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Abstract. The particle number (PN) emissions of both light-
and heavy-duty vehicles are nowadays regulated and are typ-
ically measured from a full dilution tunnel with constant vol-
ume sampling (CVS). PN measurements for research and de-
velopment purposes, though, are often taken from the raw
exhaust to avoid the high setup costs of CVS. There is, how-
ever, a risk with these and any other kind of PN measure-
ments with high number concentrations, which is that physi-
cal processes such as coagulation and diffusion losses inside
sampling lines can alter, sometimes dramatically, the parti-
cle size distribution and bias its measurement. In this paper,
we propose a method in the Bayesian framework for inverse
problems to estimate the initial, unaltered particle size dis-
tribution based on the distorted measurements. The proposed
method takes into account particle morphology and van der
Waals and viscous forces in the coagulation model and al-
lows the incorporation of prior information on the particle
size distribution and, most importantly, a systematic quan-
tification of uncertainty. We analyze raw exhaust PN mea-
surements of a fuel-operated auxiliary heater and find that
while a typical sampling line can reduce the PN by more
than 50 %, the initial particle size distribution can be feasi-
bly estimated with reasonable computational demands. The
proposed method should give more freedom for designing
the measurement setup and also aid in the comparison of re-
sults obtained at different sampling locations, such as CVS
and tailpipe.

1 Introduction

Particulate matter (PM), i.e., particle pollution, poses great
health risks to humans and causes environmental damage
(Shiraiwa et al., 2017; Manisalidis et al., 2020). Significant
PM sources, such as vehicle tailpipe emissions, are there-
fore in most cases subject to particle mass regulations and
nowadays also to particle number (PN) regulations in Eu-
rope (Commission Regulation (EU), 2019; Giechaskiel et al.,
2021b). PN regulations were introduced to better cover the
fraction of ultrafine (< 0.1 µm) particles, which is negligi-
ble in terms of mass but dominates the ambient atmosphere
in terms of PN (80 %–90 % of all particles) (Hofman et al.,
2016). These ultrafine particles are a cause of growing con-
cern in the public health community due to their ability to
circumvent primary airway defenses and penetrate deep in
the lungs (Kwon et al., 2020; Morawska and Buonanno,
2021). Furthermore, the harmful systematic health effects as-
sociated with coarse (< 10 µm) and fine (< 2.5 µm) particu-
lates can often be attributed to the fraction of ultrafine par-
ticles (Kwon et al., 2020). At the moment PN regulations
are given for particles with a diameter > 23 nm, not because
smaller particles are any less dangerous, but mainly because
smaller particles are very sensitive to sampling conditions
and thus hard to measure accurately and with good repeata-
bility (Giechaskiel et al., 2021b). The Euro 7 road vehicles
emission standard proposal increases the size range to parti-
cles > 10 nm (Giechaskiel et al., 2024). Details of the emis-
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sions such as those emitted from tailpipes are also important
basic knowledge for the purpose of climate change research,
as aerosol forcing uncertainty represents the largest climate
forcing uncertainty overall (Kahn et al., 2023).

PN emissions are typically measured using condensation
particle counters (e.g., Hering et al., 2005) or diffusion charg-
ers (e.g., Schriefl et al., 2019), which can measure total PNs.
If more detailed information is required, one can measure
PN as a function of particle size, i.e., a particle size distri-
bution (PSD), with an instrument such as the engine exhaust
particle sizer (EEPS) spectrometer (TSI, 2024; Wang et al.,
2016a). There are, however, aspects of PN measurement that
may bias the results considerably unless explicitly accounted
for in the design of the experiment (which may not always
be possible) or numerically post-measurement. For exam-
ple, measuring PSD in raw exhaust usually involves the use
of sampling lines of different lengths to transfer and possi-
bly cool the sample to the measurement devices. Within the
sampling lines, the particles have a window of time to co-
agulate and diffuse onto the inner walls of the lines, which
alters the PSD of the raw exhaust. The shortest possible res-
idence times in the lines are typically targeted because res-
idence times that are short enough (and PN concentrations
low enough) limit the effects of diffusion and coagulation,
leaving the PSD mostly unaltered. This may not always be
practicable, however, and sometimes the PSD undergoes sig-
nificant changes, up to more than an order of magnitude, es-
pecially in the concentrations of the smallest particle sizes.
In one study, Giechaskiel et al. (2019) examined the mea-
surement of PN directly from the tailpipe of heavy-duty en-
gines and found that an increase from 0.5 to 4 m in the sam-
pling line length resulted in a loss of 20 %–50 % of parti-
cles > 10 nm, not explainable with just diffusion losses. Fur-
ther, Liu et al. (2021) studied the effect of Brownian coag-
ulation on particle evolution in gasoline engine exhaust by
measuring the PSD at various locations along a laboratory
exhaust system. They found that the PSD evolution mainly
occurs for sizes < 50 nm, that the evolution is dominated by
coagulation, and that a significant (up to 90 %) particle reduc-
tion can occur when there is a high number of accumulation
mode (> 50 nm) particles. Such high losses would render a
measurement useless unless the changes in the PSD are rig-
orously quantified and corrected for.

Of the physical processes in a sampling line, wall deposi-
tion losses are nowadays commonly corrected, but the effect
of coagulation is typically not. Further, because the effect of
coagulation is nonlinear and depends on the PN concentra-
tion, it cannot be corrected with a simple calibration mea-
surement. To ensure coagulation and diffusion do not have a
significant effect on the PSD, legislation specifies for exam-
ple the maximum residence time and Reynolds number for a
sample in the sampling line (Giechaskiel et al., 2021b), but
we have not found in the literature attempts to correct the
estimate of a PSD after the measurement has been made. In
this paper, we aim to find out if the initial PSD can be es-

timated based on measurements that have been distorted by
coagulation and diffusional losses. Our approach uses meth-
ods in the Bayesian framework for inverse problems (Kaipio
and Somersalo, 2006) and makes use of a numerical model
of the coagulation and wall diffusion process that takes into
account the fractal nature of soot particles (Park et al., 2003;
Rogak and Flagan, 1992) as well as van der Waals and vis-
cous forces (Alam, 1987). Due to uncertainties related to the
measurement (e.g., noise) and to the coagulation model (e.g.,
poorly known parameters), the resulting estimate is also un-
certain to some degree. In the Bayesian framework, this un-
certainty is quantified by the posterior probability density,
i.e., the probability density of the unknown variable of in-
terest, conditioned on the measurement. The possible prior
information on the model unknown and statistics of the mea-
surement noise are also accounted for. From the posterior one
can calculate not only the most probable values of the initial
PSD, but also the credible intervals to explicitly quantify the
uncertainty of the PSD estimate. Robust uncertainty quan-
tification is essential to assess the reproducibility of mea-
surements between different laboratories (Giechaskiel et al.,
2018, 2021a).

To test the proposed method, we carry out inversion with
both synthetic data and real PSD measurements of a fuel-
operated auxiliary heater (Oikarinen et al., 2022). We will
compute the estimate of the initial PSD in two ways that are
useful in different circumstances. The first one is based on
solving an optimization problem, which is computationally
fast and can be done in real time when collecting measure-
ments in the field. In this case, the posterior uncertainty is
approximated with a Gaussian distribution. The second ap-
proach is based on sampling the posterior with Markov chain
Monte Carlo (MCMC), which is a lot more demanding com-
putationally but does not need to rely on Gaussian approxi-
mations for the uncertainty estimates. The second approach
can also be used to take into account the possible uncertainty
in the parameters of the coagulation model, as will be shown
later. We will also compare and discuss the results between
the two approaches. The code and data used to carry out the
examples in this paper are available in the package SLIC
(Niskanen, 2024).

