Articles | Volume 18, issue 9
https://doi.org/10.5194/gmd-18-2609-2025
https://doi.org/10.5194/gmd-18-2609-2025
Model description paper
 | 
14 May 2025
Model description paper |  | 14 May 2025

PaleoSTeHM v1.0: a modern, scalable spatiotemporal hierarchical modeling framework for paleo-environmental data

Yucheng Lin, Robert E. Kopp, Alexander Reedy, Matteo Turilli, Shantenu Jha, and Erica L. Ashe

Model code and software

PaleoSTeHM v1.0: a modern, scalable spatio-temporal hierarchical modeling framework for paleo-environmental data (v1.0) Yucheng Lin et al. https://doi.org/10.5281/zenodo.12730140

Download
Short summary
PaleoSTeHM v1.0 is a state-of-the-art framework designed to reconstruct past environmental conditions using geological data. Built on modern machine learning techniques, it efficiently handles the sparse and noisy nature of paleo-records, allowing scientists to make accurate and scalable inferences about past environmental change. By using flexible statistical models, PaleoSTeHM separates different sources of uncertainty, improving the precision of historical climate reconstructions.
Share