Articles | Volume 18, issue 10
https://doi.org/10.5194/gmd-18-2983-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-2983-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Accounting for effects of coagulation and model uncertainties in particle number concentration estimates based on measurements from sampling lines – a Bayesian inversion approach with SLIC v1.0
Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
Aku Seppänen
Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
Henri Oikarinen
Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
Miska Olin
Department of Atmospheric Sciences, Texas A&M University, College Station, TX, USA
Panu Karjalainen
Aerosol Physics Laboratory, Tampere University, Tampere, Finland
Santtu Mikkonen
Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
Kari Lehtinen
Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
Related authors
No articles found.
Antti Vartiainen, Santtu Mikkonen, Ville Leinonen, Tuukka Petäjä, Alfred Wiedensohler, Thomas Kühn, and Tuuli Miinalainen
EGUsphere, https://doi.org/10.5194/egusphere-2025-774, https://doi.org/10.5194/egusphere-2025-774, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Global climate models, commonly used for climate predictions, struggle at capturing local-scale variations in air quality. We have used measurements of ultrafine particles (UFPs), a less understood air pollutant with potentially significant health implications, for training machine learning models that can substantially reduce the inaccuracy in UFP concentrations predicted by a climate model. This approach could aid epidemiological studies of ultrafine particles by extending exposure records.
Henri Oikarinen, Anni Hartikainen, Pauli Simonen, Miska Olin, Ukko-Ville Mäkinen, Petteri Marjanen, Laura Salo, Ville Silvonen, Sampsa Martikainen, Jussi Hoivala, Mika Ihalainen, Pasi Miettinen, Pasi Yli-Pirilä, Olli Sippula, Santtu Mikkonen, and Panu Karjalainen
EGUsphere, https://doi.org/10.5194/egusphere-2025-540, https://doi.org/10.5194/egusphere-2025-540, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Fuel-operated auxiliary heaters are used in vehicles to provide extra heating to improve passenger comfort and vehicle functionality in cold climates. Currently heater emissions are not regulated as part of vehicle emissions, so this research was done to assess harmful gaseous and airborne particle emissions from them. Heaters were found to be major source of particles, especially when particles formed after combustion were accounted for, and large carbon monoxide emissions were also observed.
Pauli Simonen, Miikka Dal Maso, Pinja Prauda, Anniina Hoilijoki, Anette Karppinen, Pekka Matilainen, Panu Karjalainen, and Jorma Keskinen
Atmos. Meas. Tech., 17, 3219–3236, https://doi.org/10.5194/amt-17-3219-2024, https://doi.org/10.5194/amt-17-3219-2024, 2024
Short summary
Short summary
Secondary aerosol is formed in the atmosphere from gaseous emissions. Oxidation flow reactors used in secondary aerosol research do not immediately respond to changes in the inlet concentration of gases because of their broad transfer functions. This may result in incorrect secondary aerosol production factors determined for vehicles. We studied the extent of possible errors and found that oxidation flow reactors with faster responses result in smaller errors.
Arto Heitto, Cheng Wu, Diego Aliaga, Luis Blacutt, Xuemeng Chen, Yvette Gramlich, Liine Heikkinen, Wei Huang, Radovan Krejci, Paolo Laj, Isabel Moreno, Karine Sellegri, Fernando Velarde, Kay Weinhold, Alfred Wiedensohler, Qiaozhi Zha, Federico Bianchi, Marcos Andrade, Kari E. J. Lehtinen, Claudia Mohr, and Taina Yli-Juuti
Atmos. Chem. Phys., 24, 1315–1328, https://doi.org/10.5194/acp-24-1315-2024, https://doi.org/10.5194/acp-24-1315-2024, 2024
Short summary
Short summary
Particle growth at the Chacaltaya station in Bolivia was simulated based on measured vapor concentrations and ambient conditions. Major contributors to the simulated growth were low-volatility organic compounds (LVOCs). Also, sulfuric acid had major role when volcanic activity was occurring in the area. This study provides insight on nanoparticle growth at this high-altitude Southern Hemispheric site and hence contributes to building knowledge of early growth of atmospheric particles.
Markku Kulmala, Anna Lintunen, Hanna Lappalainen, Annele Virtanen, Chao Yan, Ekaterina Ezhova, Tuomo Nieminen, Ilona Riipinen, Risto Makkonen, Johanna Tamminen, Anu-Maija Sundström, Antti Arola, Armin Hansel, Kari Lehtinen, Timo Vesala, Tuukka Petäjä, Jaana Bäck, Tom Kokkonen, and Veli-Matti Kerminen
Atmos. Chem. Phys., 23, 14949–14971, https://doi.org/10.5194/acp-23-14949-2023, https://doi.org/10.5194/acp-23-14949-2023, 2023
Short summary
Short summary
To be able to meet global grand challenges, we need comprehensive open data with proper metadata. In this opinion paper, we describe the SMEAR (Station for Measuring Earth surface – Atmosphere Relations) concept and include several examples (cases), such as new particle formation and growth, feedback loops and the effect of COVID-19, and what has been learned from these investigations. The future needs and the potential of comprehensive observations of the environment are summarized.
Ville Leinonen, Miska Olin, Sampsa Martikainen, Panu Karjalainen, and Santtu Mikkonen
Atmos. Meas. Tech., 16, 5075–5089, https://doi.org/10.5194/amt-16-5075-2023, https://doi.org/10.5194/amt-16-5075-2023, 2023
Short summary
Short summary
Emission factor calculation was studied to provide models that do not use traditional CO2-based calculation in exhaust plume analysis. Two types of models, one based on the physical dependency of dilution of the exhaust flow rate and speed and two based on the statistical, measured dependency of dilution of the exhaust flow rate, acceleration, speed, altitude change, and/or wind, were developed. These methods could possibly be extended to also calculate non-exhaust emissions in the future.
Tuuli Miinalainen, Harri Kokkola, Antti Lipponen, Antti-Pekka Hyvärinen, Vijay Kumar Soni, Kari E. J. Lehtinen, and Thomas Kühn
Atmos. Chem. Phys., 23, 3471–3491, https://doi.org/10.5194/acp-23-3471-2023, https://doi.org/10.5194/acp-23-3471-2023, 2023
Short summary
Short summary
We simulated the effects of aerosol emission mitigation on both global and regional radiative forcing and city-level air quality with a global-scale climate model. We used a machine learning downscaling approach to bias-correct the PM2.5 values obtained from the global model for the Indian megacity New Delhi. Our results indicate that aerosol mitigation could result in both improved air quality and less radiative heating for India.
Ville Leinonen, Harri Kokkola, Taina Yli-Juuti, Tero Mielonen, Thomas Kühn, Tuomo Nieminen, Simo Heikkinen, Tuuli Miinalainen, Tommi Bergman, Ken Carslaw, Stefano Decesari, Markus Fiebig, Tareq Hussein, Niku Kivekäs, Radovan Krejci, Markku Kulmala, Ari Leskinen, Andreas Massling, Nikos Mihalopoulos, Jane P. Mulcahy, Steffen M. Noe, Twan van Noije, Fiona M. O'Connor, Colin O'Dowd, Dirk Olivie, Jakob B. Pernov, Tuukka Petäjä, Øyvind Seland, Michael Schulz, Catherine E. Scott, Henrik Skov, Erik Swietlicki, Thomas Tuch, Alfred Wiedensohler, Annele Virtanen, and Santtu Mikkonen
Atmos. Chem. Phys., 22, 12873–12905, https://doi.org/10.5194/acp-22-12873-2022, https://doi.org/10.5194/acp-22-12873-2022, 2022
Short summary
Short summary
We provide the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five different earth system models. We investigated aerosol modes (nucleation, Aitken, and accumulation) separately and were able to show the differences between measured and modeled trends and especially their seasonal patterns. The differences in model results are likely due to complex effects of several processes instead of certain specific model features.
Sini Isokääntä, Paul Kim, Santtu Mikkonen, Thomas Kühn, Harri Kokkola, Taina Yli-Juuti, Liine Heikkinen, Krista Luoma, Tuukka Petäjä, Zak Kipling, Daniel Partridge, and Annele Virtanen
Atmos. Chem. Phys., 22, 11823–11843, https://doi.org/10.5194/acp-22-11823-2022, https://doi.org/10.5194/acp-22-11823-2022, 2022
Short summary
Short summary
This research employs air mass history analysis and observations to study how clouds and precipitation affect atmospheric aerosols during transport to a boreal forest site. The mass concentrations of studied chemical species showed exponential decrease as a function of accumulated rain along the air mass route. Our analysis revealed in-cloud sulfate formation, while no major changes in organic mass were seen. Most of the in-cloud-formed sulfate could be assigned to particle sizes above 200 nm.
Antti Lipponen, Jaakko Reinvall, Arttu Väisänen, Henri Taskinen, Timo Lähivaara, Larisa Sogacheva, Pekka Kolmonen, Kari Lehtinen, Antti Arola, and Ville Kolehmainen
Atmos. Meas. Tech., 15, 895–914, https://doi.org/10.5194/amt-15-895-2022, https://doi.org/10.5194/amt-15-895-2022, 2022
Short summary
Short summary
We have developed a machine-learning-based model that can be used to correct the Sentinel-3 satellite-based aerosol parameter data of the Synergy data product. The strength of the model is that the original satellite data processing does not have to be carried out again but the correction can be carried out with the data already available. We show that the correction significantly improves the accuracy of the satellite aerosol parameters.
Kimmo Korhonen, Thomas Bjerring Kristensen, John Falk, Vilhelm B. Malmborg, Axel Eriksson, Louise Gren, Maja Novakovic, Sam Shamun, Panu Karjalainen, Lassi Markkula, Joakim Pagels, Birgitta Svenningsson, Martin Tunér, Mika Komppula, Ari Laaksonen, and Annele Virtanen
Atmos. Chem. Phys., 22, 1615–1631, https://doi.org/10.5194/acp-22-1615-2022, https://doi.org/10.5194/acp-22-1615-2022, 2022
Short summary
Short summary
We investigated the ice-nucleating abilities of particulate emissions from a modern diesel engine using the portable ice-nuclei counter SPIN, a continuous-flow diffusion chamber instrument. Three different fuels were studied without blending, including fossil diesel and two renewable fuels, testing different emission aftertreatment systems and photochemical aging. We found that the diesel emissions were inefficient ice nuclei, and aging had no or little effect on their ice-nucleating abilities.