The remainder of the paper is organized as follows. In
Sect. 2, we describe our approach to modeling coagulation
and wall deposition. In Sect. 3, we describe and solve the
inverse problem of estimating the initial PSD based on mea-
surements done with a system that has a sampling line. In
Sect. 4, we apply the method on synthetic and real data, and
the results are discussed in Sect. 5. Finally, conclusions are
given in Sect. 6.
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2 Simulating the microphysical processes in a sampling
line

When collecting PSD data from sampling lines, there are two
main processes quick enough to affect aerosol particles dur-
ing the short time (up to a few seconds) a sample resides in a
sampling line: coagulation (agglomeration of particles) and
wall deposition due to diffusion (particles lost to the sam-
pling line walls). Together these processes reduce the number
of particles and increase their size.

The time evolution of a PN concentration density n(v, t)
(unit: m−1 cm−3) experiencing coagulation and wall diffu-
sion can be described by the following equation (Seinfeld
and Pandis, 2016):

dn(v, t)
dt

=
1
2

v∫
0

β(v− v̄, v̄)n(v− v̄, t)n(v̄, t)dv̄

− n(v, t)

∞∫
0

β(v̄,v)n(v̄, t)dv̄−R(v)n(v, t), (1)

where the first integral represents a coagulation source, the
second a coagulation sink, and R(v) in this case the rate of
removal of particles by wall diffusion. Particle volume and
time are denoted by v and t , respectively. The rate of coag-
ulation is governed by the coagulation coefficient β(v1,v2),
which describes the frequency that two particles of volume
v1 and v2 collide.

To approximate the solution of Eq. (1) numerically, the
particle size range is first discretized. We adopt here the sec-
tional method (Gelbard et al., 1980; Jacobson et al., 1994;
Lehtinen and Zachariah, 2001) for its computational effi-
ciency and ease of implementation, where the particle size
range is divided into a finite number of sections or bins. Here
we use geometrically distributed bins so that the logarithm of
the bin width is constant. The sectional method conserves to-
tal particle volume, and in Salminen et al. (2022) it was even
found that for pure coagulation the sectional method can be
more accurate than the finite element method with a similar
number of discretization points.

In a typical implementation of the sectional method, par-
ticles within each bin are approximated to have a constant
size equal to the bin middle point. Consider then two parti-
cles from bins with volumes vi and vj colliding and form-
ing a larger particle with volume vi + vj . Unless the volume
of the new particle coincides exactly with a center of a bin,
the particle is divided into two adjacent bins in a way that
conserves the total volume. For this purpose, let us define a
size-splitting operator ξijk , which gives the volume fraction
of the coagulated particle vi + vj partitioned into bin k:

ξijk =


vk+1−(vi+vj )

vk+1−vk
, vk ≤ vi + vj < vk+1; k < nB,

1− ξij (k−1), vk−1 < vi + vj < vk; k > 1,
1, vk ≤ vi + vj ; k = nB,

0, otherwise,

(2)

where nB is the total number of bins. Let us now denote
the PN concentration in the kth bin by Nk = nk1Dp, where
1Dp is the width and nk the PN concentration density (cf.
n(v, t) in Eq. 1) of bin k and k = 1, . . .,nB. The discretized
version of Eq. (1) then reads

dNk
dt
=

1
2

∑
i,j

ξijkβijNiNj −
∑
i

βikNiNk −RkNk, (3)

where βij is the coagulation coefficient between size bins i
and j . Time integration for Eq. (3) can be carried out for
example with Runge–Kutta methods. We use here RK45 as
implemented in SciPy (Virtanen et al., 2020).

2.1 Coagulation model

Particles collide due to their Brownian, or thermal, motion,
as well as motion due to external forces such as laminar
shear or turbulent flow and gravitational, van der Waals,
Coulomb, and hydrodynamic forces (Seinfeld and Pandis,
2016). Colliding liquid particles coalesce and retain their
spherical shape. Solid particles above a certain critical size
r1, however, are not expected to coalesce but instead form
fractal-like agglomerates of dense primary particles. The col-
lision frequency for fractal-like particles can be significantly
higher than for spherical particles with the same volume (Ro-
gak and Flagan, 1992).

In this work, for coagulation we consider the particles’
Brownian motion and the effects of van der Waals and vis-
cous forces, as those are likely to dominate over other factors
in coagulation at short timescales and distances. Further, in
our specific example with soot particles, we will take into ac-
count the particle shape because soot particles are known to
form long chains of aerosol agglomerates (Park et al., 2003).
Figure 1 demonstrates the effect of fractal geometry and van
der Waals and viscous forces on the coagulation coefficient.
Although other aspects of coagulation such as the effect of
charge or turbulent flow are not modeled in this work, they
can be included in the considered framework should the need
arise. For examples that have dealt with the Coulombic ef-
fects see Mahfouz and Donahue (2021a), Mahfouz and Don-
ahue (2021b), Pfeifer et al. (2023), and Thomas et al. (2024),
and for examples on the effect of turbulence see Okuyama
et al. (1978), Williams and Crane (1983), and Zhao et al.
(2021).
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Figure 1. Coagulation coefficients calculated for mobility diameters 5.62–562 nm. (a) Spherical vs. fractal coagulation coefficient (fractal
dimension = 1.7 and primary particle diameter = 30 nm). (b) Spherical coagulation coefficient with and without van der Waals and viscous
forces (Hamaker constant = 2× 10−19 J).

2.1.1 Brownian coagulation of fractal-like
agglomerates

In this paper, the coagulation of fractal-like agglomerates is
modeled following mostly Rogak and Flagan (1992) and Ja-
cobson and Seinfeld (2004), where it is assumed that the ag-
glomerate structure is completely determined by three pa-
rameters: the fractal dimension Df, the primary particle ra-
dius r1, and the number of primary particles N . All pri-
mary particles are thus assumed to be of the same size. The
fractal dimension, Df ∈ [1,3], characterizes the shape of the
agglomerate. For example, when Df = 1, the agglomerate
forms a line, whereas with Df = 2, it fills space like a sur-
face, and asDf approaches 3, it curls up to resemble a spher-
ical volume. For soot particles, typical values for the primary
particle radius are between 10 and 17 nm and the fractal di-
mension between 1.5 and 2.2 (Wentzel et al., 2003; Lapuerta
et al., 2017).

The three parameters above give rise to a number of equiv-
alent radii that characterize the coagulation of non-spherical
particles. Let us first highlight two here: the volume equiv-
alent radius and the mobility radius. The volume equivalent
radius, rv, is the radius of a sphere with the same volume as
the aggregate, whereas the mobility radius, rm, is the radius
of a sphere that experiences the same drag force as the ag-
glomerate under the same dynamic conditions (Rogak and
Flagan, 1992). This distinction is important, because while
mobility radii are what is usually measured, the size-splitting
coefficient Eq. (2) should be calculated using the volume
equivalent radii to conserve particle volume. Thus, for non-
spherical particles, the output bin sizes of a typical measure-
ment device should not be used directly for modeling coagu-
lation.

