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Abstract. This paper evaluates the performances of mean di-
urnal variation (MDV), nonlinear regression (NR), lookup
tables (LUTs), support vector regression (SVR), k-nearest
neighbors (KNNs), gradient boosting (XGBoost), long short-
term memory (LSTM), gated recurrent units (GRUs), and the
Transformer model with a deep self-attention mechanism to
interpolate the turbulent heat fluxes missing from a prairie
observation on the Tibetan Plateau. Results indicated that
the Transformer model outperformed the other methods that
were tested. To further enhance the interpolation accuracy, a
combined model of Transformer and a convolutional neural
network (CNN), termed Transformer_CNN, was proposed.
Herein, while Transformer focused primarily on global at-
tention, the convolution operations in the CNN provided
the model with local attention. Experimental outcomes re-
vealed that the interpolations from Transformer_CNN sur-
passed the traditional single artificial intelligence model ap-
proaches. The coefficient of determination (R2) reached 0.95
in the sensible heat flux test set and 0.90 in the latent heat flux
test set, thereby confirming the applicability of the Trans-
former_CNN model for data interpolation of turbulent heat
flux on the Tibetan Plateau. Ultimately, the turbulent heat
flux observational database from 2007 to 2016 at the station
was imputed using the Transformer_CNN model.

1 Introduction

Tibetan land surface processes play a significant role in in-
fluencing Asian weather and climate, primarily through the
surface–atmosphere exchange of energy, momentum, and
CO2 across the atmospheric boundary layer (Zhang et al.,
1996; Collatz et al., 2000; Defries et al., 2002; Chen et al.,
2003, Gao et al., 2004, Jiao et al., 2023). Surface turbulent
heat fluxes, including sensible and latent heat fluxes, are fun-
damental determinants of local microclimate formation and
serve as crucial regulators of vegetation activity (Chapin et
al., 2011). With global climate change, the ecosystems and
water resources of the Tibetan Plateau have experienced sig-
nificant impacts (Ren and Xu, 2016). Turbulent heat flux
data provide key insights to assess these changes and de-
vise countermeasures. Therefore, the long-term continuous
observational data of land–atmosphere turbulent heat flux on
the Tibetan Plateau have significant value for studying the re-
gion’s weather and climate (Swinbank and W.C., 1951; Bao-
tian et al., 1996; Zheng et al., 2000; Baldocchi, 2014; Yu et
al., 2017).

As a direct observation technique for turbulent heat
flux, the eddy covariance (EC) method stands as the pri-
mary observational means for an international flux network
(FLUXNET) and a plethora of meteorological, ecological,
and hydrological observation sites (Shaoying et al., 2020).
Initially proposed by Swinbank (1951), EC directly measures
the turbulent pulsations of various physical quantities based
on micrometeorological principles. It calculates flux by eval-
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uating the covariance produced by wind speed pulsations
and physical quantity pulsations during atmospheric turbu-
lent motion, thereby measuring heat, mass, and momentum
exchanges between the land and the atmosphere. While this
method does not rely on assumptions like the near-surface
similarity theory, due to observational principles and instru-
ment construction, a series of necessary corrections, qual-
ity controls, and quality assurances must be applied to raw
data before obtaining final flux calculation results (Lee et al.,
2004). Additionally, given the Tibetan Plateau’s geographical
location, high altitude, and harsh natural conditions, during
continuous observations of material and energy exchanges
between the land and atmosphere, data omissions account
for 40 % to 60 % of the total number of data. This signifi-
cant omission rate profoundly affects data integrity and ac-
curacy (Falge et al., 2001; Lee et al., 2004), subsequently
influencing their application in climate and weather mod-
els (Stull, 1988). Over the past 2 decades, local and interna-
tional scientists have extensively researched the quality con-
trol and assurance of turbulent flux data, formulating stan-
dardized processing procedures (Papale et al., 2006; Mauder
et al., 2008; Wang et al., 2009; Wutzler et al., 2018). How-
ever, discussions regarding the interpolation of missing flux
data remain necessary (Foltynova et al., 2020). Rational in-
terpolation methods can enhance the integrity of observa-
tional data series, facilitating a more accurate understanding
of dynamic changing processes and laying the foundation
for simulation experiments. In research on energy and ma-
terial exchanges between terrestrial ecosystems and the at-
mosphere, the choice of interpolation method is paramount.
Seasonal changes in ecological processes and soil moisture
can influence measurements of turbulent exchanges (Reich-
stein et al., 2005). Therefore, selecting interpolation methods
that capture such complexities is crucial.

So far, prior studies have developed dozens of interpola-
tion methods, which can be mainly categorized into the fol-
lowing three types: (1) interpolation methods based on mean
values, (2) nonlinear regression methods driven by environ-
mental factors, and (3) interpolation methods based on ma-
chine learning algorithms (Falge et al., 2001; Hui et al., 2004;
Ooba et al., 2006; Moffat et al., 2007; Soloway et al., 2017;
Wang et al., 2020). A rational approach to imputing missing
flux data serves as a crucial foundation for data integration
among stations and flux observation networks and is a key
factor in enhancing data comparability (Wang et al., 2009).
However, the methods for imputing flux data across various
flux observation networks have not been standardized. For in-
stance, FLUXNET and the European flux network CarboEu-
rope adopted marginal distribution sampling (MDS) from the
mean value interpolation methods and successfully applied it
to the FLUXNET2015 dataset (Papale et al., 2006; Soloway
et al., 2017). Meanwhile, ChinaFLUX and the Japanese flux
network opted for nonlinear regression methods to impute
the net ecosystem exchange, while the sensible and latent
heat fluxes were imputed using the day–night average tran-

sition method and the lookup table method (Li et al., 2008).
The Australian national ecosystem research network OzFlux
employed artificial neural network algorithms for interpola-
tion (Beringer et al., 2017), while the US flux network Amer-
iFlux selected both MDS and artificial neural networks to
impute missing flux data (Agarwal et al., 2014). The afore-
mentioned studies suggest that machine learning algorithms
have gradually been incorporated into the domain of missing
flux data interpolation and have demonstrated promising per-
formance (Moffat et al., 2007; Dengel et al., 2013; Knox et
al., 2015; Beringer et al., 2017).

