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Abstract. Geological records of past environmental change
provide crucial insights into long-term climate variabil-
ity, trends, non-stationarity, and nonlinear feedback mech-
anisms. However, reconstructing spatiotemporal fields from
these records is statistically challenging due to their sparse,
indirect, and noisy nature. Here, we present PaleoSTeHM,
a scalable and modern framework for spatiotemporal hier-
archical modeling of paleo-environmental data. This frame-
work enables the implementation of flexible statistical mod-
els that rigorously quantify spatial and temporal variabil-
ity from geological data while clearly distinguishing mea-
surement and inferential uncertainty from process variabil-
ity. We illustrate its application by reconstructing temporal
and spatiotemporal paleo-sea-level changes across multiple
locations. Using various modeling and analysis choices, Pa-
leoSTeHM demonstrates the impact of different methods on
inference results and computational efficiency. Our results
highlight the critical role of model selection in addressing
specific paleo-environmental questions, showcasing the Pa-
leoSTeHM framework’s potential to enhance the robustness
and transparency of paleo-environmental reconstructions.

1 Introduction

As humans push the planet’s climate and biosphere in-
creasingly far outside the range of our species’ experience,
the environmental reconstructions derived from the geologi-
cal record provide critical out-of-sample information to test

the physical models used to project future environmental
change. However, as environmental records, geological data
are sparse, often noisy, and indirect (PAGES2k Consortium,
2017; Shennan, 2015). Reconstructing paleo-environmental
fields is thus a critical and challenging statistical task (Tin-
gley et al., 2012).

From a modeling perspective, spatiotemporal hierarchical
statistical models provide a natural, conceptually straight-
forward framework for reconstructing paleo-environmental
signals (Ashe et al., 2019; Cressie and Wikle, 2015; Tin-
gley et al., 2012). Hierarchical statistical models, often em-
ployed within a Bayesian framework, decompose the various
sources of random variation contributing to individual ob-
servations into distinct levels, thereby providing a clear ar-
ticulation of the assumptions underlying the statistical analy-
sis. They have been increasingly used to model paleo-climate
fields from geological proxies, which are naturally occur-
ring physical characteristics or chemical markers that can
be used to reconstruct past climate and environmental con-
ditions, such as temperature and precipitation, from sources
like tree rings and corals (Walter et al., 2022; PAGES2k Con-
sortium, 2017). These applications have proven crucial in
assessing the robustness of scientific knowledge of past cli-
mate and placing changes in the modern, instrumentally ob-
served period in the context of longer-term variability. For
example, they have shown an increasing influence of ice melt
and thermal expansion on the global mean sea level (GMSL)
since 1860 CE (Walker et al., 2021), that GMSL rise over the
20th century was faster than during any century in at least
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3000 years (Kemp et al., 2018; Kopp et al., 2016), and that
several early 21st-century Arctic summers exhibited warmth
unprecedented in at least 600 years (Tingley and Huybers,
2013).

Hierarchical models are in high demand within the
paleo-environmental research community. For example, in
the past few years, numerous papers have used tempo-
ral or spatiotemporal hierarchical models with Gaussian
process (GP) priors to interpret paleo-sea-level proxies
(e.g. Tan et al., 2023; Khan et al., 2022; Vacchi et al.,
2021). To meet the demand of the paleo-environmental
research community, this paper describes PaleoSTeHM
v1.0, which is designed to support the flexible and high-
performance implementation of spatiotemporal hierarchi-
cal modeling for paleo-environmental data. PaleoSTeHM
(https://github.com/radical-collaboration/PaleoSTeHM, last
access: 1 April 2025) is a framework built in the spirit of
open science and utilizes modern machine learning architec-
ture (e.g. Pollack et al., 2024). It is designed so users can
select not only various modeling choices, such as change-
point models for temporal analysis or GP for spatiotemporal
analysis, but also analysis choices, including fully Bayesian,
empirical Bayesian, and variational Bayesian analysis (more
details in Sect. 2), to investigate different research questions,
with different types of data and spatiotemporal scales (e.g.,
local to global, years to millennia) considered. In this paper,
some key terms and phrases are defined in Table 1.

2 Hierarchical statistical modeling

Hierarchical modeling is a statistical approach that separates
multiple sources of variability contributing to individual ob-
servations into distinct levels, enabling a clear understand-
ing and quantification of uncertainties. This section briefly
describes basic theory of hierarchical modeling in the paleo-
environment, using paleo-sea level as an illustrative example.
For more systematic introductions to hierarchical statistical
modeling of paleo-sea level and paleo-climate, readers can
refer to Ashe et al. (2019) and Tingley et al. (2012).

Bayesian statistics denotes a statistical theory that uses
Bayes’ theorem to update probabilities conditioned on data
and prior knowledge. Based on Bayes’ theorem (Laplace,
1810), the conditional probability of the observed data (y)
can be derived from the conditional probability of unknown
parameter(s) or process(es) (θ ):

p(θ |y)=
p(y|θ)p(θ)

p(y)
, (1)

where p denotes “probability” and | represents “given”. The
likelihood function, p(y|θ), represents the probability of ob-
serving the data y given the parameter(s) or process(es) θ
of the model. The prior distribution, p(θ), captures a priori
beliefs about the unknown parameter(s) or process(es) before
any data are observed. The term p(y), known as the marginal

likelihood (or evidence), is the probability of the observed
data averaged over all possible parameters or processes:

p(y)=

∫
p(y | θ)p(θ)dθ. (2)