Let us first state Ni as the ratio of the volumes of the aggre-
gate and the primary particle, Ni = (rv,i/r1)

3, where i refers
to the index of a size bin. The fractal or outer radius of the
agglomerate is then defined as

rf,i =

{
r1N 1/Df

i , rv,i ≥ r1,

rv,i, rv,i < r1.
(4)

The Brownian coagulation rate between two particles of sizes
i and j can be stated in the Fuchs form, modified for fractal
geometry, as

βi,j = 4π(rc,i + rc,j )(Dm,i +Dm,j )C
−1
i,j , (5)

where rc,i and Dm,i are the collision radius and Brownian
diffusion coefficient of particle i, respectively, and Ci,j is a
transition-regime correction factor that extends the validity
of the formula from the continuum regime to sizes smaller or
comparable to the mean free path of diffusion particles. Fol-
lowing Rogak and Flagan (1992), we set the collision radius
equal to the outer radius of the particle, rc,i = rf,i .

The expressions for Dm,i and Ci,j require the (transition-
regime) mobility radius rm,i , which is computed by interpo-
lating between the continuum-regime mobility radius rmc,i
and free-molecular-regime mobility radius rmk,i , as

rm,i

Cc(Knm,i)
=

rmc,i

Cc(Kna,i)
, (6)

where Cc(Kn) is the Cunningham slip correction factor,
given by

Cc(Kn)= 1+Kn(1.257+ 0.4exp(−1.1/Kn)), (7)

with Kn representing the Knudsen number. The mobility ra-
dius Knudsen number is given by

Knm,i =
λa

rm,i
(8)
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and the adjusted Knudsen number by

Kna,i =
λarmc,i

r2
mk,i

. (9)

Above, λa denotes the mean free path of an air molecule,
which can be calculated from

λa =
kBT
√

2πd2p
, (10)

where kB is the Boltzmann constant, T is the gas tempera-
ture, d is the diameter of an air molecule (approximated here
as the diameter of a nitrogen molecule), and p is the gas
pressure. The free-molecular-regime mobility radius, rmk,i ,
is assumed to be equal to the projected-area equivalent ra-
dius rA,i , given by

rA,i =


r1

√
max

{
N

2/3
i ,min

[
1+ 0.67(Ni − 1),
DfN

2/Df
i /3

]}
,

rv,i ≥ r1,

rv,i, rv,i < r1,

(11)

and the continuum-regime mobility radius is given by

rmc,i =max

 rf,i

[
ln
(

2 rf,i
r1

)
+ 1

]−1
,

rf,i

(
Df−1

2

)0.7
, rA,i

 . (12)

Now, the diffusion coefficient can be calculated from

Dm,i =
kBT

6πηrm,i
Cc(Knm,i), (13)

where η represents the dynamic viscosity of gas, which is
temperature-dependent and over the range of 100–1800 K
can be determined using the Sutherland equation (Hinds,
1999):

η =
1.458× 10−6 Pa · s ·K

(
T
K

)1.5
T + 110.4K

. (14)

The correction factor Ci,j is given by

Ci,j =
rc,i + rc,j

rc,i + rc,j +
√
δ2

m,i + δ
2
m,j

+ c̃, (15)

where

δm,i =
(2rm,i + λm,i)

3
− (4r2

m,i + λ
2
m,i)

3/2

6rm,iλm,i
− 2rm,i (16)

and

c̃ =
4(Dm,i +Dm,j )√
v̄2
i + v̄

2
j (rc,i + rc,j )

. (17)

The effective mean free path of a particle size i is given by

λm,i =
8Dm,i

πv̄i
, (18)

with the mean thermal speed

v̄i =

√
8kBT

πM̄i

, (19)

where M̄i = 4/3πr3
v,iρ is the mass of a single particle, with

ρ denoting the particle density.
The above model was written in terms of the volume

equivalent radius rv and parametersDf and r1 to find the mo-
bility radius rm; i.e., it forms a relation f : rv 7−→ rm. On the
other hand, measurements of PN concentration are usually
modeled with respect to rm, and hence, a mapping from rm
to rv is needed. An explicit solution f−1

: rm 7−→ rv is not
possible, though, and we calculate rv by solving a minimiza-
tion problem:

rv,i = argmin
rv,i
‖rm,i − f (rv,i, r1,Df)‖

2
2. (20)

2.1.2 Van der Waals and viscous forces

Van der Waals forces are weak fluctuating dipole–dipole
forces that increase the rate of aerosol coagulation (Alam,
1987). Viscous forces, on the other hand, slow down the
rate of coagulation. Viscous forces are absent in the free
molecular regime but in the continuum regime can even slow
down coagulation more than van der Waals forces enhance
it (Jacobson and Seinfeld, 2004). These forces can be taken
into account by multiplying the Brownian coagulation coef-
ficient Eq. (5) by a correction factor Vi,j . We follow here
Alam (1987), who determined an interpolation formula for
the correction factor between the free-molecular and contin-
uum regimes as

Vi,j =
Wc,i,j

[
1+ c̃

]
1+Wc,i,j/Wk,i,j c̃

, (21)

where c̃ is defined in Eq. (17) and Wk,i,j and Wc,i,j are
correction factors for the free-molecular and continuum
regimes, respectively. These are given by

Wk,i,j =
−1

2(ri + rj )2kBT

×

∞∫
ri+rj

(
dEi,j (r)

dr
+ r

d2Ei,j (r)

dr2

)

× exp
[
−1
kBT

(
r

2
dEi,j (r)

dr
+Ei,j (r)

)]
r2dr (22)

and

Wc,i,j =

[
(ri + rj )
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×

∞∫
ri+rj

D∞

Di,j
(r)exp

(
Ei,j (r)

kBT

)
dr
r2

]−1

. (23)

The correction factors include the Van der Waals interaction
potential

Ei,j (r)=−
A

6

[
2rirj

r2− (ri + rj )2
+

2rirj
r2− (ri − rj )2

+ ln
r2
− (ri + rj )

2

r2− (ri − rj )2

]
, (24)

where A is the Hamaker constant, and the diffusion ratio that
corrects the diffusion coefficient in the continuum regime for
viscous forces

D∞

Di,j
(r)=1+

2.6rirj
(ri + rj )2

√
rirj

(ri + rj )(r − ri − rj )

+
rirj

(ri + rj )(r − ri − rj )
. (25)

Typical values for the Hamaker constant of soot are in the
range of 1× 10−19–4× 10−19 J (Liu et al., 2018).

2.2 Wall deposition by diffusion

Aerosol particles adhere when they collide with a surface,
and thus their concentration at the surface is zero. This results
in a concentration gradient near the surface which causes a
continuous diffusion of particles to the surface. In addition to
diffusion, other basic mechanisms of wall deposition include
electrostatic attraction, i.e., the effect of charges on the walls
(Mahfouz and Donahue, 2020); inertial impaction; intercep-
tion; and gravitational settling (Hinds, 1999). Also surface
properties such as roughness can influence deposition (Shi-
mada et al., 1987; Hussein et al., 2012). In this paper, we
only model wall deposition by diffusion, but other mecha-
nisms can naturally be included in the model as needed.

For laminar flow of particles through a cylindrical tube,
the fraction P = nout/nin of entering particles that exit as a
result of diffusional losses can be approximated with the help
of a dimensionless diffusion parameter µ as (Hinds, 1999)

P =

 1− 5.50µ2/3
+ 3.77µ, µ < 0.009,

0.819exp(−11.5µ)
+0.0957exp(−70.1µ), µ≥ 0.009.