Machine learning technology, as a rapidly advancing su-
percomputing domain (Ortega et al., 2023), has already
demonstrated its potential value in data interpolation across
sectors such as transportation, healthcare, and sensor net-
works (Duan et al., 2014; Matusowsky et al., 2020; Gad et
al., 2021). The variability in turbulent heat flux represents
an extremely complex process. This suggests that simple lin-
ear models may not accurately capture the complex relation-
ships between meteorological elements and turbulent heat
flux. Consequently, in some instances, traditional statistical
methods may fail to provide accurate predictions. Machine
learning models can handle the complex nonlinear relation-
ships between predictive variables, regardless of their inter-
dependencies or correlations, and the expected outcomes.
Compared to traditional machine learning techniques, the
superiority of deep learning in heat flux data interpolation
lies not only in its capacity to integrate more environmen-
tal driving variables that affect flux exchanges, but also in its
more precise ability to handle nonlinear data patterns (Fawaz
et al., 2019). This is attributed to deep learning’s ability to
learn complex data features through multilayer neural net-
works, thereby more precisely capturing intricate relation-
ships inherent in the data. Over the past decade, deep learning
has expanded from image- and text-processing domains to
time series analysis. Specifically, recurrent neural networks
(RNNs) and their variants, such as long short-term mem-
ory (LSTM) networks and gated recurrent units (GRUs),
have been proven to excel in handling sequential data. They
capture long-term dependencies and nonlinear patterns in
the data, optimizing the accuracy of time series predictions.
Furthermore, the Transformer architecture, with its atten-
tion mechanism, has offered a novel approach to processing
time series data, showing superiority in time series simula-
tions (Vaswani et al., 2017). Convolutional neural networks
(CNNs), initially designed primarily for image recognition,
have in recent years been applied successfully to the anal-
ysis and forecasting of time series data. Unlike traditional
image processing, time series CNN models typically operate
on one-dimensional data. CNNs capture local patterns and
trends in time series data through local receptive fields and
weight sharing. Local features and dependencies in time se-
ries, such as periodic patterns or break points, can be cap-
tured efficiently by convolutional layers. These attributes al-
low CNNs to outperform traditional methods and other deep-
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learning models in certain time series tasks, such as anomaly
detection, pattern recognition, and forecasting. Concurrently,
the multilayer convolutional structure enables the model to
automatically extract multiscale features from the data. How-
ever, the practical application of deep learning in turbulent
heat flux interpolation remains nascent, especially in the Ti-
betan Plateau region, with related studies still being sparse.

Unlike most prior studies, the present work attempted to
evaluate the performances of various artificial intelligence
models in interpolating the turbulent heat flux data for the
Qomolangma Special atmospheric processes and environ-
mental changes Monitoring Station (QOMS) site. In order
to complete the interpolation of turbulent heat flux for this
site spanning the years from 2007 to 2016 and make this
dataset publicly accessible, the objectives of this study are
to quantitatively compare the outcomes of different artificial
intelligence models and propose a novel turbulent heat flux
interpolation method based on deep learning.

2 Materials

2.1 Site

The data used in this study originate from the third Tibetan
Plateau experiment at the QOMS station located at the bot-
tom of the Rongbuk Valley to the north of Mount Everest
(28.36° N, 86.95° E; 4298 m), as shown in Fig. 1 (adapted
from Ma et al., 2020). The surface at the observation point
is barren with relatively flat and open terrain and sparse and
low vegetation. From the surface to the deeper soil layers, it
mainly consists of sand and gravel. This observation station
is influenced by local climate variations and weather pro-
cesses as well as the regional circulations of the Himalayan
range, such as valley winds. These local factors make it an
ideal location for monitoring surface processes on the Ti-
betan Plateau.

During the observation period, the average values for tem-
perature, relative humidity, and annual precipitation were
4.16 °C, 43.47 %, and 289 mm, respectively. Wind speeds ob-
served in winter are generally high, reaching up to 16 m s−1,
and are relatively lower in summer. At midday in summer,
surface temperatures can rise to 60 °C. Correspondingly, con-
sistent with the annual summer rainfall pattern, surface hu-
midity peaks in summer.

2.2 Site data

This study analyzes the observational data from the QOMS
observation site from 1 January 2007 to 31 December 2016;
the sampling frequency for all of the variables is hourly. Spe-
cific variables include sensible heat flux H , latent heat flux
LE, soil heat flux SHF, air temperature at five levels Tair
(1.5, 2, 4, 10, and 20 m), relative humidity at five levels RH
(1.5, 2, 4, 10, and 20 m), wind speed at five levels WS (1.5, 2,
4, 10, and 20 m), wind direction at five levels WD (1.5, 2, 4,

10, and 20 m), downward shortwave radiation Rsd, upward
shortwave radiation Rsu, downward longwave radiation Rld,
upward longwave radiation Rlu, soil temperature at six levels
Tsoil (0, 0.1, 0.2, 0.4, 0.8, and 1.6 m), and soil volumetric wa-
ter content at six levels SWC (0, 0.1, 0.2, 0.4, 0.8, and 1.6 m).
The instruments used at the site are shown in Table 1.

From 2007 to 2016, the missing rates for H and LE at
the observation site (including missing and distorted data),
denoted as gap_H and gap_LE, were 21.7 % and 21.4 %, re-
spectively (Table 2).