Arto Heitto, Kari Lehtinen, Tuukka Petäjä, Felipe Lopez-Hilfiker, Joel A. Thornton, Markku Kulmala, and Taina Yli-Juuti
Atmos. Chem. Phys., 22, 155–171, https://doi.org/10.5194/acp-22-155-2022, https://doi.org/10.5194/acp-22-155-2022, 2022
Short summary
Short summary
For atmospheric aerosol particles to take part in cloud formation, they need to be at least a few tens of nanometers in diameter. By using a particle condensation model, we investigated how two types of chemical reactions, oligomerization and decomposition, of organic molecules inside the particle may affect the growth of secondary aerosol particles to these sizes. We show that the effect is potentially significant, which highlights the importance of increasing understanding of these processes.
Matthew Ozon, Dominik Stolzenburg, Lubna Dada, Aku Seppänen, and Kari E. J. Lehtinen
Atmos. Chem. Phys., 21, 12595–12611, https://doi.org/10.5194/acp-21-12595-2021, https://doi.org/10.5194/acp-21-12595-2021, 2021
Short summary
Short summary
Measuring the rate at which aerosol particles are formed is of importance for understanding climate change. We present an analysis method based on Kalman smoothing, which retrieves new particle formation and growth rates from size-distribution measurements. We apply it to atmospheric simulation chamber experiments and show that it agrees well with traditional methods. In addition, it provides reliable uncertainty estimates, and we suggest instrument design optimisation for signal processing.
Matthew Ozon, Aku Seppänen, Jari P. Kaipio, and Kari E. J. Lehtinen
Geosci. Model Dev., 14, 3715–3739, https://doi.org/10.5194/gmd-14-3715-2021, https://doi.org/10.5194/gmd-14-3715-2021, 2021
Short summary
Short summary
Experimental research has provided large amounts of high-quality data on aerosol over the last 2 decades. However, inference of the process rates (e.g., the rates at which particles are generated) is still typically done by simple curve-fitting methods and does not assess the credibility of the estimation. The devised method takes advantage of the Bayesian framework to not only retrieve the state of the observed aerosol system but also to estimate the process rates (e.g., growth rate).
Stephanie Bohlmann, Xiaoxia Shang, Ville Vakkari, Elina Giannakaki, Ari Leskinen, Kari E. J. Lehtinen, Sanna Pätsi, and Mika Komppula
Atmos. Chem. Phys., 21, 7083–7097, https://doi.org/10.5194/acp-21-7083-2021, https://doi.org/10.5194/acp-21-7083-2021, 2021
Short summary
Short summary
Measurements of the multi-wavelength Raman polarization lidar PollyXT and a Halo Photonics StreamLine Doppler lidar have been combined with measurements of pollen type and concentration using a traditional pollen trap at the rural forest site in Vehmasmäki, Finland. Depolarization ratios were measured at three wavelengths. High depolarization ratios were detected during an event with high birch and spruce pollen concentrations and a wavelength dependence of the depolarization ratio was observed.
Antti Ruuskanen, Sami Romakkaniemi, Harri Kokkola, Antti Arola, Santtu Mikkonen, Harri Portin, Annele Virtanen, Kari E. J. Lehtinen, Mika Komppula, and Ari Leskinen
Atmos. Chem. Phys., 21, 1683–1695, https://doi.org/10.5194/acp-21-1683-2021, https://doi.org/10.5194/acp-21-1683-2021, 2021
Short summary
Short summary
The study focuses mainly on cloud-scavenging efficiency of absorbing particulate matter (mainly black carbon) but additionally covers cloud-scavenging efficiency of scattering particles and statistics of cloud condensation nuclei. The main findings give insight into how black carbon is distributed in different particle sizes and the sensitivity to cloud scavenged. The main findings are useful for large-scale modelling for evaluating cloud scavenging.
Santtu Mikkonen, Zoltán Németh, Veronika Varga, Tamás Weidinger, Ville Leinonen, Taina Yli-Juuti, and Imre Salma
Atmos. Chem. Phys., 20, 12247–12263, https://doi.org/10.5194/acp-20-12247-2020, https://doi.org/10.5194/acp-20-12247-2020, 2020
Short summary
Short summary
We determined decennial statistical time trends and diurnal statistical patterns of atmospheric particle number concentrations in various relevant size fractions in the city centre of Budapest in an interval of 2008–2018. The mean overall decrease rate of particles in different size fractions was approximately −5 % scaled for the 10-year measurement interval. The decline can be interpreted as a consequence of the decreased anthropogenic emissions in the city.
Sini Isokääntä, Eetu Kari, Angela Buchholz, Liqing Hao, Siegfried Schobesberger, Annele Virtanen, and Santtu Mikkonen
Atmos. Meas. Tech., 13, 2995–3022, https://doi.org/10.5194/amt-13-2995-2020, https://doi.org/10.5194/amt-13-2995-2020, 2020
Short summary
Short summary
Online mass spectrometry produces large amounts of data. These data can be interpreted with statistical methods, enabling scientists to more easily understand the underlying processes. We compared these techniques on car exhaust measurements. We show differences and similarities between the methods and give recommendations on applicability of the methods on certain types of data. We show that applying multiple methods leads to more robust results, thus increasing reliability of the findings.
Thomas Kühn, Kaarle Kupiainen, Tuuli Miinalainen, Harri Kokkola, Ville-Veikko Paunu, Anton Laakso, Juha Tonttila, Rita Van Dingenen, Kati Kulovesi, Niko Karvosenoja, and Kari E. J. Lehtinen
Atmos. Chem. Phys., 20, 5527–5546, https://doi.org/10.5194/acp-20-5527-2020, https://doi.org/10.5194/acp-20-5527-2020, 2020
Short summary
Short summary
We investigate the effects of black carbon (BC) mitigation on Arctic climate and human health, accounting for the concurrent reduction of other aerosol species. While BC is attributed a net warming effect on climate, most other aerosol species cool the planet. We find that the direct radiative effect of mitigating BC induces cooling, while aerosol–cloud effects offset this cooling and introduce large uncertainties. Furthermore, the reduced aerosol emissions reduce human mortality considerably.
Kimmo Korhonen, Thomas Bjerring Kristensen, John Falk, Robert Lindgren, Christina Andersen, Ricardo Luis Carvalho, Vilhelm Malmborg, Axel Eriksson, Christoffer Boman, Joakim Pagels, Birgitta Svenningsson, Mika Komppula, Kari E. J. Lehtinen, and Annele Virtanen
Atmos. Chem. Phys., 20, 4951–4968, https://doi.org/10.5194/acp-20-4951-2020, https://doi.org/10.5194/acp-20-4951-2020, 2020
Short summary
Short summary
Ice-nucleating abilities of particulate emissions from solid-fuel-burning cookstoves were studied using a portable ice nuclei counter in an extensive laboratory experiment campaign. We found that even small changes in combustion conditions may affect the ice-nucleating ability of the emissions significantly. Also six different physico-chemical properties of the emissions were studied, but no clear correlation to their ice-nucleating ability was found.
Ville Leinonen, Petri Tiitta, Olli Sippula, Hendryk Czech, Ari Leskinen, Juha Karvanen, Sini Isokääntä, and Santtu Mikkonen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-13, https://doi.org/10.5194/gmd-2020-13, 2020
Revised manuscript not accepted
Santtu Mikkonen, Mikko R. A. Pitkänen, Tuomo Nieminen, Antti Lipponen, Sini Isokääntä, Antti Arola, and Kari E. J. Lehtinen
Atmos. Chem. Phys., 19, 12531–12543, https://doi.org/10.5194/acp-19-12531-2019, https://doi.org/10.5194/acp-19-12531-2019, 2019
Short summary
Short summary
Atmospheric measurement data never come without measurement error. Too often, these errors are neglected when researchers make inferences from their data. We applied multiple line-fitting methods to simulated data mimicking two central variables in aerosol research. Our results show that an ordinary least squares fit, typically used to describe relationships, underestimates the slope of the fit and that methods taking the measurement uncertainty into account performed significantly better.
Olli-Pekka Tikkanen, Väinö Hämäläinen, Grazia Rovelli, Antti Lipponen, Manabu Shiraiwa, Jonathan P. Reid, Kari E. J. Lehtinen, and Taina Yli-Juuti
Atmos. Chem. Phys., 19, 9333–9350, https://doi.org/10.5194/acp-19-9333-2019, https://doi.org/10.5194/acp-19-9333-2019, 2019
Short summary
Short summary
We assessed how well the organic aerosol particle composition and viscosity can be captured by optimizing process models to match particle evaporation data. We performed the analysis for both artificial and real evaporation data and tested two optimization algorithms. Our findings show that the optimization method yields a good estimate for the studied properties. The timescale of the evaporation data and particle size was found to be important in identifying the volatility of organic compounds.
Liqing Hao, Olga Garmash, Mikael Ehn, Pasi Miettinen, Paola Massoli, Santtu Mikkonen, Tuija Jokinen, Pontus Roldin, Pasi Aalto, Taina Yli-Juuti, Jorma Joutsensaari, Tuukka Petäjä, Markku Kulmala, Kari E. J. Lehtinen, Douglas R. Worsnop, and Annele Virtanen
Atmos. Chem. Phys., 18, 17705–17716, https://doi.org/10.5194/acp-18-17705-2018, https://doi.org/10.5194/acp-18-17705-2018, 2018
Short summary
Short summary
An aerosol mass spectrometer was used to characterize aerosol chemical composition during new particle formation periods. The time profiles of mass concentrations and chemical composition of observed aerosol particles are subjected to joint effects of boundary layer dilution, atmospheric chemistry and aerosol mixing in different boundary layers. During the nighttime, the increase in organic aerosol mass correlated well with the increase in condensed highly oxygenated organic molecules' mass.
Harri Kokkola, Thomas Kühn, Anton Laakso, Tommi Bergman, Kari E. J. Lehtinen, Tero Mielonen, Antti Arola, Scarlet Stadtler, Hannele Korhonen, Sylvaine Ferrachat, Ulrike Lohmann, David Neubauer, Ina Tegen, Colombe Siegenthaler-Le Drian, Martin G. Schultz, Isabelle Bey, Philip Stier, Nikos Daskalakis, Colette L. Heald, and Sami Romakkaniemi
Geosci. Model Dev., 11, 3833–3863, https://doi.org/10.5194/gmd-11-3833-2018, https://doi.org/10.5194/gmd-11-3833-2018, 2018
Short summary
Short summary
In this paper we present a global aerosol–chemistry–climate model with the focus on its representation for atmospheric aerosol particles. In the model, aerosols are simulated using the aerosol module SALSA2.0, which in this paper is compared to satellite, ground, and aircraft-based observations of the properties of atmospheric aerosol. Based on this study, the model simulated aerosol properties compare well with the observations.