(26)

The diffusion parameter is defined as

µ=
DL

Q
, (27)

where L is the tube length and Q is the volume flow rate
(m3 s−1) through the tube. For the particle diffusion coeffi-
cient D we use Dm from Eq. (13). To transform the penetra-
tion P into the removal term R in Eq. (3), we set

R =− log(P )/T , (28)

where T is the residence time of the aerosol in the tube.

3 Estimating the initial size distribution

Let us now formulate the problem of estimating the initial
PSD as a problem of statistical inference within the Bayesian
framework. The unknown parameters are modeled as random
variables, and all information on them is expressed in terms
of probability density functions. The solution to the inference
problem is the posterior probability density, a conditional
probability density of the unknown parameters conditioned
on the measured data (Kaipio and Somersalo, 2006).

Let us denote by Ñ ∈ RnB a vector of length nB that rep-
resents a parametrization of the PSD of the aerosol at the
entry of the sampling line (i.e., the initial PSD). This will
be the model unknown in the Bayesian inference. In the
parametrization used below, Ñ consists of the logarithms of
the size-discretized PSD N ,Ñ := logN , to enforce positiv-
ity and to treat the wide range of number concentrations in a
numerically more stable way. In what follows, ·̃ will be used
to denote a variable on the log scale. Further, let y ∈ RnM be
a vector of length nM consisting of noisy, indirect observa-
tions of the PSD after the particles have undergone coagu-
lation and diffusion processes when transported through the
sampling line. The posterior is then given by Bayes’ formula,

π(Ñ |y)=
π(y|Ñ)π(Ñ)

π(y)
∝ π(y|Ñ)π(Ñ), (29)

where π(y|Ñ) is the likelihood function; π(Ñ) is the prior
probability density; and π(y) is the value of the marginal
probability density of measurements at y, which once the
measurements are realized, acts as a normalization constant.
The likelihood function describes the likelihood of different
measurement outcomes given a realization of parameters Ñ .
It considers statistics of the measurement noise and the mis-
fit between measurements and the model. The prior density
models statistically the information on the parameters before
measurements y are accounted for. It should include a higher
probability for parameter values we expect to see compared
to those we do not expect to see, and can, for example, in-
clude an assumption that small differences in number con-
centration between neighboring size bins are more probable
than large ones.

3.1 The prior

We model the prior density as Gaussian with mean Ñ∗ and
covariance 0̃pr. The covariance is constructed to promote
smoothness (Lieberman et al., 2010) between adjacent size
bins:

0̃pr(i,j)= ã exp

{
−

1
2
‖d̃i − d̃j‖

2

b̃2

}
, (30)

where ã = 0̃pr(i, i) is the variance of the initial PSD, d̃i is
the size bin center, and b̃ = l̃/

√
2ln(100) is related to the

smoothness of the initial PSD over the size range. The degree

Geosci. Model Dev., 18, 2983–3001, 2025 https://doi.org/10.5194/gmd-18-2983-2025



M. Niskanen et al.: Bayesian inversion for coagulation in sampling lines 2989

Figure 2. An example prior covariance matrix with size bins cover-
ing 2 orders of magnitude and 16 bins per decade.

of smoothness is controlled by correlation length l̃, which is
defined as the distance (here, in terms of particle size on a
logarithmic scale) over which the cross-covariance 0̃pr(i,j)

drops to 1 % of ã. Due to the log transformation, a correlation
length l̃ = 1 corresponds to 1 order of magnitude. An exam-
ple of a covariance matrix with l̃ = 3/4 and ã = 4, when each
order of magnitude is divided into 16 bins, is shown in Fig. 2.

With the above notation, the prior density can be written
as

π(Ñ)∝ exp
{
−

1
2

∥∥∥L̃pr

(
Ñ∗− Ñ

)∥∥∥2
}
, (31)

where L̃pr is a matrix square root of the inverse of the prior
covariance, i.e., L̃T

prL̃pr = 0̃
−1
pr .

3.2 The likelihood

Let h : RnB → RnM denote the parameter-to-observable
mapping, i.e., the forward model, which models the depen-
dency between the initial time PSD (or, to be specific, its
logarithmic parameters) and the observable quantity; i.e., in
this case, hmodels not only the measurement device but also
the coagulation and wall deposition processes that the parti-
cle ensemble undergoes while being transported through the
sampling line between the initial time and the time of the
observation. We will derive the exact form of h in Sect. 4
because it depends on the measurement device used. With
the standard assumption that the measurement process is cor-
rupted by additive Gaussian noise e ∈ RnM , the following ob-
servation model can be written for the measurement:

y = h(Ñ)+ e. (32)

If we assume that the measurement noise is independent of
the unknowns and normally distributed with zero mean and

covariance 0e,e ∼N (0,0e), the likelihood can be written as

π(y|Ñ)∝ exp
{
−

1
2

∥∥∥Le

(
y−h(Ñ)

)∥∥∥2
}
, (33)

where LT
e Le = 0

−1
e .

3.3 The posterior

The solution to the inference problem, the posterior density
Eq. (29), can now be stated by combining the prior Eq. (31)
and the likelihood Eq. (33):

π(Ñ |y)∝ exp
{
−

1
2

∥∥∥Le
(
y−h(Ñ)

)∥∥∥2

−
1
2

∥∥∥Lpr(Ñ∗− Ñ)

∥∥∥2
}
. (34)

The final task in the problem is to summarize the posterior
by calculating point and interval estimates, which we will
describe next.

3.3.1 Laplace approximation to the posterior

One of the most commonly used approximations to the poste-
rior is the Laplace approximation, in which the posterior den-
sity is approximated with a Gaussian distribution (MacKay,
2003). The mean of the distribution is set to the maximum a
posteriori (MAP) estimate, and the covariance is calculated
based on the curvature of the posterior around the MAP esti-
mate, i.e., π(Ñ |y)≈N (ÑMAP, 0̃post). The MAP estimate is
defined as the point where the posterior density has a maxi-
mum:

ÑMAP = argmax
Ñ∈D

π(Ñ |y), (35)

where D ⊂ RnB is a space of possible values for Ñ . In this
paper, we use the Gauss–Newton algorithm equipped with
line search to compute the MAP estimate. The posterior co-
variance is given by

0̃post =
(

J(ÑMAP)
T0̃−1

e J(ÑMAP)+ 0̃
−1
pr

)−1
, (36)

where J(ÑMAP) denotes the Jacobian matrix of h(Ñ) with
respect to Ñ , evaluated at the MAP estimate.

The Laplace approximation to the posterior covariance can
be used to compute parameter uncertainty estimates such as
approximate credible intervals (CIs), which in the Bayesian
framework can be directly interpreted as statements on the
probabilities of the parameter values. This means that the true
parameter value is contained within the m % CI with m %
probability. The CI does not have a unique definition, but
here for the Laplace approximation we define a 95 % credi-
ble interval as ÑMAP±1.96σ̃ post, where σ̃ 2

post(i)= 0̃post(i, i),
i.e., the values on the diagonal of the posterior covariance
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matrix. Estimates for N can be calculated by transforming
the log-parametrized PSD values to the absolute scale as
10ÑMAP±1.96σ̃ post . Note that due to the parametrization the
distribution of N is not Gaussian but log normal.