2.3 Data preprocessing

To interpolate missing flux data using machine learning algo-
rithms, it is essential to ensure the completeness of environ-
mental driving variables (Wang et al., 2009). Therefore, dur-
ing the data preprocessing phase, this study employed the k-
nearest neighbor (KNN) interpolation method to address the
missing data of environmental driving variables. The choice
to set the number of neighbors to three is based on the con-
sideration that a smaller number of neighbors can reduce
computational complexity and enhance the efficiency of the
interpolation process while maintaining accuracy. Addition-
ally, “distance” was used as the weight calculation method
to ensure that observations closer in distance receive higher
weights (Friedman et al., 2009). This is given by Eq. (1):

gap-filling value =

∑3
i=1

yi

di∑3
i=1

1
di

, (1)

where yi is the observation of the ith nearest neighbor and
di is the distance between the missing value and the ith near-
est neighbor. In this study, by setting weights equal to the
distance parameter, KNN imputation (KNNImputer) is done
using a weighted Euclidian distance formula. The numerator
involves the weighted sum based on the observations and the
reciprocal of the distances of the three nearest neighbors. The
denominator is the sum of the reciprocals of the distances for
these three nearest neighbors.

Subsequently, the fit_transform method (from the scikit-
learn library in Python) is utilized to fit and transform the
chosen data, facilitating the interpolation of missing val-
ues. Finally, we combined the estimated missing environ-
mental driving variables with the actual observed environ-
mental driving variables to create a complete and compre-
hensive dataset of environmental driving variables for subse-
quent analysis.

This KNN-based interpolation method has been demon-
strated to be effective for datasets exhibiting similar patterns
or local consistency (Little and Rubin, 2002). In other words,
the KNN approach is applicable when the correlation length
scale significantly exceeds the distance between missing and
available data points. By considering the distances between
observation points over time, this method can accurately esti-
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Figure 1. Geographical location and site images of the QOMS station. The map on the left provides a geographical overview of the Tibetan
Plateau, while the site on the right is adapted from Ma et al. (2020). Publisher’s remark: please note that the above figure contains disputed
territories.

Table 1. Summary of the meteorological and soil measurement instruments.

Element Sensor model Manufacturer Height Unit

Air temperature HMP45C-GM Vaisala 1.5, 2, 4, 10, and 20 m °C
Wind speed and direction 034B MetOne 1.5, 2, 4, 10, and 20 m m s−1 per degree
Humidity HMP45C-GM Vaisala 1.5, 2, 4, 10, and 20 m %
Pressure PTB220A Vaisala – hPa
Radiation CNR1 Kipp & Zonen – W m−2

Precipitation RG13H Vaisala – mm
Soil temperature Model107 Campbell 0, 0.1, 0.2, 0.4, 0.8, and 1.6 m °C
Soil water content CS616 Campbell 0, 0.1, 0.2, 0.4, 0.8, and 1.6 m v v%−1

Soil heat flux HFP01 Hukseflflux 0.05 m W m−2

H CSAT3 Campbell 3.25 m W m−2

LE LI-7500 Li-COR

mate missing values, thereby enhancing the utility of the data
for subsequent analyses.

Random forests assess the contribution of each variable to
model predictive performance through importance ranking,
with variables that contribute significantly to predictive per-
formance receiving higher rankings. This importance is typ-
ically calculated by measuring the decrease in node impurity
brought about by splits in each variable across all trees in
the forest. Specifically, for each decision tree, the algorithm
sums the impurity decrease from splitting in each variable
and then averages this decrease over all of the trees to ob-
tain an overall importance score for each variable. By sort-
ing features based on their importance, random forests select

the optimal feature combination, not only effectively reduc-
ing the dimensionality of input features but also aiding in
the selection of variables within machine learning models. In
this study, the number of trees for the random forest model
was set to 159 based on 10-fold cross-validation and grid
search algorithms, meaning that the model consists of 159
decision trees. Since bootstrapping (sampling with replace-
ment) is used to generate random decision trees, not all sam-
ples participate in the tree generation process. The unused
samples are referred to as out-of-bag (OOB) samples, which
can be used to evaluate the accuracy of the trees. OOB scores
provide an unbiased estimate of the model’s generalization
ability by effectively assessing the model’s ability to predict
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Table 2. Missing rates for the sensible heat flux and latent heat flux.

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Average

gap_H 39.4 % 10.3 % 22.2 % 9.8 % 32.2 % 29.6 % 11.7 % 10.4 % 18.1 % 33.3 % 21.7 %
gap_LE 37.65 % 8.28 % 21.30 % 8.48 % 23.63 % 28.52 % 9.90 % 8.84 % 33.57 % 33.34 % 21.4 %

unknown data. The higher the OOB score, the stronger the
model’s generalization capability (Wang et al., 2023).

Random forest analysis at the QOMS site on the Tibetan
Plateau reveals that downward shortwave radiation has the
greatest impact on sensible heat flux, while soil water content
is most influential in latent heat flux, aligning closely with
their respective roles in physical processes. The site is char-
acterized by arid, barren, flat, and open terrain with sparse
low vegetation primarily composed of sand and gravel from
the surface to deeper soil layers. Such environmental con-
ditions mean that less solar radiation is absorbed by plants
for photosynthesis, allowing more shortwave radiation en-
ergy to reach the ground directly and thus increasing the sur-
face heating. Moreover, the flat and open terrain, combined
with sandy and gravelly textures, enables efficient absorp-
tion and reradiation of solar energy, significantly affecting
the formation of sensible heat flux. In this arid and barren
environment, soil water content plays a crucial role in regu-
lating the surface energy balance, affecting predictions of la-
tent heat flux significantly where even minimal variations can
have substantial impacts under conditions of water scarcity.
In conclusion, in subsequent analyses of turbulent heat flux,
characteristics such as radiation, air temperature, soil temper-
ature, and soil water content have high importance. However,
whether to exclude some relatively less important features
still requires further consideration and analysis.