Lauri Laakso, Santtu Mikkonen, Achim Drebs, Anu Karjalainen, Pentti Pirinen, and Pekka Alenius
Ocean Sci., 14, 617–632, https://doi.org/10.5194/os-14-617-2018, https://doi.org/10.5194/os-14-617-2018, 2018
Short summary
Short summary
Meteorological observations at Utö Atmospheric and Marine Research Station, the Baltic Sea, started in 1881 and seawater temperature and salinity observations in 1900. Based on the dataset of more than 100 years of observations, we see an increase in atmospheric temperature after the 1980s, in line with reduced sea ice cover. We also found an increase in seawater temperatures, modulated by changes in salinities. The results indicate that the climate at Utö may have shifted into a new phase.
Jorma Joutsensaari, Matthew Ozon, Tuomo Nieminen, Santtu Mikkonen, Timo Lähivaara, Stefano Decesari, M. Cristina Facchini, Ari Laaksonen, and Kari E. J. Lehtinen
Atmos. Chem. Phys., 18, 9597–9615, https://doi.org/10.5194/acp-18-9597-2018, https://doi.org/10.5194/acp-18-9597-2018, 2018
Short summary
Short summary
New particle formation (NPF) in the atmosphere is globally an important source of aerosol particles. NPF events are typically identified and analyzed manually by researchers from particle size distribution data day by day, which is time consuming and might be inconsistent. We have developed an automatic analysis method based on deep learning for NPF event identification. The developed method can be easily utilized to analyze any long-term datasets more accurately and consistently.
Ekaterina Ezhova, Veli-Matti Kerminen, Kari E. J. Lehtinen, and Markku Kulmala
Atmos. Chem. Phys., 18, 2431–2442, https://doi.org/10.5194/acp-18-2431-2018, https://doi.org/10.5194/acp-18-2431-2018, 2018
Short summary
Short summary
A condensation sink (CS) quantifies the rate of uptake of condensing vapours by pre-existing aerosol and can be used as well to quantify losses of monomers/clusters. An analytical solution of the condensation equation valid in a wide range of particle diameters is presented. We describe the dynamics of atmospheric CS, test the formulas against field observations and further use them to develop a simplified model of the coupled dynamics of aerosol and condensing vapours in the atmosphere.
Lukas Pichelstorfer, Dominik Stolzenburg, John Ortega, Thomas Karl, Harri Kokkola, Anton Laakso, Kari E. J. Lehtinen, James N. Smith, Peter H. McMurry, and Paul M. Winkler
Atmos. Chem. Phys., 18, 1307–1323, https://doi.org/10.5194/acp-18-1307-2018, https://doi.org/10.5194/acp-18-1307-2018, 2018
Short summary
Short summary
Quantification of new particle formation as a source of atmospheric aerosol is clearly of importance for climate and health aspects. In our new study we developed two analysis methods that allow retrieval of nanoparticle growth dynamics at much higher precision than it was possible so far. Our results clearly demonstrate that growth rates show much more variation than is currently known and suggest that the Kelvin effect governs growth in the sub-10 nm size range.
Elham Baranizadeh, Tuomo Nieminen, Taina Yli-Juuti, Markku Kulmala, Tuukka Petäjä, Ari Leskinen, Mika Komppula, Ari Laaksonen, and Kari E. J. Lehtinen
Atmos. Chem. Phys., 17, 13361–13371, https://doi.org/10.5194/acp-17-13361-2017, https://doi.org/10.5194/acp-17-13361-2017, 2017
Short summary
Short summary
Extrapolation of the particle formation rates from one measured larger size (e.g., 7 nm) to smaller sizes (e.g., 3 nm) based on simplified growth-scavenging dynamics works fairly well to estimate mean daily formation rates, but it fails to predict the time evolution of the particle population. This points to the challenges in predicting atmospheric nucleation rates for locations where the particle growth and loss rates are size- and time-dependent.
Sami Romakkaniemi, Zubair Maalick, Antti Hellsten, Antti Ruuskanen, Olli Väisänen, Irshad Ahmad, Juha Tonttila, Santtu Mikkonen, Mika Komppula, and Thomas Kühn
Atmos. Chem. Phys., 17, 7955–7964, https://doi.org/10.5194/acp-17-7955-2017, https://doi.org/10.5194/acp-17-7955-2017, 2017
Short summary
Short summary
Surface topography affects aerosol–cloud interactions in boundary layer clouds. Local topography effects should be screened out from in situ observations before results can be generalised into a larger scale. Here we present modelling and observational results from a measurement station residing in a 75 m tower on top of a 150 m hill, and analyse how landscape affects the cloud formation, and which factors should be taken into account when aerosol effect on cloud droplet formation is studied.
Petri Tiitta, Ari Leskinen, Liqing Hao, Pasi Yli-Pirilä, Miika Kortelainen, Julija Grigonyte, Jarkko Tissari, Heikki Lamberg, Anni Hartikainen, Kari Kuuspalo, Aki-Matti Kortelainen, Annele Virtanen, Kari E. J. Lehtinen, Mika Komppula, Simone Pieber, André S. H. Prévôt, Timothy B. Onasch, Douglas R. Worsnop, Hendryk Czech, Ralf Zimmermann, Jorma Jokiniemi, and Olli Sippula
Atmos. Chem. Phys., 16, 13251–13269, https://doi.org/10.5194/acp-16-13251-2016, https://doi.org/10.5194/acp-16-13251-2016, 2016
Short summary
Short summary
Real-time measurements of OA aging and SOA formation from logwood combustion were conducted under dark and UV oxidation. Substantial SOA formation was observed in all experiments, leading to twice the initial OA mass emphasizing the importance of the burning conditions for the aging processes. The results prove that emissions are subject to intensive chemical processing in the atmosphere; e.g. the most of the POA was found to become oxidized after the ozone addition, forming aged POA.
Aki Pajunoja, Weiwei Hu, Yu J. Leong, Nathan F. Taylor, Pasi Miettinen, Brett B. Palm, Santtu Mikkonen, Don R. Collins, Jose L. Jimenez, and Annele Virtanen
Atmos. Chem. Phys., 16, 11163–11176, https://doi.org/10.5194/acp-16-11163-2016, https://doi.org/10.5194/acp-16-11163-2016, 2016
Short summary
Short summary
The phase state of ambient particles was inferred from bounce measurements conducted at a rural site in central Alabama during the SOAS campaign. The organic-dominated ambient particles are mostly in the liquid phase at summertime conditions but they turn semisolid when dried in the measurement setup. Bounce humidograms reveal that the hygroscopicity and oxidation of the particles decreases the liquefying RH. The effect of oxidation is emphasized by oxidation flow reactor measurements.
Elham Baranizadeh, Benjamin N. Murphy, Jan Julin, Saeed Falahat, Carly L. Reddington, Antti Arola, Lars Ahlm, Santtu Mikkonen, Christos Fountoukis, David Patoulias, Andreas Minikin, Thomas Hamburger, Ari Laaksonen, Spyros N. Pandis, Hanna Vehkamäki, Kari E. J. Lehtinen, and Ilona Riipinen
Geosci. Model Dev., 9, 2741–2754, https://doi.org/10.5194/gmd-9-2741-2016, https://doi.org/10.5194/gmd-9-2741-2016, 2016
Short summary
Short summary
The molecular mechanisms through which new ultrafine (< 100 nm) aerosol particles are formed in the atmosphere have puzzled the scientific community for decades. In the past few years, however, significant progress has been made in unraveling these processes through laboratory studies and computational efforts. In this work we have implemented these new developments to an air quality model and study the implications of anthropogenically driven particle formation for European air quality.
Olli Väisänen, Antti Ruuskanen, Arttu Ylisirniö, Pasi Miettinen, Harri Portin, Liqing Hao, Ari Leskinen, Mika Komppula, Sami Romakkaniemi, Kari E. J. Lehtinen, and Annele Virtanen
Atmos. Chem. Phys., 16, 10385–10398, https://doi.org/10.5194/acp-16-10385-2016, https://doi.org/10.5194/acp-16-10385-2016, 2016
Short summary
Short summary
In-cloud measurements of aerosol hygroscopicity and cloud droplet activation were conducted in Kuopio, Finland. According to the observations, the less hygroscopic accumulation mode particles were present in the non-activated aerosol, whereas the more hygroscopic particles were scavenged into cloud droplets. The results illustrate the sensitivity of cloud droplet formation to varying chemical composition and highlight the need for proper treatment of anthropogenic aerosols in CCN predictions.
Jani Huttunen, Harri Kokkola, Tero Mielonen, Mika Esa Juhani Mononen, Antti Lipponen, Juha Reunanen, Anders Vilhelm Lindfors, Santtu Mikkonen, Kari Erkki Juhani Lehtinen, Natalia Kouremeti, Alkiviadis Bais, Harri Niska, and Antti Arola
Atmos. Chem. Phys., 16, 8181–8191, https://doi.org/10.5194/acp-16-8181-2016, https://doi.org/10.5194/acp-16-8181-2016, 2016
Short summary
Short summary
For a good estimate of the current forcing by anthropogenic aerosols, knowledge in past is needed. One option to lengthen time series is to retrieve aerosol optical depth from solar radiation measurements. We have evaluated several methods for this task. Most of the methods produce aerosol optical depth estimates with a good accuracy. However, machine learning methods seem to be the most applicable not to produce any systematic biases, since they do not need constrain the aerosol properties.