3.3.2 Full characterization of the posterior

In many cases, the MAP estimate and Laplace approximation
are sufficient to summarize the posterior and quantify uncer-
tainty in the parameters. However, to properly assess the va-
lidity of this approximation the posterior needs to be fully
characterized. In practice, this is done by sampling methods
such as Markov chain Monte Carlo (MCMC), which gener-
ate correlated samples {Ñ i, i = 0,1, . . .} that are distributed
according to the posterior probability density. The basic al-
gorithm to construct an MCMC sampler is the Metropolis
algorithm (Metropolis et al., 1953), where a proposal Ñ ′ for
a new sample is generated based on the current sample Ñ i ,
and the proposal is accepted with a probability of the pos-
terior ratio, min(1,π(Ñ ′|y)/π(Ñ i |y)). If the proposal is ac-
cepted, we set Ñ i+1 = Ñ

′ and otherwise Ñ i+1 = Ñ i . The
algorithm has to be run for long enough so that the chain is
converged, i.e., will have properly sampled the posterior and
sufficiently accurate estimates can be computed. How long is
long enough depends on many factors, such as the required
accuracy, efficiency of the sampler, and shape of the poste-
rior. Assessing convergence reliably can be difficult but is a
requirement before any conclusions from the samples can be
drawn.

Once a set of samples representative of the posterior has
been obtained, estimates of the conditional mean (CM) and
credible intervals can be computed. The CM estimate is the
expected value of the posterior, i.e., its center of mass, and is
computed as

ÑCM =

∫
D

Ñ π(Ñ |y)dÑ ≈
1
ns

ns∑
i=1

Ñ i, (37)

where ns is the number of samples. In the case of MCMC
we define the m % credible interval as the interval between
the two ends, or tails, of the marginal posterior distribution,
where both tails contain (100−m)/2 % of the marginal pos-
terior samples. The true shape of the marginal posteriors can
also be visualized by histograms of the samples.

Drawing lots of samples to approximate the posterior is
naturally slower than computing the Laplace approximation,
and the feasibility of applying MCMC on a given problem
depends highly on the efficiency of the chosen sampler. In
this work, we use the Metropolis-adjusted Langevin algo-
rithm (MALA) (Roberts and Tweedie, 1996) with adaptive
proposals (Haario et al., 2001). Compared to a regular ran-
dom walk Metropolis algorithm, MALA increases sampling
efficiency using the gradient of the posterior to guide the pro-
posals towards areas of higher posterior probability. For more

information on MCMC methods, see for example Brooks
et al. (2011).

3.4 Uncertainties in the forward model

In addition to the unknown of primary interest, Ñ , the for-
ward model includes auxiliary (sometimes also called nui-
sance) parameters – ones that we are not primarily interested
in but nevertheless affect the model output. These include
parameters such as exhaust flow velocity, fractal dimension,
and the Hamaker constant. Above, the inference of the PSD
was written assuming that these parameters are known ex-
actly. This, of course, is seldom the case in reality, and the
assumption may lead to erroneous results and unrealistically
narrow uncertainty estimates. To quantify the effect of uncer-
tainty in the auxiliary parameters on the posterior probability
of Ñ , we can use marginalization, where the auxiliary param-
eters are modeled as additional unknowns and then integrated
out.

Let us denote the auxiliary unknowns by ν ∈ Rnν and de-
fine a prior π(ν) that is independent of π(Ñ). Then, the aug-
mented form of the posterior reads

π(Ñ ,ν|y)∝ π(y|Ñ ,ν)π(Ñ)π(ν). (38)

By carrying out the following integral,

πν(Ñ |y)=

∫
Rnν

π(Ñ ,ν|y)dν, (39)

the effect of ν is integrated out and we are left with a marginal
posterior probability πν(Ñ |y). We use the subscript ν to de-
note the variable(s) over which the posterior is marginalized
to avoid confusion with Eq. (34), which implicitly consid-
ers ν known. In practice, the integration is done by carry-
ing out MCMC sampling for both Ñ and ν simultaneously.
Once a representative set of samples has been collected, the
marginalization Eq. (39) is trivial.

4 Case studies

Let us now use the described inversion approach to analyze
measurements of particle emissions from fuel-operated aux-
iliary heaters (AHs) used in vehicle preheating or providing
additional heat (Oikarinen et al., 2022). In this kind of mea-
surement, often (i) the PN concentration is high and (ii) the
sample needs to be transported some distance from the end of
the exhaust to the measurement device – two factors that in-
crease the likelihood of coagulation and wall losses distorting
the PSD, as well as raise the question of the validity of the
measurements unless these effects are tested and corrected
for. We will compute both the Laplace approximation and
a full characterization of the posterior with MCMC to com-
pare these approaches. Two cases will be studied, one based
on synthetic data where the true initial PSDs are known and
one considering real measurements.
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Figure 3. A schematic of the measurement setup.

4.1 Modeling the measurement setup

The PSD measurements in Oikarinen et al. (2022) were car-
ried out using the Engine Exhaust Particle Sizer™ (EEPS)
model 3090, manufactured by TSI Inc. The EEPS is a spec-
trometer that estimates PSD based on measurements of elec-
trical mobility. A simplified schematic of the measurement
setup in Oikarinen et al. (2022) is shown in Fig. 3, where
exhaust gas from the AH is led to the EEPS through a sam-
pling line with a length of 3.2 m and an inner diameter of
5 mm. Flow velocity through the line was 3.5 ms−1, leading
to a residence time of approximately 0.9 s. The sampling line
was heated to 250 °C, and just before the EEPS the sample
was diluted at a ratio that varied between 40 : 1 and 100 : 1
to allow for measurements of PN concentrations higher than
the upper limit of the instrument.

The operating principle of the EEPS is, in short, the fol-
lowing (TSI, 2015): a flow of exhaust gas is directed at the
inlet, where particles in the gas are positively charged. The
charged particles are then directed in a laminar flow through
a cylindrical tube that has a positive high-voltage electrode
column in the center and a stack of 22 circular electrome-
ters on the outer wall. The electric field between the center
electrode and electrometers deflects the particles outwards so
that particles with high electrical mobility hit the electrom-
eters near the inlet and particles with low electrical mobil-
ity hit the electrometers further along the stack. The striking
particles generate currents that are proportional to the parti-
cle concentration. Measurements of these currents with their
location along the stack can be inverted to give an estimate of
the PN concentration. The operating size range of the EEPS
is between 5.6 and 560 nm, and the whole size range is mea-
sured simultaneously, every 1 s in the present case.