The OOB scores in different input feature dimensions have
been calculated, with variables input in order of importance,
as shown in Fig. 2c. For the sensible heat flux, the OOB score
is highest when considering the top 18 features ranked by
importance. As shown in Fig. 2d, for the latent heat flux, the
OOB score peaks when considering the top 16 features. Ad-
ditional features added afterwards no longer impact the re-
sults. In other words, the environmental driving variables for
sensible heat flux are the top 18 features, while those for la-
tent heat flux are the top 16 features.

3 Experimental design and models

3.1 Experimental design

Here we present the experimental design and the different
statistical and learning methods used in this study. The aim
of this study is to use a decade’s worth of observational data
to fit missing values for sensible and latent heat fluxes. We
explored the turbulence flux changes at the QOMS site from
2007 to 2016 and treated the missing parts of the turbulence

flux in the dataset as quantitative prediction variables. The
objective is to use other meteorological elements as environ-
mental drivers to impute these missing data, forming a com-
plete heat flux dataset.

In the research application of the model, it is crucial to
correctly divide the training, validation, and test sets (Bishop
and Nasrabadi, 2006; Friedman et al., 2009). The training set
is used to train the model’s parameters so that the model can
learn and capture the underlying patterns and structures from
the given data (Goodfellow et al., 2016a). The primary pur-
poses of the validation set are model selection and hyperpa-
rameter tuning, enhancing the model’s generalization capa-
bility (Cawley and Talbot, 2010). The test set offers a com-
pletely independent evaluation method to more accurately
assess the model’s performance on unseen data (Arlot and
Celisse, 2010). This dataset has never been used in the train-
ing or validation processes, so it can serve as an unbiased es-
timate of the model’s performance in practical applications
(Kohavi, 1995). This study utilizes 10 years of data and em-
ploys a rolling forecasting approach for training and testing
the model. Specifically, each year is selected sequentially as
the test set, with the remaining 9 years used for training. For
instance, the data from 2007 are initially used as the test
set, while the data from the other years serve as the train-
ing set. This process is then repeated with 2008 as the test
year, and so on. Notably, due to significant missing turbu-
lence heat flux data in 2012, this paper will primarily present
the data interpolation for that year, while the data handling
for the other years is detailed in the Supplement. According
to the research objectives and the length of the interpolated
dataset, all samples are divided into three groups: a train-
ing set (2007–2011 and 2013–2016), with 10 % randomly
extracted as the validation set, and the test set (2012). In to-
tal, there are 87 673 samples, with 80 % used for training,
10 % for validation, and the remaining 10 % for testing. Tra-
ditional statistical methods do not involve the division into
training, validation, and test sets. To facilitate comparison in
this study, we designate the data from 2012 as the test set and
apply the traditional statistical methods for data interpola-
tion. The data from the remaining years serve as the training
set for our proposed method.

This design plan fully considers the complexity and diver-
sity of time series analysis while ensuring the rigor of model
validation and testing. In this way, it provides an accurate and
reliable means of predicting soil turbulence heat flux.
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Figure 2. (a) Importance index for sensible heat flux (H ). (b) Importance index for latent heat flux (LE). (c) OOB scores for different feature
combinations of sensible heat flux based on random forest (the red dot indicates the maximum value). (d) OOB scores for different feature
combinations of latent heat flux based on random forest (the red dot indicates the maximum value).

3.2 Traditional statistical methods

Current techniques used for imputing missing data in turbu-
lent heat flux include linear interpolation (Alavi et al., 2006),
variable relationships (Soloway et al., 2017), mean diurnal
variation (MDV) (Falge et al., 2001), nonlinear regression
(NR) (Chen et al., 2012), and lookup tables (LUTs) (Falge et
al., 2001). Linear interpolation is suitable only for small gaps
(one to three consecutive missing data points), but on the Ti-
betan Plateau turbulent heat flux often exhibits prolonged pe-
riods of missing observations, rendering linear interpolation
unreliable. Variable relationships utilize linear relationships
between meteorological variables for mutual interpolation;
however, due to the strong nonlinear relationships between
turbulent heat flux and environmental driving factors, the
mere method of variable relationships struggles to accurately
capture the changes in turbulent heat flux. Additionally, the
variable relationships vary across different sites on the vast
and geographically diverse Tibetan Plateau. The daily vari-

ation method involves establishing a time window, typically
between 4 and 15 d, with 7 and 14 d being the most common
selections. The time window used in this study is 14 d. Within
this window, averages of observations at the same time are
computed to obtain a set of daily variation data, and missing
data within these averages are imputed using linear interpo-
lation and filled with corresponding daily variation data for
the respective times. Nonlinear regression is based on an un-
derstanding of the main factors controlling the flux, thereby
effectively capturing the impact of major environmental el-
ement changes on the flux, allowing for more accurate data
interpolation. The lookup table method is based on creating
a data retrieval table from valid data, searching for valid data
under similar environmental conditions according to major
environmental factors, and averaging the found data to im-
pute missing data. Given the harsh geographical conditions
of the Tibetan Plateau, we employ the daily variation method,
nonlinear regression, and lookup tables at the QOMS site to
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impute data, exploring the gap between these methods and
machine learning approaches.

3.3 Traditional machine learning methods

The Support Vector Machine (SVM) is versatile and can be
applied not only as a linear classifier, but also for nonlin-
ear classification through the use of kernel functions. More-
over, beyond its capability for classification, the SVM can be
adapted for regression tasks – known as support vector re-
gression (SVR). This approach aims to find an optimal hy-
perplane in a high-dimensional kernel space that best fits
the data points, thereby ensuring optimal regression perfor-
mance. This versatility allows SVR to address both classifi-
cation and regression problems effectively (Cortes and Vap-
nik, 1995). XGBoost is a decision-tree-based gradient boost-
ing algorithm that enhances the model’s performance by pro-
gressively adding new trees and adjusting the errors of previ-
ous trees. It has been proven to perform excellently in various
competitions and practical applications (Chen et al., 2016).
The KNN algorithm is an instance-based learning method. It
classifies or predicts by calculating the distance between the
input data point and the data points in the training dataset, se-
lecting the nearest K points and voting based on their labels
(Cover and Hart, 1967). Each algorithm has its unique prin-
ciple, offering multiple choices for addressing the problem
of turbulent heat flux interpolation.