Jenni Kontkanen, Tinja Olenius, Katrianne Lehtipalo, Hanna Vehkamäki, Markku Kulmala, and Kari E. J. Lehtinen
Atmos. Chem. Phys., 16, 5545–5560, https://doi.org/10.5194/acp-16-5545-2016, https://doi.org/10.5194/acp-16-5545-2016, 2016
J. Kim, L. Ahlm, T. Yli-Juuti, M. Lawler, H. Keskinen, J. Tröstl, S. Schobesberger, J. Duplissy, A. Amorim, F. Bianchi, N. M. Donahue, R. C. Flagan, J. Hakala, M. Heinritzi, T. Jokinen, A. Kürten, A. Laaksonen, K. Lehtipalo, P. Miettinen, T. Petäjä, M. P. Rissanen, L. Rondo, K. Sengupta, M. Simon, A. Tomé, C. Williamson, D. Wimmer, P. M. Winkler, S. Ehrhart, P. Ye, J. Kirkby, J. Curtius, U. Baltensperger, M. Kulmala, K. E. J. Lehtinen, J. N. Smith, I. Riipinen, and A. Virtanen
Atmos. Chem. Phys., 16, 293–304, https://doi.org/10.5194/acp-16-293-2016, https://doi.org/10.5194/acp-16-293-2016, 2016
Short summary
Short summary
The hygroscopicity of nucleated nanoparticles was measured in the presence of sulfuric acid, sulfuric acid-dimethylamine, and sulfuric acid-organics derived from α-pinene oxidation during CLOUD7 at CERN in 2012. The hygroscopicity parameter κ decreased with increasing particle size, indicating decreasing acidity of particles.
J. Joutsensaari, P. Yli-Pirilä, H. Korhonen, A. Arola, J. D. Blande, J. Heijari, M. Kivimäenpää, S. Mikkonen, L. Hao, P. Miettinen, P. Lyytikäinen-Saarenmaa, C. L. Faiola, A. Laaksonen, and J. K. Holopainen
Atmos. Chem. Phys., 15, 12139–12157, https://doi.org/10.5194/acp-15-12139-2015, https://doi.org/10.5194/acp-15-12139-2015, 2015
Short summary
Short summary
Global warming will induce large-scale insect outbreaks in boreal forests. Our results from field and laboratory experiments, satellite observations and global-scale modelling suggest that more frequent insect outbreaks, in addition to temperature-dependent increases in VOC emissions, could result in substantial increases in biogenic SOA formation and therefore affect both aerosol direct and indirect forcing of climate at regional scales. This should be considered in future climate predictions.
A. Leskinen, P. Yli-Pirilä, K. Kuuspalo, O. Sippula, P. Jalava, M.-R. Hirvonen, J. Jokiniemi, A. Virtanen, M. Komppula, and K. E. J. Lehtinen
Atmos. Meas. Tech., 8, 2267–2278, https://doi.org/10.5194/amt-8-2267-2015, https://doi.org/10.5194/amt-8-2267-2015, 2015
Short summary
Short summary
A 29 m3 Teflon chamber was characterized and tested with oxidation experiments of toluene. Secondary organic aerosol yields of 12-42 % were obtained. These yields are comparable to those obtained in other laboratories.
E. Giannakaki, A. Pfüller, K. Korhonen, T. Mielonen, L. Laakso, V. Vakkari, H. Baars, R. Engelmann, J. P. Beukes, P. G. Van Zyl, M. Josipovic, P. Tiitta, K. Chiloane, S. Piketh, H. Lihavainen, K. E. J. Lehtinen, and M. Komppula
Atmos. Chem. Phys., 15, 5429–5442, https://doi.org/10.5194/acp-15-5429-2015, https://doi.org/10.5194/acp-15-5429-2015, 2015
Short summary
Short summary
In this study we summarize 1 year of Raman lidar observations over South Africa. The analyses of lidar measurements presented here could assist in bridging existing gaps in the knowledge of vertical distribution of aerosols above South Africa, since limited long-term data of this type are available for this region. For the first time, we have been able to cover the full seasonal cycle on geometrical characteristics and optical properties of free tropospheric aerosol layers in the region.
E. M. Dunne, S. Mikkonen, H. Kokkola, and H. Korhonen
Atmos. Chem. Phys., 14, 13631–13642, https://doi.org/10.5194/acp-14-13631-2014, https://doi.org/10.5194/acp-14-13631-2014, 2014
Short summary
Short summary
Marine clouds have a strong effect on the Earth's radiative balance. One proposed climate feedback is that, in a warming climate, marine aerosol emissions will change due to changing wind speeds. We have examined the processes that affect aerosol emissions and removal over 15 years, and high-temporal-resolution output over 2 months. We conclude that wind trends are unlikely to cause a strong feedback in marine regions, but changes in removal processes or transport from continental regions may.
L. Q. Hao, A. Kortelainen, S. Romakkaniemi, H. Portin, A. Jaatinen, A. Leskinen, M. Komppula, P. Miettinen, D. Sueper, A. Pajunoja, J. N. Smith, K. E. J. Lehtinen, D. R. Worsnop, A. Laaksonen, and A. Virtanen
Atmos. Chem. Phys., 14, 13483–13495, https://doi.org/10.5194/acp-14-13483-2014, https://doi.org/10.5194/acp-14-13483-2014, 2014
Short summary
Short summary
Positive matrix factorization (PMF) was applied to the unified high-resolution mass spectra organic species with NO+ and NO2+ ions from the measurement in a mixed region between the boreal forestland and the urban area. The PMF analysis succeeded in separating the mixed spectra into three distinct organic factors and one inorganic factor. The particulate organic nitrate was distinguished by PMF for the first time, with a contribution of one-third of the total nitrate mass.
J.-P. Pietikäinen, S. Mikkonen, A. Hamed, A. I. Hienola, W. Birmili, M. Kulmala, and A. Laaksonen
Atmos. Chem. Phys., 14, 11711–11729, https://doi.org/10.5194/acp-14-11711-2014, https://doi.org/10.5194/acp-14-11711-2014, 2014
J. Huttunen, A. Arola, G. Myhre, A. V. Lindfors, T. Mielonen, S. Mikkonen, J. S. Schafer, S. N. Tripathi, M. Wild, M. Komppula, and K. E. J. Lehtinen
Atmos. Chem. Phys., 14, 6103–6110, https://doi.org/10.5194/acp-14-6103-2014, https://doi.org/10.5194/acp-14-6103-2014, 2014
Related subject area
Atmospheric sciences
Top-down CO emission estimates using TROPOMI CO data in the TM5-4DVAR (r1258) inverse modeling suit
The Multi-Compartment Hg Modeling and Analysis Project (MCHgMAP): mercury modeling to support international environmental policy
Similarity-based analysis of atmospheric organic compounds for machine learning applications
Porting the Meso-NH atmospheric model on different GPU architectures for the next generation of supercomputers (version MESONH-v55-OpenACC)
Estimation of aerosol and cloud radiative heating rate in the tropical stratosphere using a radiative kernel method
Evaluation of dust emission and land surface schemes in predicting a mega Asian dust storm over South Korea using WRF-Chem
Sensitivity studies of a four-dimensional local ensemble transform Kalman filter coupled with WRF-Chem version 3.9.1 for improving particulate matter simulation accuracy
A Bayesian method for predicting background radiation at environmental monitoring stations in local-scale networks
Inclusion of the ECMWF ecRad radiation scheme (v1.5.0) in the MAR (v3.14), regional evaluation for Belgium, and assessment of surface shortwave spectral fluxes at Uccle
Development of a fast radiative transfer model for ground-based microwave radiometers (ARMS-gb v1.0): validation and comparison to RTTOV-gb
Indian Institute of Tropical Meteorology (IITM) High-Resolution Global Forecast Model version 1: an attempt to resolve monsoon prediction deadlock
Cell-tracking-based framework for assessing nowcasting model skill in reproducing growth and decay of convective rainfall
NeuralMie (v1.0): an aerosol optics emulator
Simulation performance of planetary boundary layer schemes in WRF v4.3.1 for near-surface wind over the western Sichuan Basin: a single-site assessment
FootNet v1.0: development of a machine learning emulator of atmospheric transport
Updates and evaluation of NOAA's online-coupled air quality model version 7 (AQMv7) within the Unified Forecast System
Quantifying the analysis uncertainty for nowcasting application
Improving the ensemble square root filter (EnSRF) in the Community Inversion Framework: a case study with ICON-ART 2024.01
The MESSy DWARF (based on MESSy v2.55.2)
An enhanced emission module for the PALM model system 23.10 with application for PM10 emission from urban domestic heating
Identifying lightning processes in ERA5 soundings with deep learning
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
Explaining neural networks for detection of tropical cyclones and atmospheric rivers in gridded atmospheric simulation data
PALACE v1.0: Paranal Airglow Line And Continuum Emission model
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Forecasting contrail climate forcing for flight planning and air traffic management applications: the CocipGrid model in pycontrails 0.51.0
Simulation of the heat mitigation potential of unsealing measures in cities by parameterizing grass grid pavers for urban microclimate modelling with ENVI-met (V5)
AI-NAOS: an AI-based nonspherical aerosol optical scheme for the chemical weather model GRAPES_Meso5.1/CUACE
Orbital-Radar v1.0.0: a tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
The Modular and Integrated Data Assimilation System at Environment and Climate Change Canada (MIDAS v3.9.1)
A new set of indicators for model evaluation complementing to FAIRMODE’s MQO
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
Carbon dioxide plume dispersion simulated at hectometer scale using DALES: model formulation and observational evaluation
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
Observational operator for fair model evaluation with ground NO2 measurements
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
Development of the CMA-GFS-AERO 4D-Var assimilation system v1.0 – Part 1: System description
The third Met Office Unified Model-JULES Regional Atmosphere and Land Configuration, RAL3
Atmospheric moisture tracking with WAM2layers v3
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Johann Rasmus Nüß, Nikos Daskalakis, Fabian Günther Piwowarczyk, Angelos Gkouvousis, Oliver Schneising, Michael Buchwitz, Maria Kanakidou, Maarten C. Krol, and Mihalis Vrekoussis
Geosci. Model Dev., 18, 2861–2890, https://doi.org/10.5194/gmd-18-2861-2025, https://doi.org/10.5194/gmd-18-2861-2025, 2025
Short summary
Short summary
We estimate carbon monoxide emissions through inverse modeling, an approach where measurements of tracers in the atmosphere are fed to a model to calculate backwards in time (inverse) where the tracers came from. We introduce measurements from a new satellite instrument and show that, in most places globally, these on their own sufficiently constrain the emissions. This alleviates the need for additional datasets, which could shorten the delay for future carbon monoxide source estimates.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
Hilda Sandström and Patrick Rinke
Geosci. Model Dev., 18, 2701–2724, https://doi.org/10.5194/gmd-18-2701-2025, https://doi.org/10.5194/gmd-18-2701-2025, 2025
Short summary
Short summary
Machine learning has the potential to aid the identification of organic molecules involved in aerosol formation. Yet, progress is stalled by a lack of curated atmospheric molecular datasets. Here, we compared atmospheric compounds with large molecular datasets used in machine learning and found minimal overlap with similarity algorithms. Our result underlines the need for collaborative efforts to curate atmospheric molecular data to facilitate machine learning models in atmospheric sciences.