An observation model (cf. Eq. 32) for the EEPS in terms of
the raw electrometer currents can be written as (Wang et al.,
2016a):

y =Hf + e, (40)

where y ∈ R22 is the measured current, f ∈ R17 denotes a
representation of the size distribution used by the EEPS, and
e ∈ R22 is measurement noise. The size distribution f is
mapped to currents with an instrument matrix1 H ∈ R22×17,

1Also known as an inversion matrix in the EEPS manual.

which can be exported from the EEPS2. Here we use the
SOOT instrument matrix (Wang et al., 2016b), which TSI has
developed to give more accurate estimates with soot particles
than the instrument’s default instrument matrix. To connect
the aerosol bin model Eq. (3) to the observation model above,
we map the size bin representation to f with an interpolation
matrix B ∈ R17×nB :

f = BN̂ , (41)

where N̂ is a size bin representation of the PSD of the sam-
ple when it enters the EEPS after it has been altered by the
sampling line. Finally, let 4 represent the coagulation and
wall diffusion model so that N̂ =4(N), and let φ denote
a transformation from the log space to the absolute scale
N = φ(Ñ). The full observation model is then y = h(Ñ)+e,
where the forward model is

h(Ñ) :=HB4(φ(Ñ)). (42)

To specify the covariance of the measurement noise, 0e,
we assume that noise in each electrometer is independent
of the other electrometers so that 0e is diagonal and con-
sists of the noise variances σ 2

e,i of each electrometer i. These
variances can generally be estimated from a calibration mea-
surement with a minimal number of particles using a filtered
sample. However, an analysis of the measurement data shows
in this case that the noise seems to be approximately propor-
tional to the measured current. Specifically, during time win-
dows that are short enough, where the PSD is expected to
stay constant and thus variation in the measured signal can
be attributed to noise, the standard deviation of the measure-
ments is roughly 5 %–15 % of the amplitude of the measure-
ment. An exception to this is when the current drops below
the electrometer noise floor. We therefore model the noise
variance as

σ 2
e,i =max

(
σ 2

floor,i, (εyi)
2
)
, i = 1, . . .,22, (43)

where σ 2
floor,i and yi denote the noise floor and measured cur-

rent of electrometer i, respectively, and ε denotes the noise
level. Note that in the derivation of the likelihood we as-
sumed that the noise and the unknowns are independent, but
here some dependency is introduced between them. In prac-
tice, we thus use the measured values of yi to assess the
variance in Eq. (43) instead of reformulating the likelihood
model to accommodate for a non-additive noise model that
would result from the dependency betweenN and noise. The
effect of this approximation, however, is minor if the noise
level is not very high.

2If the raw current data and/or the instrument matrix were not
available, inversion could also be done based on the EEPS estimate
of the PSD. However, specifying the distribution of the uncertainty,
or noise, in the data would not be as straightforward as with the raw
data.
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4.2 Inversions with simulated data

We created simulated data with the above model (Eq. 42),
specifying the initial PSD and auxiliary parameters and
adding noise with level ε = 0.10. The initial number concen-
tration was chosen to be high enough to clearly show co-
agulation effects but still realistic to be comparable to the
number concentrations seen in the real measurements shown
later. With simulated data, one must be careful to not com-
mit a so-called inverse crime of using the same exact model
to create the data and solve the inverse problem (Kaipio and
Somersalo, 2006), which might lead to unrealistically good
results. To ensure that the (tiny) numerical errors that arise
due to discretizing the model are not the same, the data were
created using a higher number of size bins than what was
used in the inversion. We used 30 and 16 bins per decade for
the data-generating and inversion models, respectively. The
dilution ratio was set to 100 : 1, and the auxiliary parameters
were set to the values given in Table 1. The expected value
of the prior was set to Ñ∗ = log(103/wbin), where wbin is
the logarithmic bin width, and correlation length and vari-
ance were set to l̃ = 12/16 and ã = 4, respectively.

4.2.1 Known auxiliary parameters

First, we carried out inversion with the same auxiliary param-
eters that were used to create the data. In this case, the only
source of modeling error with respect to the accurate model
used for generating the synthetic data is that caused by the
coarser discretization of the particle size. The specified ini-
tial PSD and the corresponding generated noisy data points
are shown in Fig. 4.

The Gauss–Newton algorithm to compute the Laplace ap-
proximation for the initial PSD converged in nine iterations
and took 0.4 s. All calculations in this paper were done on a
laptop with an Intel(R) Core(TM) i7-12700H processor, us-
ing only a single CPU core. The Laplace approximation for
the initial PSD and the PSD after the sampling line are also
shown in Fig. 4. The PSD after the sampling line is calculated
from the MAP estimate with the coagulation and wall diffu-
sion model, and it depicts what would be estimated based
on the EEPS data if the effects of the PSD evolution within
the sampling line were neglected. A comparison between the
estimated PSDs before and after the sampling line reveals
a clear coagulation effect; the concentration of the smallest
particles has reduced by up to 2 orders of magnitude, and
these particles show up as a slightly higher number concen-
tration of larger particles. The initial PSD can be said to be
estimated well because the true initial PSD is found within
the 95 % CIs over the whole size range. The relative error
between the MAP estimate and the true initial PSD is 6.2 %.

To compute the true posterior, we ran the MCMC sam-
pler for 200 000 iterations, which took 20 min. The first 25 %
of the samples were removed as burn-in, and the remaining
150 000 samples had an average integrated autocorrelation

time of 20.2 samples, which means there were over 7400 in-
dependent posterior samples in the chain. Figure 5a–c show
the first variable of the MCMC chain (i.e., the smallest size
bin) as an example, and a visual inspection of this and the rest
of the chains showed no sign of convergence issues. In the re-
mainder of this paper, it is assumed that a similar amount of
sampling and a similar convergence analysis are done to val-
idate each presented MCMC result. Figure 5d shows the CM
estimate and 95 % CIs. Again, the initial PSD is estimated
well and is found within the CIs. The relative error between
the CM estimate and the true initial PSD is 7.1 %. The main
differences compared to the Laplace approximation are that
for particles larger than 200 nm, the CM estimate gives lower
concentrations than the MAP estimate and that the CIs ob-
tained by sampling are narrower than those of the Laplace
approximation.

4.2.2 Unknown auxiliary parameters

As mentioned in Sect. 3.4, it not always realistic to assume
the auxiliary parameters are known accurately, and one ap-
proach to take their uncertainty into account is to model the
auxiliary parameters as additional unknowns. An example of
what can happen when just one parameter, here the fractal di-
mension, is incorrectly specified and its uncertainty not mod-
eled is shown in Fig. 6. Here the data were generated with
Df = 1.7, but in the inversion we used Df = 2.1, which is
well within the possible values for the fractal dimension of
soot. Figure 6a shows that, although not a dramatic change
from the results in Fig. 5, the initial PSD is underestimated
and the 95 % credible intervals do not always contain the
truth, especially around 10 nm. In addition, the relative er-
ror between the CM estimate and the truth has increased to
18.8 %.

Let us now model Df as an unknown and marginalize it.
The resulting posterior is shown in Fig. 6b. Compared to the
model where Df was assumed to be accurate, the CIs of es-
pecially particles under 50 nm (which seem to be the most
affected by coagulation) are considerably wider and now do
include the true initial PSD. The CM estimate is also closer
to the truth, with the relative error being 10.1 %.

Finally, let us marginalize all other auxiliary parameters as
well, one by one and also all together. A complete list of the
auxiliary parameters is given in Table 1, which also lists the
ranges over which the integration is carried out. The fixed
auxiliary parameters are held at their true values, except for
Df, which is set to 2.1. Figure 7a shows the full posterior in
the case where all auxiliary parameters were integrated out at
the same time. As is expected, the CIs in this case are wider
than when only the fractal dimension has been marginalized.
The relative error between the CM estimate and the truth is
6.8 %, which is even lower than when using the correct aux-
iliary parameters (7.1 %). However, this is likely just a co-
incidence related to, e.g., the chosen parameter ranges for
marginalization and not something to be expected in general.
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Table 1. True values for the auxiliary parameters that were used to simulate synthetic data and the range over which they are allowed to vary
when marginalizing.