3.4 Recurrent neural network

RNNs are a class of deep-learning models designed for pro-
cessing sequential data (Goodfellow et al., 2016a). The core
idea is to share weights between the hidden layers of the
network to capture temporal dependencies within sequences.
However, standard RNNs suffer from issues of vanishing and
exploding gradients, which limit their ability to capture long-
term dependencies. LSTM networks address this problem by
introducing special units with three gate structures, allow-
ing the network to learn and remember long-term dependen-
cies within sequences (Hochreiter and Schmidhuber, 1997).
GRUs are variants of LSTM that improve computational ef-
ficiency by simplifying the gate structure and reducing the
number of parameters while retaining the ability to capture
long-term dependencies (Cho et al., 2014). These recurrent
neural network architectures have achieved significant suc-
cess in many sequence modeling and prediction tasks.

3.5 Transformer

The Transformer model is a deep-learning architecture that
is widely used in natural language processing and other
sequence-to-sequence tasks (Vaswani et al., 2017). It mainly
consists of two parts: an encoder and a decoder. Trans-
former captures long-distance dependencies in sequences
through the self-attention mechanism. Self-attention allows
the model to consider other positions in the input sequence

simultaneously in all positions, which, unlike traditional
RNNs and LSTM networks, eliminates the need for sequen-
tial computation, thereby greatly enhancing parallel compu-
tation capabilities. Following each self-attention layer is a
feed-forward neural network accompanied by layer normal-
ization, which contributes to training stability and conver-
gence. Transformer exhibits outstanding performance in data
fitting and prediction (Li et al., 2019). Its ability in parallel
computation allows it to process large datasets more quickly.
The self-attention mechanism ensures that the model can
capture complex dependencies, surpassing previous methods
in many tasks (Wu et al., 2020).

3.6 Transformer_CNN

To address the high complexity of data from the Tibetan
Plateau, a deep neural network model based on the PyTorch
framework was adopted in this study, as illustrated in Fig. 3.
At the initialization of the model (feed-forward), a layer nor-
malization component was introduced with the aim of nor-
malizing the input in the embedding dimension, thereby en-
hancing the stability and convergence rate of network train-
ing. Subsequently, a feed-forward neural network compris-
ing three fully connected layers was defined, incorporating
a rectified linear unit (ReLU) activation function to capture
nonlinear features (please refer to the Supplement). This pa-
per considers employing kernels of sizes 3, 5, and 7 to cap-
ture multiscale features. In the simulation of turbulent heat
flux, turbulence phenomena display distinct characteristics
at various spatial scales. Smaller kernels (such as 3) can
capture more localized features, while larger kernels (such
as 5 and 7) are able to cover a wider area, capturing more
global features. This combination enables the model to con-
currently learn features across different scales, thereby en-
hancing the model’s understanding and predictive capacity
regarding changes in turbulent heat flux. Following this, an-
other one-dimensional convolutional layer was defined to in-
tegrate the outputs from the three previous convolutional lay-
ers, forming a comprehensive feature representation.

The multi-head self-attention mechanism was realized
through the multi-head attention component, which boasts
four attention heads capable of capturing long-distance de-
pendencies within the input sequence. The decoder section
of the model is responsible for mapping the encoded fea-
tures to the target space. The initialization of weights and
biases is designed to ensure the stability and efficiency of the
model training process. Specifically, we adopted a variant of
the HE15 initialization method (He et al., 2015), a scientific
approach to weight initialization that is frequently employed
in deep-learning models to improve convergence speed and
stability during training. The core idea of HE15 initialization
is to adjust the initial standard deviation of weights based on
the number of nodes in the previous layer (i.e., fan_in). This
initialization method is particularly crucial for the training of
deep neural networks as it helps prevent issues of vanishing
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Figure 3. The model framework and network structure of Transformer_CNN.

or exploding gradients, which often occur when traditional
random weight initialization methods are used.

The forward-propagation process involves invoking the
feed-forward function twice during each training iteration,
resulting in two different outputs due to the stochastic nature
of dropout layers. These outputs are referred to as two data
“views”: F1 (primary view) and F2 (contrast view). Despite
the presence of dropout, the two views might still differ. The
loss function employed is the smooth L1 loss, which is com-
prised of three parts: the loss between F1 and the true value,
the loss between F2 and the true value, and the distance be-
tween F1 and F2, which serves as a regularization term mul-
tiplied by 0.1. During model inference, the final prediction is
derived from the average of F1 and F2 (Chen et al., 2020).

The Transformer_CNN model is a novel deep-learning
framework specifically designed to address the complex
physical phenomena of turbulent heat flux or similar chal-
lenges. It integrates the features of CNNs and Transformer,
aiming to capture the intricate relationships of temporal di-
mensions. In this model, the CNN, through its convolu-
tional layers, manages to capture the evident seasonal and
cyclical variations in turbulent heat fluxes. By identifying
these local patterns, it discerns the daily, monthly, and sea-
sonal variations in turbulent fluxes, thereby having an edge
in capturing intricate patterns within the data (Krizhevsky
et al., 2012). Secondly, predicting turbulent heat fluxes en-
compasses intricate physical processes and multiscale inter-
actions. The prowess of the Transformer model in captur-

ing long-distance dependencies (Vaswani et al., 2017), com-
bined with the CNN’s local feature extraction capability, fa-
cilitates a superior grasp of the interactions between wind
speed, temperature, and radiation with respect to turbulent
heat fluxes, thereby enhancing the model’s versatility and
diversity. Moreover, the efficiency of convolutional opera-
tions might contribute to elevating the speed and efficiency
of model training (Goodfellow et al., 2016b). By employing
a hybrid model of the CNN and Transformer, both local and
global features can be captured concurrently, thereby mani-
festing an adaptive advantage in data fitting for turbulent heat
fluxes (Bello et al., 2019).