Juan Escobar, Philippe Wautelet, Joris Pianezze, Florian Pantillon, Thibaut Dauhut, Christelle Barthe, and Jean-Pierre Chaboureau
Geosci. Model Dev., 18, 2679–2700, https://doi.org/10.5194/gmd-18-2679-2025, https://doi.org/10.5194/gmd-18-2679-2025, 2025
Short summary
Short summary
The Meso-NH weather research code is adapted for GPUs using OpenACC, leading to significant performance and energy efficiency improvements. Called MESONH-v55-OpenACC, it includes enhanced memory management, communication optimizations and a new solver. On the AMD MI250X Adastra platform, it achieved up to 6× speedup and 2.3× energy efficiency gain compared to CPUs. Storm simulations at 100 m resolution show positive results, positioning the code for future use on exascale supercomputers.
Jie Gao, Yi Huang, Jonathon S. Wright, Ke Li, Tao Geng, and Qiurun Yu
Geosci. Model Dev., 18, 2569–2586, https://doi.org/10.5194/gmd-18-2569-2025, https://doi.org/10.5194/gmd-18-2569-2025, 2025
Short summary
Short summary
The aerosol in the upper troposphere and stratosphere is highly variable, and its radiative effect is poorly understood. To estimate this effect, the radiative kernel is constructed and applied. The results show that the kernels can reproduce aerosol radiative effects and are expected to simulate stratospheric aerosol radiative effects. This approach reduces computational expense, is consistent with radiative model calculations, and can be applied to atmospheric models with speed requirements.
Ji Won Yoon, Seungyeon Lee, Ebony Lee, and Seon Ki Park
Geosci. Model Dev., 18, 2303–2328, https://doi.org/10.5194/gmd-18-2303-2025, https://doi.org/10.5194/gmd-18-2303-2025, 2025
Short summary
Short summary
This study evaluates the Weather Research and Forecasting Model (WRF) coupled with Chemistry (WRF-Chem) to predict a mega Asian dust storm (ADS) over South Korea on 28–29 March 2021. We assessed combinations of five dust emission and four land surface schemes by analyzing meteorological and air quality variables. The best scheme combination reduced the root mean square error (RMSE) for particulate matter 10 (PM10) by up to 29.6 %, demonstrating the highest performance.
Jianyu Lin, Tie Dai, Lifang Sheng, Weihang Zhang, Shangfei Hai, and Yawen Kong
Geosci. Model Dev., 18, 2231–2248, https://doi.org/10.5194/gmd-18-2231-2025, https://doi.org/10.5194/gmd-18-2231-2025, 2025
Short summary
Short summary
The effectiveness of this assimilation system and its sensitivity to the ensemble member size and length of the assimilation window are investigated. This study advances our understanding of the selection of basic parameters in the four-dimensional local ensemble transform Kalman filter assimilation system and the performance of ensemble simulation in a particulate-matter-polluted environment.
Jens Peter Karolus Wenceslaus Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers
Geosci. Model Dev., 18, 1989–2003, https://doi.org/10.5194/gmd-18-1989-2025, https://doi.org/10.5194/gmd-18-1989-2025, 2025
Short summary
Short summary
To detect anomalous radioactivity in the environment, it is paramount that we understand the natural background level. In this work, we propose a statistical model to describe the most likely background level and the associated uncertainty in a network of dose rate detectors. We train, verify, and validate the model using real environmental data. Using the model, we show that we can correctly predict the background level in a subset of the detector network during a known
anomalous event.
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025, https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Short summary
The MAR (Modèle Régional Atmosphérique) is a regional climate model used for weather forecasting and studying the climate over various regions. This paper presents an update of MAR thanks to which it can precisely decompose solar radiation, in particular in the UV (ultraviolet) and photosynthesis ranges, both being critical to human health and ecosystems. As a first application of this new capability, this paper presents a method for predicting UV indices with MAR.
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
Geosci. Model Dev., 18, 1947–1964, https://doi.org/10.5194/gmd-18-1947-2025, https://doi.org/10.5194/gmd-18-1947-2025, 2025
Short summary
Short summary
Direct assimilation of observations from ground-based microwave radiometers (GMRs) holds significant potential for improving forecast accuracy. Radiative transfer models (RTMs) play a crucial role in direct data assimilation. In this study, we introduce a new RTM, the Advanced Radiative Transfer Modeling System – Ground-Based (ARMS-gb), designed to simulate brightness temperatures observed by GMRs along with their Jacobians. Several enhancements have been incorporated to achieve higher accuracy.
R. Phani Murali Krishna, Siddharth Kumar, A. Gopinathan Prajeesh, Peter Bechtold, Nils Wedi, Kumar Roy, Malay Ganai, B. Revanth Reddy, Snehlata Tirkey, Tanmoy Goswami, Radhika Kanase, Sahadat Sarkar, Medha Deshpande, and Parthasarathi Mukhopadhyay
Geosci. Model Dev., 18, 1879–1894, https://doi.org/10.5194/gmd-18-1879-2025, https://doi.org/10.5194/gmd-18-1879-2025, 2025
Short summary
Short summary
The High-Resolution Global Forecast Model (HGFM) is an advanced iteration of the operational Global Forecast System (GFS) model. HGFM can produce forecasts at a spatial scale of ~6 km in tropics. It demonstrates improved accuracy in short- to medium-range weather prediction over the Indian region, with notable success in predicting extreme events. Further, the model will be entrusted to operational forecasting agencies after validation and testing.
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev., 18, 1851–1878, https://doi.org/10.5194/gmd-18-1851-2025, https://doi.org/10.5194/gmd-18-1851-2025, 2025
Short summary
Short summary
Nowcasting models struggle with the rapid evolution of heavy rain, and common verification methods are unable to describe how accurately the models predict the growth and decay of heavy rain. We propose a framework to assess model performance. In the framework, convective cells are identified and tracked in the forecasts and observations, and the model skill is then evaluated by comparing differences between forecast and observed cells. We demonstrate the framework with four open-source models.
Andrew Geiss and Po-Lun Ma
Geosci. Model Dev., 18, 1809–1827, https://doi.org/10.5194/gmd-18-1809-2025, https://doi.org/10.5194/gmd-18-1809-2025, 2025
Short summary
Short summary
Particles in the Earth's atmosphere strongly impact the planet's energy budget, and atmosphere simulations require accurate representation of their interaction with light. This work introduces two approaches to represent light scattering by small particles. The first is a scattering simulator based on Mie theory implemented in Python. The second is a neural network emulator that is more accurate than existing methods and is fast enough to be used in climate and weather simulations.
Qin Wang, Bo Zeng, Gong Chen, and Yaoting Li
Geosci. Model Dev., 18, 1769–1784, https://doi.org/10.5194/gmd-18-1769-2025, https://doi.org/10.5194/gmd-18-1769-2025, 2025
Short summary
Short summary
This study evaluates the performance of four planetary boundary layer (PBL) schemes in near-surface wind fields over the Sichuan Basin, China. Using 112 sensitivity experiments with the Weather Research and Forecasting (WRF) model and focusing on 28 wind events, it is found that wind direction was less sensitive to the PBL schemes. The quasi-normal scale elimination (QNSE) scheme captured temporal variations best, while the Mellor–Yamada–Janjić (MYJ) scheme had the least error in wind speed.
Tai-Long He, Nikhil Dadheech, Tammy M. Thompson, and Alexander J. Turner
Geosci. Model Dev., 18, 1661–1671, https://doi.org/10.5194/gmd-18-1661-2025, https://doi.org/10.5194/gmd-18-1661-2025, 2025
Short summary
Short summary
It is computationally expensive to infer greenhouse gas (GHG) emissions using atmospheric observations. This is partly due to the detailed model used to represent atmospheric transport. We demonstrate how a machine learning (ML) model can be used to simulate high-resolution atmospheric transport. This type of ML model will help estimate GHG emissions using dense observations, which are becoming increasingly common with the proliferation of urban monitoring networks and geostationary satellites.
Wei Li, Beiming Tang, Patrick C. Campbell, Youhua Tang, Barry Baker, Zachary Moon, Daniel Tong, Jianping Huang, Kai Wang, Ivanka Stajner, and Raffaele Montuoro
Geosci. Model Dev., 18, 1635–1660, https://doi.org/10.5194/gmd-18-1635-2025, https://doi.org/10.5194/gmd-18-1635-2025, 2025
Short summary
Short summary
The study describes the updates of NOAA's current UFS-AQMv7 air quality forecast model by incorporating the latest scientific and structural changes in CMAQv5.4. An evaluation during the summer of 2023 shows that the updated model overall improves the simulation of MDA8 O3 by reducing the bias by 8%–12% in the contiguous US. PM2.5 predictions have mixed results due to wildfire, highlighting the need for future refinements.
Yanwei Zhu, Aitor Atencia, Markus Dabernig, and Yong Wang
Geosci. Model Dev., 18, 1545–1559, https://doi.org/10.5194/gmd-18-1545-2025, https://doi.org/10.5194/gmd-18-1545-2025, 2025
Short summary
Short summary
Most works have delved into convective weather nowcasting, and only a few works have discussed the nowcasting uncertainty for variables at the surface level. Hence, we proposed a method to estimate uncertainty. Generating appropriate noises associated with the characteristic of the error in analysis can simulate the uncertainty of nowcasting. This method can contribute to the estimation of near–surface analysis uncertainty in both nowcasting applications and ensemble nowcasting development.
Joël Thanwerdas, Antoine Berchet, Lionel Constantin, Aki Tsuruta, Michael Steiner, Friedemann Reum, Stephan Henne, and Dominik Brunner
Geosci. Model Dev., 18, 1505–1544, https://doi.org/10.5194/gmd-18-1505-2025, https://doi.org/10.5194/gmd-18-1505-2025, 2025
Short summary
Short summary
The Community Inversion Framework (CIF) brings together methods for estimating greenhouse gas fluxes from atmospheric observations. The initial ensemble method implemented in CIF was found to be incomplete and could hardly be compared to other ensemble methods employed in the inversion community. In this paper, we present and evaluate a new implementation of the ensemble mode, building upon the initial developments.
