSTM, GRU, 

Transformer and Transformer_CNN on the 2011 dataset. Bold values highlight the best performance. 

GRU 22.16 3.091 22.62 4.017 28.24 4.218 22.64 2.889 24.81 3.053 27.55 3.257 

Transformer 17.25 2.973 18.22 3.279 24.87 3.495 19.80 2.459 23.51 3.018 24.87 3.266 

Transformer_CNN 18.77 3.025 19.24 3.246 23.16 3.357 20.54 2.687 22.76 2.928 21.38 3.006 

 H LE 

       Sets Training Validation Test Training Validation Test 

 RMSE MAE RMSE MAE RMES MAE RMSE MAE RMSE MAE RMES MAE 

SVM 22.68 2.951 23.95 3.681 25.44 3.870 24.18 4.196 25.20 4.174 26.23 4.451 

KNN 18.29 2.981 20.01 3.665 21.03 3.882 23.23 3.941 24.35 4.267 26.11 4.440 

XGBoost 16.33 3.227 19.43 3.970 21.51 3.940 19.35 2.946 23.14 3.781 25.49 4.002 

LSTM 19.84 2.904 20.86 3.696 23.31 3.373 22.94 3.761 23.71 3.928 27.09 4.927 

GRU 18.26 3.621 19.81 3.340 22.14 3.400 18.26 2.843 20.95 3.039 24.01 3.588 

Transformer 17.37 3.047 19.37 3.641 20.26 3.944 19.16 3.038 21.75 3.254 22.64 3.337 

Transformer_CNN 17.56 3.108 18.84 3.884 19.38 3.250 18.42 2.925 19.59 3.004 20.68 3.209 

 H LE 

       Sets Training Validation Test Training Validation Test 

 RMSE MAE RMSE MAE RMES MAE RMSE MAE RMSE MAE RMES MAE 

SVM 19.39 3.764 20.366 3.900 26.14 4.142 21.21 3.441 21.96 3.682 22.45 3.870 

KNN 21.48 3.634 25.95 3.788 31.49 4.189 20.28 3.367 23.87 4.061 25.03 3.880 

XGBoost 26.30 4.089 25.83 3.912 29.49 4.498 16.33 3.227 19.43 3.870 17.35 3.594 

LSTM 25.96 3.102 24.68 4.266 29.33 4.553 19.84 2.900 20.87 3.196 21.31 3.373 

GRU 22.60 3.593 21.77 3.447 27.24 4.513 18.27 2.862 22.43 4.057 20.47 4.115 

Transformer 17.53 2.887 19.07 3.817 24.71 4.016 18.75 3.620 19.81 3.340 20.68 3.644 

Transformer_CNN 17.13 2.519 18.74 3.625 24.66 3.778 18.50 3.312 19.52 2.921 19.35 3.267 



Table S7. Model performance evaluation (RMSE and MAE) for SVR, KNN, XGBoost, LSTM, GRU, 

Transformer and Transformer_CNN on the 2013 dataset. Bold values highlight the best performance. 

 

Table S8. Model performance evaluation (RMSE and MAE) for SVR, KNN, XGBoost, LSTM, GRU, 

Transformer and Transformer_CNN on the 2014 dataset. Bold values highlight the best performance. 

Table S9. Model performance evaluation (RMSE and MAE) for SVR, KNN, XGBoost, LSTM, GRU, 

Transformer and Transformer_CNN on the 2015 dataset. Bold values highlight the best performance. 

 

 H LE 

       Sets Training Validation Test Training Validation Test 

 RMSE MAE RMSE MAE RMES MAE RMSE MAE RMSE MAE RMES MAE 

SVM 18.27 2.736 20.15 3.043 26.89 3.746 23.67 2.754 24.76 3.062 19.79 3.124 

KNN 19.61 3.034 22.14 3.176 25.73 3.519 24.16 2.972 27.43 5.265 29.27 5.477 

XGBoost 21.23 3.248 23.86 3.394 25.16 4.061 18.29 3.014 19.27 3.091 19.04 2.943 

LSTM 23.34 3.432 23.97 3.609 27.38 4.483 23.14 3.207 24.12 3.346 26.47 4.573 

GRU 22.18 3.374 22.94 3.457 24.93 3.685 19.25 3.216 19.99 3.265 21.84 3.597 

Transformer 17.43 2.831 18.47 2.929 20.48 3.462 16.08 2.462 18.24 2.857 17.49 2.963 