Parameter True value Prior range

Temperature T 250 °C 230–270 °C
Fractal dimension Df 1.7 1.5–2.2
Primary particle diameter d1 27 nm 20–34 nm
Hamaker constant A 2.0× 10−19 J 1.0–5.0× 10−19 J
Flow velocity vf 3.5 ms−1 3.2–3.8 ms−1

Figure 4. Synthetic data. (a) Simulated noisy data, model fit corresponding to the MAP estimate, and standard deviation of the measurement
noise. (b) MAP estimate and 95 % posterior credible interval of the initial PSD, the MAP estimate propagated through the sampling line, and
the true initial PSD.

To visualize the effects of uncertainties in different aux-
iliary parameters, let us focus on the posterior of a single
size bin, i.e., a marginal posterior, which can be plotted as
a histogram. Figure 7b shows these marginal posteriors at
the sixth size bin (corresponding to dm = 12.40 nm) of five
cases, where either the flow velocity, Hamaker constant, frac-
tal dimension, all of the auxiliary parameters, or none of the
auxiliary parameters has been marginalized. Note that the
particle number in Fig. 7b is shown on the x axis, and the
y axis now denotes the posterior probability density. The
marginalization of temperature and the primary particle di-
ameter is not shown because their effect on the posterior was
minimal. Over the considered integration ranges, the effects
of fractal dimension and the Hamaker constant were larger
than that of the flow velocity, but in each case the marginal-
ization increased the width of the CIs. Marginalizing all aux-
iliary parameters at the same time had naturally the largest
effect.

4.3 Fuel-operated auxiliary heater measurement

The measurement campaign by Oikarinen et al. (2022) was
carried out in February 2021 in Finnish winter conditions
(−19 to −7 °C) over several days and with multiple vehi-

cles. For the scope of this paper, we chose a measurement
of one of the vehicles, a gasoline-powered 2019 Volkswagen
Golf, to analyze as an example. The vehicle had an original
equipment manufacturer (OEM)-installed AH manufactured
by Webasto Ltd. Emissions of the AH were measured over a
half-hour period, which included a cold start and shutdown
of the AH. The EEPS was set to measure at 1 s intervals, lead-
ing to a total of around 1900 measurements. A more detailed
description of the setup and analysis of the EEPS-inverted
data is found in the original paper.

As mentioned earlier, computing the Laplace approxima-
tion is much faster than doing MCMC sampling and was
therefore used to invert the dataset. MCMC was carried out
at a few selected measurement points, discussed later. Dis-
cretization of the inversion model was set to 16 bins per
decade so that the output bins were the same as those of the
EEPS. The prior parameters were also kept the same as in
the synthetic data inversion. However, because the choice of
prior is subjective to some degree, in Sect. 5 we will briefly
discuss different choices for the prior parameters and their
influence on the PSD estimates. Further, because the data ex-
hibit temporal smoothness, we used the previous MAP esti-
mate as an initial guess for computing the next one, which
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Figure 5. Synthetic data. The full MCMC chain, shown in (c), of the log number concentration of the first size bin and two zoomed-in
sections showing (a) the beginning of the chain which is still in burn-in and (b) part of the chain when it has reached the steady state. (d) CM
estimate and posterior credible intervals calculated with MCMC using the true auxiliary parameters.

Figure 6. Synthetic data. (a) Posterior distribution with fractal dimension set to an incorrect value. (b) Posterior distribution with fractal
dimension marginalized.

reduced the number of Gauss–Newton iterations required to
minimize the cost function. Inverting the whole dataset took
2 min and 20 s.

The MAP estimates of the initial PSD for the duration
of the whole measurement are shown in Fig. 8. The results
are qualitatively similar to the ones obtained directly from
the EEPS, discussed in Oikarinen et al. (2022), where after
startup, the AH emissions are relatively stable, followed by
a burst of sub-20 nm particles during shutdown. However,
there is a large difference in the total PN. Compared to the
(diffusion-corrected) EEPS estimates, the total PN is on av-
erage 50 %–100 % higher in the MAP estimates, varying over
the measurement period with a peak 230 % higher during
the AH shutdown. Because coagulation affects the particle
population differently depending on the particle size, also
the ratio of PN between the MAP and EEPS estimates de-

pends on the particle size. This is visualized in Fig. 9, which
shows the ratio of PNs in the MAP and EEPS estimates for
a few ranges of particles sizes. The number of particles un-
der 20 nm may be over 3 times higher with the sampling line
modeled, whereas the number of particles over 100 nm is typ-
ically reduced by up to 50 %.

To compare the MAP estimates and EEPS output in more
detail, let us analyze the two time instants shown as dashed
red lines in Fig. 8. The time instant at Line 1 in the mid-
dle of the measurement corresponds to the steady state, and
the time instant at Line 2 at the end is the time when the
burst of sub-20 nm particles was at its peak. The Laplace ap-
proximations and the corresponding data fits at these points
are shown in Figs. 10 and 11. First, in both examples, mod-
eling the sampling line increases the number of the small-
est particles in the estimates significantly while reducing the
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Figure 7. Synthetic data. (a) Posterior with all auxiliary model parameters marginalized. (b) Marginal posteriors of size bin number 5
(12.40 nm) with different auxiliary parameters marginalized.

Figure 8. The MAP estimates for the initial PSD for a measurement of AH exhaust emissions of a 2019 Volkswagen Golf. Lines 1 and 2
denote measurement times analyzed in more detail.

number of larger particles. Second, the PSDs after the sam-
pling line are close to the PSD estimates from the EEPS, as
they should be if our inversion algorithm was working cor-
rectly. The differences between them can be mostly attributed
to the different inversion algorithms, choices of prior/regu-
larization parameters, and handling of measurement noise.
Inversion in the EEPS is based on a Tikhonov-regularized
Gauss–Markov least-squares solution (Mirme et al., 2007;
Mirme and Mirme, 2013; Wang et al., 2016a), but its details
are not public. Moreover, the EEPS sometimes rounds the
PSD estimates of some size bins down to zero, which can be
seen in both Figs. 10 and 11 as gaps in the dotted line (values
set to not a number (NaN) because of the log scale).

Finally, we used MCMC to marginalize the auxiliary
model parameters for the measurements at Line 1 and Line 2.
The marginalization was carried out simultaneously for all

five parameters over the ranges listed in Table 1. The results,
shown in Fig. 12, resemble those of the synthetic tests in that
the CM and MAP estimates are still close, but the 95 % CIs
in the marginalized case are wider especially for the smallest
particles.

5 Discussion

The analyzed synthetic and real measurements show that
sampling lines can have a major effect on the PSD when
measuring the emissions of fuel-operated auxiliary heaters.
The same observation obviously applies to any measurement
where the sampling line is long and/or the PN concentration
is high. When should one then be concerned about their mea-
surements being distorted and consider applying, for exam-
ple, the methods in this paper? The answer depends not just
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Figure 9. Ratio of PNs between the MAP and diffusion-corrected
EEPS estimates during the example measurement. The MAP esti-
mate of the number of small particles is 3 times that of the EEPS
estimate in the beginning, whereas the number of particles over
100 nm is only around half of that of the EEPS estimate.

on the sampling line and PN concentration, but also on fac-
tors such as the particle shape, density, and fluid they are
suspended in, which affect the coagulation rate and particle
diffusion. In the context of the specific numerical example
studied in this paper (see Fig. 4), our model shows that if the
length of the sampling line was reduced from 3.2 m to, say,
1 m, the true initial total PN between 5.6 and 562 nm would
still be about 33 % higher than what would be measured after
the sampling line. It could be possible to define an indicator
for a risk of distorted measurements based on the residence
time and measured PN, but this is out of the scope of the
present study.