Astrid Kerkweg, Timo Kirfel, Duong H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev., 18, 1265–1286, https://doi.org/10.5194/gmd-18-1265-2025, https://doi.org/10.5194/gmd-18-1265-2025, 2025
Short summary
Short summary
Normally, the Modular Earth Submodel System (MESSy) is linked to complete dynamic models to create chemical climate models. However, the modular concept of MESSy and the newly developed DWARF component presented here make it possible to create simplified models that contain only one or a few process descriptions. This is very useful for technical optimisation, such as porting to GPUs, and can be used to create less complex models, such as a chemical box model.
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025, https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Short summary
An enhanced emission module has been developed for the PALM model system, improving flexibility and scalability of emission source representation across different sectors. A model for parametrized domestic emissions has also been included, for which an idealized model run is conducted for particulate matter (PM10). The results show that, in addition to individual sources and diurnal variations in energy consumption, vertical transport and urban topology play a role in concentration distribution.
Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell
Geosci. Model Dev., 18, 1141–1153, https://doi.org/10.5194/gmd-18-1141-2025, https://doi.org/10.5194/gmd-18-1141-2025, 2025
Short summary
Short summary
As lightning is a brief and localized event, it is not explicitly resolved in atmospheric models. Instead, expert-based auxiliary descriptions are used to assess it. This study explores how AI can improve our understanding of lightning without relying on traditional expert knowledge. We reveal that AI independently identified the key factors known to experts as essential for lightning in the Alps region. This shows how knowledge discovery could be sped up in areas with limited expert knowledge.
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev., 18, 1103–1118, https://doi.org/10.5194/gmd-18-1103-2025, https://doi.org/10.5194/gmd-18-1103-2025, 2025
Short summary
Short summary
The effect of the assumed atmospheric nucleation mechanism on particle number concentrations and size distribution was investigated. Two quite different mechanisms involving sulfuric acid and ammonia or a biogenic organic vapor gave quite similar results which were consistent with measurements at 26 measurement stations across Europe. The number of larger particles that serve as cloud condensation nuclei showed little sensitivity to the assumed nucleation mechanism.
Tim Radke, Susanne Fuchs, Christian Wilms, Iuliia Polkova, and Marc Rautenhaus
Geosci. Model Dev., 18, 1017–1039, https://doi.org/10.5194/gmd-18-1017-2025, https://doi.org/10.5194/gmd-18-1017-2025, 2025
Short summary
Short summary
In our study, we built upon previous work to investigate the patterns artificial intelligence (AI) learns to detect atmospheric features like tropical cyclones (TCs) and atmospheric rivers (ARs). As primary objective, we adopt a method to explain the AI used and investigate the plausibility of learned patterns. We find that plausible patterns are learned for both TCs and ARs. Hence, the chosen method is very useful for gaining confidence in the AI-based detection of atmospheric features.
Stefan Noll, Carsten Schmidt, Patrick Hannawald, Wolfgang Kausch, and Stefan Kimeswenger
EGUsphere, https://doi.org/10.5194/egusphere-2024-3512, https://doi.org/10.5194/egusphere-2024-3512, 2025
Short summary
Short summary
Non-thermal emission from chemical reactions in the Earth's middle und upper atmosphere strongly contributes to the brightness of the night sky below about 2.3 µm. The new Paranal Airglow Line and Continuum Emission model calculates the emission spectrum and its variability with an unprecedented accuracy. Relying on a large spectroscopic data set from astronomical spectrographs and theoretical molecular/atomic data, it is valuable for airglow research and astronomical observatories.
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025, https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary
Short summary
We tested the capability of the flux divergence approach (FDA) to reproduce known NOx emissions using synthetic NO2 satellite column retrievals from high-resolution model simulations. The FDA accurately reproduced NOx emissions when column observations were limited to the boundary layer and when the variability of the NO2 lifetime, the NOx : NO2 ratio, and NO2 profile shapes were correctly modeled. This introduces strong model dependency, reducing the simplicity of the original FDA formulation.
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025, https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Short summary
We explore a high-level programming model for porting numerical weather prediction (NWP) model codes to graphics processing units (GPUs). We present a Python rewrite with the domain-specific library GT4Py (GridTools for Python) of two renowned cloud microphysics schemes and the associated tangent-linear and adjoint algorithms. We find excellent portability, competitive GPU performance, robust execution on diverse computing architectures, and enhanced code maintainability and user productivity.
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025, https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
Short summary
Clustering high-resolution satellite observations into superobservations improves model validation and data assimilation applications. In our paper, we derive quantitative uncertainties for satellite NO2 column observations based on knowledge of the retrievals, including a detailed analysis of spatial error correlations and representativity errors. The superobservations and uncertainty estimates are tested in a global chemical data assimilation system and are found to improve the forecasts.
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025, https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Short summary
This paper presents the Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool (ML-AMPSIT), a computationally efficient tool that uses machine learning algorithms for sensitivity analysis in atmospheric models. It is tested with the Weather Research and Forecasting (WRF) model coupled with the Noah-Multiparameterization (Noah-MP) land surface model to investigate sea breeze circulation sensitivity to vegetation-related parameters.
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025, https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary
Short summary
Radiation is relevant to the atmospheric impact on people and infrastructure in cities as it can influence the urban heat island, building energy consumption, and human thermal comfort. A new urban radiation model, assuming a more realistic form of urban morphology, is coupled to the urban climate model Town Energy Balance (TEB). The new TEB is evaluated with a reference radiation model for a variety of urban morphologies, and an improvement in the simulated radiative observables is found.
Zebediah Engberg, Roger Teoh, Tristan Abbott, Thomas Dean, Marc E. J. Stettler, and Marc L. Shapiro
Geosci. Model Dev., 18, 253–286, https://doi.org/10.5194/gmd-18-253-2025, https://doi.org/10.5194/gmd-18-253-2025, 2025
Short summary
Short summary
Contrails forming in some atmospheric conditions may persist and become strongly warming cirrus, while in other conditions may be neutral or cooling. We develop a contrail forecast model to predict contrail climate forcing for any arbitrary point in space and time and explore integration into flight planning and air traffic management. This approach enables contrail interventions to target high-probability high-climate-impact regions and reduce unintended consequences of contrail management.
Nils Eingrüber, Alina Domm, Wolfgang Korres, and Karl Schneider
Geosci. Model Dev., 18, 141–160, https://doi.org/10.5194/gmd-18-141-2025, https://doi.org/10.5194/gmd-18-141-2025, 2025
Short summary
Short summary
Climate change adaptation measures like unsealings can reduce urban heat stress. As grass grid pavers have never been parameterized for microclimate model simulations with ENVI-met, a new parameterization was developed based on field measurements. To analyse the cooling potential, scenario analyses were performed for a densely developed area in Cologne. Statistically significant average cooling effects of up to −11.1 K were found for surface temperature and up to −2.9 K for 1 m air temperature.
Xuan Wang, Lei Bi, Hong Wang, Yaqiang Wang, Wei Han, Xueshun Shen, and Xiaoye Zhang
Geosci. Model Dev., 18, 117–139, https://doi.org/10.5194/gmd-18-117-2025, https://doi.org/10.5194/gmd-18-117-2025, 2025
Short summary
Short summary
The Artificial-Intelligence-based Nonspherical Aerosol Optical Scheme (AI-NAOS) was developed to improve the estimation of the aerosol direct radiation effect and was coupled online with a chemical weather model. The AI-NAOS scheme considers black carbon as fractal aggregates and soil dust as super-spheroids, encapsulated with hygroscopic aerosols. Real-case simulations emphasize the necessity of accurately representing nonspherical and inhomogeneous aerosols in chemical weather models.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev., 18, 101–115, https://doi.org/10.5194/gmd-18-101-2025, https://doi.org/10.5194/gmd-18-101-2025, 2025
Short summary
Short summary
The Python tool Orbital-Radar transfers suborbital radar data (ground-based, airborne, and forward-simulated numerical weather prediction model) into synthetic spaceborne cloud profiling radar data, mimicking platform-specific instrument characteristics, e.g. EarthCARE or CloudSat. The tool's novelty lies in simulating characteristic errors and instrument noise. Thus, existing data sets are transferred into synthetic observations and can be used for satellite calibration–validation studies.
Mark Buehner, Jean-Francois Caron, Ervig Lapalme, Alain Caya, Ping Du, Yves Rochon, Sergey Skachko, Maziar Bani Shahabadi, Sylvain Heilliette, Martin Deshaies-Jacques, Weiguang Chang, and Michael Sitwell
Geosci. Model Dev., 18, 1–18, https://doi.org/10.5194/gmd-18-1-2025, https://doi.org/10.5194/gmd-18-1-2025, 2025
Short summary
Short summary
The Modular and Integrated Data Assimilation System (MIDAS) software is described. The flexible design of MIDAS enables both deterministic and ensemble prediction applications for the atmosphere and several other Earth system components. It is currently used for all main operational weather prediction systems in Canada and also for sea ice and sea surface temperature analysis. The use of MIDAS for multiple Earth system components will facilitate future research on coupled data assimilation.
Alexander de Meij, Cornelis Cuvelier, Philippe Thunis, and Enrico Pisoni
EGUsphere, https://doi.org/10.5194/egusphere-2024-3690, https://doi.org/10.5194/egusphere-2024-3690, 2025
Short summary
Short summary
We assess the relevance and utility indicators developed within FAIRMODE by evaluating 9 CAMS models in calculated air pollutant values. For NO2, the results highlight difficulties at traffic stations. For PM2.5 and PM10 the bias and Winter-Summer gradients reveal issues. O3 evaluation shows that e.g. seasonal gradients are useful. Overall, the indicators provide valuable insights into model limitations, yet there is a need to reconsider the strictness of some indicators for certain pollutants.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024, https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can reproduce PAH distribution well. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change in BaP is lower than that in PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although the Action Plan has been implemented.
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024, https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
Short summary
We have developed a complete two-moment version of the LIMA (Liquid Ice Multiple Aerosols) microphysics scheme. We have focused on collection processes, where the hydrometeor number transfer is often estimated in proportion to the mass transfer. The impact of these parameterizations on a convective system and the prospects for more realistic estimates of secondary parameters (reflectivity, hydrometeor size) are shown in a first test on an idealized case.
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024, https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
Short summary
A new parameterisation for dynamic anthropogenic heat and electricity consumption is described. The model reproduced the temporal variation in and spatial distributions of electricity consumption and temperature well in summer and winter. The partial air conditioning was the most critical factor, significantly affecting the value of anthropogenic heat emission.