3.7 Statistical analysis

In this study, traditional statistical analysis indices were used
to evaluate the accuracy of various models. The comparison
statistics were calculated as follows.

Root mean square error (RMSE): RMSE represents the
square root of the mean of the squared errors, which is the av-
erage of the differences between the simulated and observed
values. The lower the RMSE value, the better the model’s fit.
The relationship between them can be expressed as Eq. (2):

RMSE=

√
1
n

∑n
i=1

(yi − ŷi)
2. (2)

Mean absolute error (MAE): MAE calculates the average
of the absolute differences between the observed and pre-
dicted values. A lower MAE value indicates a better fit of the
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model. The relationship between them can be expressed as
Eq. (3):

MAE=
1
n

∑n

i=1
|yi − ŷi |. (3)

Coefficient of determination (R2): R2 measures the pro-
portion of the variance in the dependent variable that is pre-
dictable from the independent variables. This metric indi-
cates how close the data are to the fitted regression line. The
closer R2 is to 1, the more effectively the model explains the
data’s variability. The relationship between them can be ex-
pressed as Eq. (4):

R2
= 1−

∑n
i=1(yi − ŷi)

2∑n
i=1(yi − yi)

2 , (4)

where yi represents the model-simulated value, ŷ denotes the
observed value, and y signifies the mean of the observed val-
ues. The subscript i represents the serial number of samples,
and N represents the total number of samples.

3.8 Hyperparameter optimization

In this study, we employed a standardized hyperparameter
optimization method. The batch size was set to 32 to con-
trol the number of samples used for each parameter update.
The learning rate and weight decay parameters were gradu-
ally adjusted during training to optimize model performance.
The initial learning rate was set to 0.0005 and halved ev-
ery six epochs, with the weight decay parameter set to 0.01.
The training was conducted over 100 epochs, with multiple
iterations for model training and validation. During each it-
eration, we recorded the training loss and validation loss,
using mean square error loss (MSELoss) and smooth L1
loss (SmoothL1Loss) to calculate the loss. Gradient clipping
(with a maximum norm of 10) was applied to ensure training
stability. Specifically, we updated model parameters using
the training set and evaluated model performance on the vali-
dation set. The primary evaluation metric was the R-squared
(R2) score. The hyperparameter optimization followed these
steps:

a. Initial training – the model was trained with the initial
hyperparameter settings and evaluated on the validation
set, recording the initial R2 score on the validation set.

b. Learning rate adjustment – after every six training
epochs, the R2 score of the validation set was checked.
If the score improved, the current model parameter con-
figuration was saved. Otherwise, the learning rate was
halved, and training continued.

c. Weight decay and batch size optimization – throughout
the training process, the weight decay and batch size
were kept constant to ensure training stability and con-
vergence.

d. Saving the best model – at the end of each training
epoch, the R2 score in the validation set was evaluated.
If the current score was better than the previous best
score, the current model parameter configuration was
saved.

4 Results

The performances of the nine models (MDV, NR, LUT, SVR,
KNN, XGBoost, LSTM, GRUs, and Transformer) were as-
sessed by calculating the RMSE and MAE values between
the predicted and actual values for both the sensible and la-
tent heat fluxes. These evaluations are presented in Table 3,
encompassing the training, validation, and test sets, with the
best results highlighted in bold. The results are clear: whether
for H or LE, traditional statistical methods are comprehen-
sively outperformed by machine learning algorithms. Of the
three traditional machine learning methods, the SVR model
demonstrated superior performance in simulating the sensi-
ble heat flux, whereas XGBoost excelled in simulating the la-
tent heat flux. Surprisingly, both RNN models exhibited sub-
par performance in the task of simulating turbulent fluxes.
Two predominant factors might account for these observa-
tions. One pertains to the challenges of gradient vanishing
and explosion. Although LSTM models and GRUs alleviate
the issues of gradient vanishing and explosion through gating
mechanisms, these problems can still affect model perfor-
mance when dealing with particularly long sequences. The
second factor concerns the nuances of hyperparameter op-
timization in RNN models. Choosing the right set of hy-
perparameters, which are particularly numerous in RNNs,
is crucial to achieving optimal model performance. Fortu-
nately, the Transformer model showed exceptional prowess
in the task of simulating turbulent fluxes. In almost all of
the simulations, the Transformer model achieved the best
performance, boasting the smallest RMSE and MAE in the
test set. As a result, the Transformer model architecture was
integrated into the neural network framework, and by fur-
ther incorporating convolutional layers and multi-head at-
tention mechanisms, the Transformer_CNN model was pro-
posed, which was found to be superior in simulating turbu-
lent fluxes.

Table 4 juxtaposes the results of Transformer_CNN with
various artificial intelligence models, illustrating the predic-
tive outcomes in terms of R2. Evidently, Transformer_CNN
possesses a distinct advantage in long-term predictions. The
performance of the Transformer_CNN model in data fitting
surpassed that of the conventional Transformer model. The
incorporation of the CNN enhanced the model’s ability to
extract local features (Lecun et al., 1998). In summary, the
Transformer_CNN model, by amalgamating Transformer’s
global dependency capture capability with the CNN’s local
feature extraction prowess, offers a richer and more flexi-
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Table 3. Model performance evaluation (RMSE and MAE) for MDV, NR, LUT, SVR, KNN, XGBoost, LSTM, GTU, and Transformer. Bold
values highlight the best performance.