A question regarding the inversion is if there is enough
benefit to sampling the true posterior with MCMC com-
pared to just computing the Laplace approximation. Based
on the results in Sect. 4, the answer is in most cases no; the
MAP and CM estimates are similar, and the Gaussian den-
sity seems to approximate the posterior well. Most impor-
tantly, computing the Laplace approximation is fast enough
that it could even be combined with the inversion algorithm
in the EEPS and still produce the estimates in real time, only
now taking into account the effect of the sampling line and
providing uncertainty estimates as well. A major benefit of
running MCMC is that parameters in the forward model that
we are uncertain of can be integrated out and their uncer-
tainty propagated to the PSD estimates. The trade-off is an
increased computation time. However, it could be possible
to account for this uncertainty in an approximative manner
while still retaining the speed of the Laplace approximation,
using the Bayesian approximation error method (Kaipio and
Somersalo, 2007; Kaipio and Kolehmainen, 2013), but this
has not been pursued in this work.

As mentioned earlier, the inverse problem of estimating
the PSD from measurements of currents is highly ill-posed
even without considering the sampling line, and hence the
uncertainty of the posterior depends to a large extent on the
prior assumptions. For example, as the correlation length l̃
(see Sect. 3.1) is increased, the posterior will be constrained
to more and more smooth solutions, which also constrains the
posterior uncertainty. Let us demonstrate this in Fig. 13 by
plotting the Laplace approximations of two posteriors which
differ only in the prior correlation length. Note how in ad-
dition to smoothing out the MAP estimate, increasing the
correlation length also decreases the width of the credible
intervals, i.e., decreases the posterior uncertainty.

A source of uncertainty related to coagulation that has
not been modeled in this work is the influence of parti-
cles larger and smaller than what we can measure, > 562
and < 5.6 nm, respectively, in the case of the EEPS. In the
measurable range, coagulation with these larger particles re-
sults in higher-than-modeled particle losses, whereas coag-
ulation with the smaller particles both introduces new parti-
cles at the lower measurable limit as well as causes particles
in the measurable range to grow faster than modeled. Hence,
the presence of particles larger than we can measure will lead
to underestimating the initial PSD, and the presence of par-
ticles smaller than we can measure will have the opposite
effect. According to a numerical simulation over a wide size
range, however, if we assume the PSD outside the measur-
able range to continue the downward trend that is seen, for
example, in Fig. 12a, its effect on the measured PSD is neg-
ligible.

Finally, there are a few loss mechanisms, including sam-
pling losses (extraction of the aerosol at the sampling loca-
tion), gravitational losses, inertial impaction, thermophore-
sis, and electrostatic deposition that may modify PN con-
centrations in a sampling line (Giechaskiel et al., 2012;
Hinds, 1999). Most of these are, however, likely negligible
in the case studied here and therefore not modeled. Sampling
losses, gravitational losses, and inertial impaction mainly af-
fect particles > 1 µm, which is larger than what the EEPS
can measure. On the other hand, inertial impaction can also
cause losses of nanometer-size particles, but these are at or
below the measured size range. Thermophoresis, the motion
of particles in a temperature gradient, is potentially a major
loss mechanism in sampling lines if there is a large temper-
ature difference between the exhaust gas and the sampling
line walls. In the measurement by Oikarinen et al. (2022),
the sampling line was heated to 250 °C, which is very close
to the temperature of the exhaust gas exiting the AH exhaust
pipe, and hence the thermophoretic losses are expected to be
minimal. Out of the mentioned loss mechanisms here, elec-
trostatic deposition has the potential to have a major effect
but at the same time is difficult to quantify because we do
not know the charge on either the soot particles or the sam-
pling line walls. We have hence ignored it in this paper but
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Figure 10. AH measurement at time instant 1 (Line 1 in Fig. 8). (a) Measured data, model fit corresponding to the MAP estimate, and
standard deviation of the measurement noise. (b) MAP estimate and 95 % posterior credible interval of the initial PSD, the MAP estimate
propagated through the sampling line, and the PSD estimate given by the EEPS.

Figure 11. AH measurement at time instant 2 (refer to the caption of Fig. 10).

recognize that this effect may result in even higher particle
losses than modeled so far.

6 Conclusions

In this article, we investigated how coagulation and wall dif-
fusion in a sampling line modify a sample’s particle size dis-
tribution and hence bias its measurement. Coagulation was
found to become a significant factor especially at high PN
concentrations because while the rate of wall diffusion is in-
dependent of the number concentration, the rate of coagula-
tion is approximately proportional to its square. As an exam-
ple of a high-PN case we studied the exhaust emissions of
a fuel-burning road vehicle auxiliary heater, but it is worth
noting that the presented method is applicable, and extend-

able, to any measurement where coagulation and/or any other
aerosol process (such as condensation or evaporation) is sus-
pected to affect the measurement. Through simulations and
examining real data we found that, in a typical measurement
setup, coagulation in the sampling line can reduce the total
PN by more than 50 % and the number of small particles
(< 20 nm) even by an order of magnitude. The initial parti-
cle size distribution, not yet biased by the sampling line, can,
however, be estimated from measurements that were done
after the sampling line, given that we have a model for the
processes in the sampling line.

Estimating the initial particle size distribution is an ill-
posed inverse problem which we solved using methods in
the Bayesian framework for inverse problems. In this frame-
work, we can incorporate prior information about the size
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Figure 12. AH inversion results with all auxiliary parameters marginalized using MCMC for (a) Line 1 and (b) Line 2.

Figure 13. The influence of prior correlation length shown as MAP estimates and 95 % CIs with (a) l̃ = 8/16 and (b) l̃ = 12/16. The overlaid
dotted lines are the MAP estimates from the neighboring figure for an easier comparison.

distribution and carry out a systematic calculation of the un-
certainty related to the estimates. Two approaches to explor-
ing the posterior probability density were tested: one where
the posterior is fully characterized by MCMC sampling and
another where the posterior is approximated as a Gaussian
distribution. These resulted in similar estimates for the ini-
tial PSD, but both approaches also had distinct advantages.
With the Gaussian approximation the inverse problem could
be solved in a computationally efficient manner so that com-
puting the estimates of the initial size distribution and its un-
certainty could be done in real time even with measurement
devices that have fast response times (1–10 Hz, for example).
Using MCMC, on the other hand, we were able to take into
account the (possible) uncertainty in the parameters of the
coagulation and diffusion models, such as particle shape, us-
ing marginalization. This results in uncertainty estimates that
are more consistent with what we assume to know about the

problem but are computationally more demanding to calcu-
late.

In conclusion, when the number concentration is high and
the particles are small, the effect of coagulation in sampling
lines should be taken into account when carrying out PSD or
PN measurements. Otherwise, the particle numbers may be
severely underestimated. Further, estimates of the PSDs have
major uncertainties associated with them that traditional, de-
terministic inversion methods do not convey. Bayesian meth-
ods for uncertainty quantification could therefore prove use-
ful in assessing the health and environmental impacts of fine
particles in the future.

Code and data availability. The current version of SLIC is avail-
able from the project website under the MIT license: https://github.
com/mniskanen/sampling-line-inversion (last access: 12 February
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2025). The exact version of the model and the input data and
scripts to run the model and to produce the results and plots for
all the simulations presented in this paper are archived on Zenodo:
https://doi.org/10.5281/zenodo.12188947 (Niskanen, 2024).
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