Arseniy Karagodin-Doyennel, Fredrik Jansson, Bart van Stratum, Hugo Denier van der Gon, Jordi Vilà-Guerau de Arellano, and Sander Houweling
EGUsphere, https://doi.org/10.5194/egusphere-2024-3721, https://doi.org/10.5194/egusphere-2024-3721, 2024
Short summary
Short summary
We introduce a new simulation platform based on the Dutch Large-Eddy Simulation (DALES) to simulate carbon dioxide (CO2) emissions and their dispersion in the turbulent environments with hectometer resolution. This model incorporates both anthropogenic emission inventory and ecosystem exchanges. Simulation results for the main urban area in the Netherlands demonstrate a strong potential of DALES to enhance CO2 emission modeling, which is important for refining their reduction strategies.
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024, https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Short summary
To accurately characterize the spatiotemporal distribution of particulate matter <2.5 µm chemical components, we developed the Nested Air Quality Prediction Model System with the Parallel Data Assimilation Framework (NAQPMS-PDAF) v2.0 for chemical components with non-Gaussian and nonlinear properties. NAQPMS-PDAF v2.0 has better computing efficiency, excels when used with a small ensemble size, and can significantly improve the simulation performance of chemical components.
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024, https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Short summary
Chemical transport model simulations are combined with ozone observations to estimate the bias in ozone attributable to US anthropogenic sources and individual sources of US background ozone: natural sources, non-US anthropogenic sources, and stratospheric ozone. Results indicate a positive bias correlated with US anthropogenic emissions during summer in the eastern US and a negative bias correlated with stratospheric ozone during spring.
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024, https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Short summary
Model evaluations against ground observations are usually unfair. The former simulates mean status over coarse grids and the latter the surrounding atmosphere. To solve this, we proposed the new land-use-based representative (LUBR) operator that considers intra-grid variance. The LUBR operator is validated to provide insights that align with satellite measurements. The results highlight the importance of considering fine-scale urban–rural differences when comparing models and observation.
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024, https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
Short summary
The ensemble Kalman filter (EnKF) improves dust storm forecasts but faces challenges with position errors. The valid time shifting EnKF (VTS-EnKF) addresses this by adjusting for position errors, enhancing accuracy in forecasting dust storms, as proven in tests on 2021 events, even with smaller ensembles and time intervals.
Yongzhu Liu, Xiaoye Zhang, Wei Han, Chao Wang, Wenxing Jia, Deying Wang, Zhaorong Zhuang, and Xueshun Shen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-148, https://doi.org/10.5194/gmd-2024-148, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
In order to investigate the feedbacks of chemical data assimilation on meteorological forecasts, we developed a strongly coupled chemistry meteorology four-dimensional variational (4D-Var) assimilation system, CMA-GFS-AERO 4D-Var, based on the framework of the incremental analysis scheme of the CMA-GFS operational global numerical weather model. The results show that assimilating BC observations can generate analysis increments not only for BC but also for atmospheric variables.
Mike Bush, David L. A. Flack, Huw W. Lewis, Sylvia I. Bohnenstengel, Chris J. Short, Charmaine Franklin, Adrian P. Lock, Martin Best, Paul Field, Anne McCabe, Kwinten Van Weverberg, Segolene Berthou, Ian Boutle, Jennifer K. Brooke, Seb Cole, Shaun Cooper, Gareth Dow, John Edwards, Anke Finnenkoetter, Kalli Furtado, Kate Halladay, Kirsty Hanley, Margaret A. Hendry, Adrian Hill, Aravindakshan Jayakumar, Richard W. Jones, Humphrey Lean, Joshua C. K. Lee, Andy Malcolm, Marion Mittermaier, Saji Mohandas, Stuart Moore, Cyril Morcrette, Rachel North, Aurore Porson, Susan Rennie, Nigel Roberts, Belinda Roux, Claudio Sanchez, Chun-Hsu Su, Simon Tucker, Simon Vosper, David Walters, James Warner, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Michael Whitall, Keith D. Williams, and Hugh Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-201, https://doi.org/10.5194/gmd-2024-201, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
RAL configurations define settings for the Unified Model atmosphere and Joint UK Land Environment Simulator. The third version of the Regional Atmosphere and Land (RAL3) science configuration for kilometre and sub-km scale modelling represents a major advance compared to previous versions (RAL2) by delivering a common science definition for applications in tropical and mid-latitude regions. RAL3 has more realistic precipitation distributions and improved representation of clouds and visibility.
Peter Kalverla, Imme Benedict, Chris Weijenborg, and Ruud J. van der Ent
EGUsphere, https://doi.org/10.5194/egusphere-2024-3401, https://doi.org/10.5194/egusphere-2024-3401, 2024
Short summary
Short summary
We introduce a new version of WAM2layers, a computer program that tracks how the weather brings water from one place to another. It uses data from weather and climate models, whose resolution is steadily increasing. Processing the latest data became a challenge, and the updates presented here ensure that WAM2layers runs smoothly again. We also made it easier to use the program and to understand its source code. This makes it more transparent and reliable, and easier to maintain.
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Cited articles
Alam, M. K.: The effect of van der Waals and viscous forces on aerosol coagulation, Aerosol Sci. Tech., 6, 41–52, https://doi.org/10.1080/02786828708959118, 1987. a, b, c
Brooks, S., Gelman, A., Jones, G., and Meng, X.-L.: Handbook of Markov Chain Monte Carlo, CRC press, https://doi.org/10.1201/b10905, 2011. a
Commission Regulation (EU): 2019/1939 of 7 November 2019 amending Regulation (EU) No 582/2011 as regards Auxiliary Emission Strategies (AES), access to vehicle OBD information and vehicle repair and maintenance information, measurement of emissions during cold engine start periods and use of portable emissions measurement systems (PEMS) to measure particle numbers, with respect to heavy duty vehicles (Text with EEA relevance), https://eur-lex.europa.eu/eli/reg/2019/1939/oj (last access: 20 June 2024), 2019. a
Gelbard, F., Tambour, Y., and Seinfeld, J. H.: Sectional representations for simulating aerosol dynamics, J. Colloid. Interf. Sci., 76, 541–556, https://doi.org/10.1016/0021-9797(80)90394-x, 1980. a
Giechaskiel, B., Arndt, M., Schindler, W., Bergmann, A., Silvis, W., and Drossinos, Y.: Sampling of non-volatile vehicle exhaust particles: a simplified guide, SAE International Journal of Engines, 5, 379–399, https://doi.org/10.4271/2012-01-0443, 2012. a
Giechaskiel, B., Casadei, S., Mazzini, M., Sammarco, M., Montabone, G., Tonelli, R., Deana, M., Costi, G., Di Tanno, F., Prati, M., Clairotte, M., and Di Domenico, A.: Inter-laboratory correlation exercise with Portable Emissions Measurement Systems (PEMS) on chassis dynamometers, Appl. Sci.-Basel, 8, 2275, https://doi.org/10.3390/app8112275, 2018. a
Giechaskiel, B., Lähde, T., Schwelberger, M., Kleinbach, T., Roske, H., Teti, E., van den Bos, T., Neils, P., Delacroix, C., Jakobsson, T., and Lu Karlsson, H.: Particle number measurements directly from the tailpipe for type approval of heavy-duty engines, Appl. Sci.-Basel, 9, 4418, https://doi.org/10.3390/app9204418, 2019. a
Giechaskiel, B., Lähde, T., Melas, A. D., Valverde, V., and Clairotte, M.: Uncertainty of laboratory and portable solid particle number systems for regulatory measurements of vehicle emissions, Environ. Res., 197, 111068, https://doi.org/10.1016/j.envres.2021.111068, 2021a. a
Giechaskiel, B., Melas, A., Martini, G., and Dilara, P.: Overview of vehicle exhaust particle number regulations, Processes, 9, 2216, https://doi.org/10.3390/pr9122216, 2021b. a, b, c
Giechaskiel, B., Melas, A., Broekaert, S., Gioria, R., and Suarez-Bertoa, R.: Solid Particle Number (SPN) Portable Emission Measurement Systems (PEMS) for heavy-duty applications, Appl. Sci.-Basel, 14, 654, https://doi.org/10.3390/app14020654, 2024. a
Haario, H., Saksman, E., and Tamminen, J.: An adaptive Metropolis algorithm, Bernoulli, 7, 223–242, https://doi.org/10.2307/3318737, 2001. a
Hering, S. V., Stolzenburg, M. R., Quant, F. R., Oberreit, D. R., and Keady, P. B.: A laminar-flow, Water-Based Condensation Particle Counter (WCPC), Aerosol Sci. Tech., 39, 659–672, https://doi.org/10.1080/02786820500182123, 2005. a
Hofman, J., Staelens, J., Cordell, R., Stroobants, C., Zikova, N., Hama, S., Wyche, K., Kos, G., Van Der Zee, S., Smallbone, K., Weijers, E., Monks, P., and Roekens, E.: Ultrafine particles in four European urban environments: results from a new continuous long-term monitoring network, Atmos. Environ., 136, 68–81, https://doi.org/10.1016/j.atmosenv.2016.04.010, 2016. a
Hussein, T., Smolik, J., Kerminen, V.-M., and Kulmala, M.: Modeling dry deposition of aerosol particles onto rough surfaces, Aerosol Sci. Tech., 46, 44–59, https://doi.org/10.1080/02786826.2011.605814, 2012. a
Jacobson, M. Z. and Seinfeld, J. H.: Evolution of nanoparticle size and mixing state near the point of emission, Atmos. Environ., 38, 1839–1850, https://doi.org/10.1016/j.atmosenv.2004.01.014, 2004. a, b