H LE

Set Training Validation Test Training Validation Test

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

MDV 42.34 6.32 / / 40.26 5.91 97.67 17.02 / / 95.17 17.19
NR 40.59 6.54 / / 38.44 6.90 115.86 19.37 / / 107.54 18.76
LUT 51.46 8.89 / / 52.64 9.86 132.24 20.59 / / 142.18 21.43
SVR 19.38 2.856 19.88 2.965 25.89 3.182 25.12 3.093 21.12 3.174 19.79 3.124
KNN 20.83 2.946 25.18 3.016 31.41 3.519 14.61 2.692 19.99 3.095 20.05 3.271
XGBoost 25.58 3.124 25.07 3.549 29.34 4.178 16.21 2.977 19.11 3.066 16.88 3.034
LSTM 25.13 3.029 24.59 3.481 28.68 4.159 18.86 2.859 20.72 3.017 19.47 3.033
GRU 22.14 3.004 21.74 3.257 26.99 4.036 17.59 2.818 21.76 3.157 20.96 3.198
Transformer 16.65 2.531 18.07 2.814 24.04 3.029 18.15 2.883 19.10 3.079 14.57 2.830

ble model representation, thereby exhibiting superior perfor-
mance in data fitting.

To more comprehensively and intuitively describe Trans-
former_CNN, Fig. 4 displays a scatterplot of predicted values
against actual values. The black dashed line represents the
diagonal (1 : 1 line). The red line denotes the fitted regres-
sion line between the actual and estimated values. The color
bar represents the density of the data points. Areas with red-
der hues correspond to regions of higher data density. The
distance between the data points and the diagonal line indi-
cates prediction errors. The results suggest that the majority
of the turbulent heat flux values are centered around 0. Owing
to the large volume of low-value data, the model is adept at
capturing the characteristics of environmental driving forces
when observed values are near 0, thereby achieving more ac-
curate predictions. As the observed values increase, the pre-
diction error of the model gradually amplifies. Furthermore,
it was observed that, when the turbulent heat flux is substan-
tial, the predicted values typically fall below the observed
values. This phenomenon is more pronounced in the fitting
of LE.

To better display the predictions of the Transformer_CNN
model, Fig. 5a and b show the monthly average diurnal vari-
ation curves for H and LE in the test set. The red line
represents the observed values, while the blue and green
lines represent the predictions of the Transformer and Trans-
former_CNN models.

In the prediction of sensible heat flux, both the Trans-
former and Transformer_CNN models perform excellently
for hours 0–9 and 19–23, where their predicted values closely
align with the observed values. However, between 9 and 19 h,
as the solar radiation intensity increases and the sensible heat
flux grows rapidly, the Transformer model struggles to cap-
ture this escalating trend, resulting in a notable underesti-
mation. The Transformer_CNN model, having incorporated
convolutional layers, is better equipped to recognize periodic
data changes and the impacts of environmental drivers on

sensible heat, substantially rectifying the underestimation is-
sues observed in high values.

In the latent heat flux prediction, the performance supe-
riority of the Transformer_CNN model is even more pro-
nounced. While the Transformer model exhibits significant
overestimations during low-value periods and struggles to
capture high values, the Transformer_CNN model’s predic-
tions largely coincide with observed values, significantly re-
ducing the prediction errors exhibited by the Transformer
model. Not only does it excel during the low-value periods
of LE in January–March and October–December, it also ac-
curately predicts the pronounced increase in LE in July–
September. The experiments demonstrate that the Trans-
former_CNN model is well suited to serving as an artificial
intelligence model for imputing turbulent heat fluxes.

Based on the research presented earlier, it was determined
that the Transformer_CNN model can serve as an artificial
intelligence model for imputing turbulent heat fluxes. To
delve deeper into the variation of turbulent heat fluxes at the
QOMS site, the model was employed to impute data from
2007 to 2016 for the QOMS site, with the results shown
in Fig. 6. The variation in sensible heat flux, as depicted in
Fig. 6a, indicates that, prior to the monsoon season, the sensi-
ble heat flux is the primary consumer of the available energy
at Earth’s surface. With the onset of the summer monsoon,
the diurnal variation of sensible heat flux significantly de-
creases, equating to the latent heat flux. In other words, dur-
ing the pre-monsoon period, the exchange of sensible heat
flux dominates. Influenced by the interaction of midlatitude
westerlies and the summer monsoon, the summer sensible
heat flux is significantly lower than that of spring. In contrast
to the bimodal seasonal variation of sensible heat flux, the
seasonal variation of latent heat flux exhibits a single peak
pattern. That is, during the pre-monsoon period, the latent
heat flux is small, but with the outbreak of the monsoon it
rapidly increases due to frequent precipitation and the moist-
ening of the surface soil. Subsequently, the latent heat flux
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Table 4. Comparison of the coefficient of determination (R2) predicted by multiple models (MDV, NR, LUT, SVR, KNN, XGBoost, LSTM,
GTU, Transformer, and Transformer_CNN). Bold values highlight the best performance.

H LE

Set Training Validation Test Training Validation Test

MDV 0.65 / 0.68 0.50 / 0.49
NR 0.62 / 0.72 0.48 / 0.53
LUT 0.59 / 0.54 0.45 / 0.40
SVR 0.92 0.91 0.90 0.78 0.80 0.82
KNN 0.91 0.90 0.85 0.86 0.78 0.79
XGBoost 0.90 0.90 0.87 0.83 0.78 0.85
LSTM 0.93 0.93 0.88 0.82 0.80 0.83
GRU 0.94 0.94 0.89 0.84 0.78 0.81
Transformer 0.93 0.93 0.91 0.85 0.81 0.87
Transformer_CNN 0.94 0.94 0.95 0.90 0.81 0.90

Figure 4. Scatter density plots of observed and Transformer_CNN-estimated sensible heat flux (H , W m−2) and latent heat flux (LE,
W m−2) for the test set (2012), where panels (a) and (d) correspond to the training dataset, panels (b) and (e) to the validation dataset, and
panels (c) and (f) to the test dataset. Panels (a), (b), and (c) show estimates for H , while panels (d), (e), and (f) show estimates for LE.
The black dashed line represents the diagonal (1 : 1 line), and the red line denotes the fitted regression line between the actual and estimated
values. The color bar represents the density of the data points, with redder hues indicating regions of higher data density.

gradually increases, equating to the sensible heat flux dur-
ing the summer monsoon period. A comparison of the sea-
sonal variations of the sensible heat flux (Fig. 6a) and the
latent heat flux (Fig. 6b) suggests that, during the Asian sum-
mer monsoon season, the impacts of latent and sensible heat
fluxes at the QOMS site are comparable. During the non-

monsoon season in Asia, the site’s sensible heat flux has a
greater impact.