Transformer_CNN 14.25 2.472 16.88 2.746 18.43 3.154 17.76 2.564 18.09 2.681 17.35 2.869 

 H LE 

       Sets Training Validation Test Training Validation Test 

 RMSE MAE RMSE MAE RMES MAE RMSE MAE RMSE MAE RMES MAE 

SVM 19.84 3.519 21.65 3.735 25.36 4.357 23.17 3.493 24.64 3.874 28.14 4.637 

KNN 22.38 4.357 24.66 4.561 31.48 6.05 24.38 3.627 26.07 4.036 29.21 5.143 

XGBoost 23.32 4.534 25.49 4.851 28.28 5.568 20.64 3.183 21.28 3.436 24.24 4.324 

LSTM 23.83 4.647 25.26 4.435 27.73 4.969 24.37 3.846 25.72 4.041 26.37 4.235 

GRU 23.08 4.342 23.75 4.624 26.87 4.867 20.34 3.068 21.26 3.264 25.84 4.027 

Transformer 17.48 2.531 17.68 2.634 22.43 3.267 16.24 2.637 18.68 2.943 21.36 3.489 

Transformer_CNN 17.17 2.343 17.50 2.353 22.41 2.999 15.96 2.426 18.53 2.554 21.02 3.224 



 

Table S10. Model performance evaluation (RMSE and MAE) for SVR, KNN, XGBoost, LSTM, GRU, 

Transformer and Transformer_CNN on the 2016 dataset. Bold values highlight the best performance. 

 

 

 

 

 

 H LE 

       Sets Training Validation Test Training Validation Test 

 RMSE MAE RMSE MAE RMES MAE RMSE MAE RMSE MAE RMES MAE 

SVM 19.32 2.784 19.98 2.949 26.61 3.155 25.09 4.215 26.24 4.342 28.69 4.524 

KNN 23.16 3.075 26.78 4.211 32.52 4.517 20.56 3.192 22.75 3.487 26.71 4.365 

XGBoost 24.38 3.227 25.07 3.439 28.14 3.958 19.27 3.062 23.54 3.679 24.75 3.934 

LSTM 24.26 3.106 25.17 3.548 29.57 4.352 24.43 2.859 24.57 4.254 28.76 3.942 

GRU 22.10 3.081 23.54 3.349 27.53 4.254 21.59 2.818 21.76 3.857 25.49 3.751 

Transformer 17.75 2.719 19.34 2.964 25.48 3.867 19.34 2.963 21.27 3.685 22.57 3.841 

Transformer_CNN 16.34 2.951 18.61 3.735 24.43 3.741 18.68 3.461 19.75 3.424 20.56 3.689 

 H LE 

       Sets Training Validation Test Training Validation Test 

 RMSE MAE RMSE MAE RMES MAE RMSE MAE RMSE MAE RMES MAE 

SVM 20.79 2.853 20.35 2.724 25.22 3.682 24.47 2.991 21.01 3.156 19.49 3.344 

KNN 19.83 2.867 26.43 3.876 30.99 3.957 23.41 2.816 25.16 3.864 24.16 3.761 

XGBoost 25.79 3.894 27.07 3.989 30.34 4.488 27.26 3.416 26.47 3.165 24.39 3.678 

LSTM 23.24 3.381 24.49 3.514 29.45 4.085 23.91 2.924 24.46 3.644 25.62 3.927 

GRU 22.37 3.513 23.53 3.155 29.61 3.796 19.73 2.916 21.49 3.661 21.18 3.498 

Transformer 15.36 2.486 16.54 2.665 23.26 2.966 17.69 2.851 18.68 2.973 19.06 2.982 

Transformer_CNN 15.32 2.458 17.19 2.749 22.60 2.894 18.13 3.221 19.71 3.208 20.12 3.092 