Jacobson, M. Z., Turco, R. P., Jensen, E. J., and Toon, O. B.: Modeling coagulation among particles of different composition and size, Atmos. Environ., 28, 1327–1338, https://doi.org/10.1016/1352-2310(94)90280-1, 1994. a
Kahn, R. A., Andrews, E., Brock, C. A., Chin, M., Feingold, G., Gettelman, A., Levy, R. C., Murphy, D. M., Nenes, A., Pierce, J. R., Popp, T., Redemann, J., Sayer, A. M., da Silva, A. M., Sogacheva, L., and Stier, P.: Reducing aerosol forcing uncertainty by combining models with satellite and within the atmosphere observations: a three way street, Rev. Geophys., 61, 1–27, https://doi.org/10.1029/2022rg000796, 2023. a
Kaipio, J. and Kolehmainen, V.: Approximate marginalization over modeling errors and uncertainties in inverse problems, Bayesian Theory and Applications, Oxford University Press, 644–672, https://doi.org/10.1093/acprof:oso/9780199695607.003.0032, 2013. a
Kaipio, J. and Somersalo, E.: Statistical inverse problems: discretization, model reduction and inverse crimes, J. Comput. Appl. Math., 198, 493–504, https://doi.org/10.1016/j.cam.2005.09.027, 2007. a
Kwon, H.-S., Ryu, M. H., and Carlsten, C.: Ultrafine particles: unique physicochemical properties relevant to health and disease, Exp. Mol. Med., 52, 318–328, https://doi.org/10.1038/s12276-020-0405-1, 2020. a, b
Lapuerta, M., Barba, J., Sediako, A. D., Kholghy, M. R., and Thomson, M. J.: Morphological analysis of soot agglomerates from biodiesel surrogates in a coflow burner, J. Aerosol Sci., 111, 65–74, https://doi.org/10.1016/j.jaerosci.2017.06.004, 2017. a
Lehtinen, K. E. and Zachariah, M. R.: Self-preserving theory for the volume distribution of particles undergoing brownian coagulation, J. Colloid. Interf. Sci., 242, 314–318, https://doi.org/10.1006/jcis.2001.7791, 2001. a
Lieberman, C., Willcox, K., and Ghattas, O.: Parameter and state model reduction for large-scale statistical inverse problems, SIAM J. Sci. Comput., 32, 2523–2542, https://doi.org/10.1137/090775622, 2010. a
Liu, H., Yu, Y., Wang, C., Xu, H., and Ma, X.: Brownian coagulation of particles in the gasoline engine exhaust system: experimental measurement and Monte Carlo simulation, Fuel, 303, 121340, https://doi.org/10.1016/j.fuel.2021.121340, 2021. a
Liu, Y., Song, C., Lv, G., Chen, N., Zhou, H., and Jing, X.: Determination of the attractive force, adhesive force, adhesion energy and Hamaker constant of soot particles generated from a premixed methane/oxygen flame by AFM, Appl. Surf. Sci., 433, 450–457, https://doi.org/10.1016/j.apsusc.2017.10.030, 2018. a
MacKay, D. J. C.: Information theory, inference and learning algorithms, chap. 27, Cambridge university press, ISBN 9780521642989, 2003. a
Mahfouz, N. G. A. and Donahue, N. M.: Primary ion diffusion charging and particle wall loss in smog chamber experiments, Aerosol Sci. Tech., 54, 1058–1069, https://doi.org/10.1080/02786826.2020.1757032, 2020. a
Mahfouz, N. G. A. and Donahue, N. M.: Atmospheric nanoparticle survivability reduction due to charge induced coagulation scavenging enhancement, Geophys. Res. Lett., 48, 1–9, https://doi.org/10.1029/2021gl092758, 2021a. a
Mahfouz, N. G. A. and Donahue, N. M.: Technical note: The enhancement limit of coagulation scavenging of small charged particles, Atmos. Chem. Phys., 21, 3827–3832, https://doi.org/10.5194/acp-21-3827-2021, 2021. a
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., and Bezirtzoglou, E.: Environmental and health impacts of air pollution: a review, Frontiers in Public Health, 8, 1–13, https://doi.org/10.3389/fpubh.2020.00014, 2020. a
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.: Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 1087–1092, https://doi.org/10.1063/1.1699114, 1953. a
Mirme, A., Tamm, E., Mordas, G., Vana, M., Uin, J., Mirme, S., Bernotas, T., Laakso, L., Hirsikko, A., and Kulmala, M.: A wide-range multi-channel Air lon Spectrometer, Boreal Environ. Res., 12, 2007. a
Mirme, S. and Mirme, A.: The mathematical principles and design of the NAIS – a spectrometer for the measurement of cluster ion and nanometer aerosol size distributions, Atmos. Meas. Tech., 6, 1061–1071, https://doi.org/10.5194/amt-6-1061-2013, 2013. a
Morawska, L. and Buonanno, G.: The physics of particle formation and deposition during breathing, Nature Reviews Physics, 3, 300–301, https://doi.org/10.1038/s42254-021-00307-4, 2021. a
Oikarinen, H., Olin, M., Martikainen, S., Leinonen, V., Mikkonen, S., and Karjalainen, P.: Particle number, mass, and black carbon emissions from fuel-operated auxiliary heaters in real vehicle use, Atmospheric Environment: X, 16, 100189, https://doi.org/10.1016/j.aeaoa.2022.100189, 2022. a, b, c, d, e, f, g
Okuyama, K., Kousaka, Y., and Yoshida, T.: Turbulent coagulation of aerosols in a pipe flow, J. Aerosol Sci., 9, 399–410, https://doi.org/10.1016/0021-8502(78)90002-2, 1978. a
Park, K., Cao, F., Kittelson, D. B., and McMurry, P. H.: Relationship between particle mass and mobility for Diesel exhaust particles, Environ. Sci. Technol., 37, 577–583, https://doi.org/10.1021/es025960v, 2003. a, b
Pfeifer, J., Mahfouz, N. G. A., Schulze, B. C., Mathot, S., Stolzenburg, D., Baalbaki, R., Brasseur, Z., Caudillo, L., Dada, L., Granzin, M., He, X.-C., Lamkaddam, H., Lopez, B., Makhmutov, V., Marten, R., Mentler, B., Müller, T., Onnela, A., Philippov, M., Piedehierro, A. A., Rörup, B., Schervish, M., Tian, P., Umo, N. S., Wang, D. S., Wang, M., Weber, S. K., Welti, A., Wu, Y., Zauner-Wieczorek, M., Amorim, A., El Haddad, I., Kulmala, M., Lehtipalo, K., Petäjä, T., Tomé, A., Mirme, S., Manninen, H. E., Donahue, N. M., Flagan, R. C., Kürten, A., Curtius, J., and Kirkby, J.: Measurement of the collision rate coefficients between atmospheric ions and multiply charged aerosol particles in the CERN CLOUD chamber, Atmos. Chem. Phys., 23, 6703–6718, https://doi.org/10.5194/acp-23-6703-2023, 2023. a
Roberts, G. O. and Tweedie, R. L.: Exponential convergence of Langevin distributions and their discrete approximations, Bernoulli, 2, 341, https://doi.org/10.2307/3318418, 1996. a
Salminen, T., Lehtinen, K. E., Kaipio, J. P., Russell, V., and Seppänen, A.: Application of finite element method to general dynamic equation of aerosols – comparison with classical numerical approximations, J. Aerosol Sci., 160, 105902, https://doi.org/10.1016/j.jaerosci.2021.105902, 2022. a
Schriefl, M. A., Bergmann, A., and Fierz, M.: Design principles for sensing particle number concentration and mean particle size with unipolar diffusion charging, IEEE Sens. J., 19, 1392–1399, https://doi.org/10.1109/jsen.2018.2880278, 2019. a
Shimada, M., Okuyama, K., Kousaka, Y., and Ohshima, K.: Turbulent and brownian diffusive deposition of aerosol particles onto a rough wall, J. Chem. Eng. Jpn., 20, 57–64, https://doi.org/10.1252/jcej.20.57, 1987. a
Shiraiwa, M., Ueda, K., Pozzer, A., Lammel, G., Kampf, C. J., Fushimi, A., Enami, S., Arangio, A. M., Fröhlich-Nowoisky, J., Fujitani, Y., Furuyama, A., Lakey, P. S. J., Lelieveld, J., Lucas, K., Morino, Y., Pöschl, U., Takahama, S., Takami, A., Tong, H., Weber, B., Yoshino, A., and Sato, K.: Aerosol health effects from molecular to global scales, Environ. Sci. Technol., 51, 13545–13567, https://doi.org/10.1021/acs.est.7b04417, 2017. a
Thomas, A. E., Bauer, P. S., Dam, M., Perraud, V., Wingen, L. M., and Smith, J. N.: Automotive braking is a source of highly charged aerosol particles, P. Natl. Acad. Sci. USA, 121, 1–7, https://doi.org/10.1073/pnas.2313897121, 2024. a
TSI: Engine Exhaust Particle Sizer (EEPS) spectrometer model 3090 operation and service manual, TSI Incorporated, USA, J edn., p/N 1980494, 2015. a
TSI: Engine Exhaust Particle Sizer (EEPS) 3090, https://tsi.com/engine-exhaust-particle-sizer-spectrometer-3090/, last access: 12 April 2024. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Wang, X., Grose, M. A., Avenido, A., Stolzenburg, M. R., Caldow, R., Osmondson, B. L., Chow, J. C., and Watson, J. G.: Improvement of Engine Exhaust Particle Sizer (EEPS) size distribution measurement – I. Algorithm and applications to compact-shape particles, J. Aerosol Sci., 92, 95–108, https://doi.org/10.1016/j.jaerosci.2015.11.002, 2016a. a, b, c
Wang, X., Grose, M. A., Caldow, R., Osmondson, B. L., Swanson, J. J., Chow, J. C., Watson, J. G., Kittelson, D. B., Li, Y., Xue, J., Jung, H., and Hu, S.: Improvement of Engine Exhaust Particle Sizer (EEPS) size distribution measurement – II. Engine exhaust particles, J. Aerosol Sci., 92, 83–94, https://doi.org/10.1016/j.jaerosci.2015.11.003, 2016b. a
Wentzel, M., Gorzawski, H., Naumann, K.-H., Saathoff, H., and Weinbruch, S.: Transmission electron microscopical and aerosol dynamical characterization of soot aerosols, J. Aerosol Sci., 34, 1347–1370, https://doi.org/10.1016/s0021-8502(03)00360-4, 2003. a
Williams, J. and Crane, R.: Particle collision rate in turbulent flow, Int. J. Multiphas. Flow, 9, 421–435, https://doi.org/10.1016/0301-9322(83)90098-8, 1983. a
Zhao, Y., Yang, W., Song, X., Jiang, C., and Feng, Y.: Coagulation patterns and the impacts on traffic-related ultrafine particle dispersion in road tunnels employing dynamic mesh algorithms, Environ. Sci. Pollut. R., 28, 61380–61396, https://doi.org/10.1007/s11356-021-14987-z, 2021. a
Short summary
Particle size is a key factor determining the properties of aerosol particles which have a major influence on the climate and on human health. When measuring the particle sizes, however, sometimes the sampling lines that transfer the aerosol to the measurement device distort the size distribution, making the measurement unreliable. We propose a method to correct for the distortions and estimate the true particle sizes, improving measurement accuracy.
Particle size is a key factor determining the properties of aerosol particles which have a major...