It is well known that many stations on the Tibetan Plateau
cannot fully measure the 39 variables listed in the importance
ranking of Fig. 2. To better validate the model’s applicabil-
ity on the Tibetan Plateau, Table 5 below presents the inter-
polation results using Transformer_CNN at the QOMS and
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Figure 5. Monthly average diurnal variation curves of observed, Transformer-estimated, and Transformer_CNN-estimated sensible heat
flux (H , W m−2) and latent heat flux (LE, W m−2) in the 2012 test dataset, where the red line represents the observed values, the blue
line represents the Transformer estimates, and the green line represents the Transformer_CNN estimates (x axis in hours). Specifically,
panel (a) represents H and panel (b) represents LE.
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Figure 6. Observed values and Transformer_CNN-estimated values for the variation curves from 2007 to 2016 are presented. Specifically,
panel (a) depicts H (W m−2), panel (b) illustrates LE (W m−2), the purple points represent the observed values, and the red points represent
the imputed values generated by the Transformer_CNN model.

Table 5. Comparison of RMSE, MAE, and R2 for the interpolated H and LE at the QOMS and SETORS stations for 2012, using three
methods (Transformer with basic meteorological inputs, Transformer_CNN with basic meteorological inputs, and Transformer_CNN with
the total meteorological inputs).

QOMS SETORS

Set H LE H LE

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

Transformer 34.76 4.36 0.74 37.58 4.77 0.69 39.96 5.28 0.70 42.48 4.79 0.67
(basic elements)

Transformer_CNN 29.34 3.44 0.83 30.25 3.93 0.78 31.66 4.83 0.80 34.22 4.61 0.79
(basic elements)

Transformer_CNN 18.56 3.40 0.95 15.97 2.98 0.89 22.46 3.97 0.91 19.26 3.18 0.86

Southeast Tibet Observation and Research Station for the
Alpine Environment (SETORS) sites (29.77° N, 94.73° E;
3327 m), with the year 2012 as the test set. The model
employs basic meteorological elements, including single-
layer air temperature, pressure, single-layer air humidity,
single-layer wind speed, single-layer wind direction, site
hourly average precipitation, ground net radiation, single-
layer soil temperature, and single-layer soil moisture content.
As shown in Table 5, the interpolation performance using ba-

sic meteorological elements is significantly lower than that
using all of the variables, but it still presents a generally good
result. When employing basic meteorological elements for
data interpolation, the Transformer_CNN model consistently
outperforms the single Transformer model. This superiority
is evident at both the QOMS and SETORS sites. In particular,
at the SETORS site, the better interpolation performance fur-
ther validates the high applicability of the Transformer_CNN
model on the Tibetan Plateau.
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5 Conclusions

During the period from 2007 to 2016, deep-learning meth-
ods were employed to impute turbulent heat flux observa-
tional data for the QOMS site. To optimize predictive per-
formance and simplify model complexity, we first utilized
the random forest algorithm to extract features from basic
meteorological, turbulent, radiation, and soil data, eliminat-
ing redundant data. Subsequently, three traditional statisti-
cal methods (MDV, NR, and LUT), three machine learning
methods (SVR, XGBoost, and KNN), and two recurrent neu-
ral networks (LSTM and GRU) were employed, along with
the deep-learning model Transformer introduced in 2017, for
model evaluation and comparison. The results indicated that
Transformer exhibited superior performance in imputing tur-
bulent heat fluxes.

To further optimize predictive performance, a CNN was
introduced and combined with Transformer, forming a new
model named Transformer_CNN. The CNN was designed to
capture the periodic change features of turbulent heat fluxes
across different timescales, while Transformer effectively
captured long-distance dependencies in time series data, aid-
ing in revealing intricate temperature variation patterns with
environmental driving variables more precisely. Upon eval-
uation, Transformer_CNN significantly outperformed other
traditional artificial intelligence models in terms of predic-
tive performance.

More specifically, Transformer_CNN excelled in predict-
ing H , with the determination coefficient (R2) for its test
set reaching 0.95. It was able not only to predict low val-
ues accurately but also to achieve precise predictions as the
magnitudes of the observed values increased, addressing the
shortcomings of the traditional Transformer model in pre-
dicting higher values. In terms of predicting LE, its test set
determination coefficient reached 0.90, effectively resolving
the issues of overestimation of low values and underestima-
tion of high values by the Transformer model. In summary,
the experimental results thoroughly confirmed that the Trans-
former_CNN model provides a novel and efficient solution to
imputing turbulent heat fluxes.

Lastly, the Transformer_CNN model was utilized to im-
pute turbulent heat flux data from 2007 to 2016 for the
QOMS site. It was found that, during non-monsoon periods,
H dominated. However, during the summer monsoon sea-
son, influenced by the interactions of midlatitude westerlies
and the monsoon, H decreased and became similar to the
latent heat flux. Overall, during summer, the impacts of H

and LE fluxes at the QOMS site were comparable, while the
influence of H was more pronounced during non-monsoon
periods.
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