Given the observations, the posterior distribution, p(θ |y),
reflects the updated beliefs about the parameter(s) or pro-
cess(es) after considering the data. Since the marginal like-
lihood p(y) is often intractable and remains constant for a
given dataset, we use the simplified form of Bayes’ theorem,
where the posterior distribution is proportional to the product
of the likelihood and the prior:

p(θ |y)∝ p(y|θ)p(θ), (3)

where ∝ indicates “is proportional to”.
A basic hierarchical statistical model distinguishes the

change in observations from both its inherent variability and
the observational noise. These models achieve probabilistic
uncertainty estimation for time series and/or spatial fields by
treating observed data as conditional on a latent (unobserved)
process and unknown parameters, enabling separate quantifi-
cation of uncertainties at each level through the application of
Bayesian conditional probabilities. Each level of the model
quantifies uncertainties independently, necessitating careful
evaluation of their respective sources. Generally, three levels
are defined: the data level, the process level, and the parame-
ter level.

p(f,θs,θd | y)∝ p(y | f,θd)︸ ︷︷ ︸
data model

· p(f | θs)︸ ︷︷ ︸
process model

· p(θd ,θs)︸ ︷︷ ︸
parameter model

(4)

Taking paleo-relative sea-level (RSL) change as an exam-
ple, the data-level model defines the relationship between
the latent (unobserved) RSL process (f ) and the observed
RSL data (instrumental and/or proxy), y, while accounting
for measurement, inferential (e.g., arising from converting a
proxy’s elevation to a distribution of RSL), and dating un-
certainties (often inherited from geochronology techniques;
Reimer et al., 2020; Wright et al., 2017). This level represents
the probability distribution of observing a particular sea-level
height at a given age, conditioned on the underlying latent
process and the associated uncertainties, encapsulated by the
data-level parameters, θd .

The process level distinguishes the underlying phe-
nomenon of interest and its inherent variability from the
noisy observation captured at the data level. This model in-
tegrates scientific understanding and associated uncertainties
into the estimation of the true RSL process conditioned on
model parameters, θs . These parameters may represent unob-
served physical model parameters (e.g., Earth’s rheology in
a glacial isostatic adjustment (GIA) model), statistical model
parameters (such as the rate of change in a sea-level model),
or hyperparameters (parameters of a prior distribution, such
as length scale and variance in a GP model). At the foun-
dational level, the parameter model specifies the prior distri-
bution for all unknown parameters, effectively capturing the
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Table 1. Definitions of relevant terms in this study. This paper employs terminology based on Ashe et al. (2019).

Term Meaning

Analysis choices Decisions on how to implement a specific model structure, including the selection of deterministic or probabilistic
methods (e.g., Bayesian analysis), and approaches to incorporate temporal uncertainty, such as errors-in-variables
frameworks or noisy-input methods

Auto-differentiation Automatic differentiation, a set of computational techniques to automatically evaluate the partial derivative of a function

Bayesian statistics A statistical theory that uses Bayes’ theorem to update probabilities conditioned on data and prior knowledge

Conditional probability A measure of the probability of an event occurring, given that another event is already known to have occurred

Continuous core Near-continuous records from a single core of sediment or a single coral reef

Covariance function Defines prior beliefs about the relationship or correlation between variables

Data level Model representations of the relationship between the phenomenon and observed data

Errors-in-variables (EIV) A fully Bayesian framework that accounts for measurement uncertainty in independent variables

Error Difference between a measurement and the true value

Empirical Bayesian analysis An analysis choice to estimate the prior from data by fixing higher-level parameters at their most likely values, typically
determined using maximum likelihood estimation

Fully Bayesian analysis An analysis choice that assigns prior distributions to all model parameters, combining prior knowledge and observed
data to shape the posterior distribution. Since the posterior is often analytically intractable, MCMC methods are used
to approximate it

Gaussian process (GP) A stochastic process that generalizes the multivariate Gaussian distribution to continuous time and space, defined by
mean and covariance functions

GPU acceleration A computational technique that leverages graphics processing units (GPUs) to significantly accelerate machine learning
computational processes

Glacial isostatic adjustment (GIA) Solid Earth deformation (induced by Earth surface water mass redistribution) and gravitational and rotational field
variation

Hierarchical model A statistical framework that partitions the multiple random effects that lead to individual observations into different
levels

Hyperparameter Parameter of a prior distribution

Isotropy A property of having identical statistical characteristics in all directions

Likelihood The probability of observing the given data as a function of the model parameters

Markov chain Monte Carlo (MCMC) Techniques used to generate random variables, perform complicated calculations, and simulate complicated distribu-
tions through random sampling in Bayesian models

Noisy input A framework that applies a first-order Taylor series approximation to account for errors in the independent variable
(e.g., time), thereby translating these into equivalent errors in the dependent variable

Non-parametric model A model that does not involve any assumptions about the functional form of the relationship between variables

Optimization The process of iteratively improving the accuracy of a machine learning model, lowering the degree of error

Parameter A quantity used in mathematical equations, computer programs, physical models, and other scientific applications to
describe the characteristics of a system or process

Parameter level Model representations of prior beliefs about parameters used to control the behavior of a statistical and/or physical
model at different levels of the hierarchy

Physical model A class of model based on physical principles to describe natural phenomena, typically using mathematical representa-
tions of a system or process that uses numbers and equations to describe physical conditions

Probabilistic programming A programming paradigm that integrates probabilistic models and inference algorithms into standard programming lan-
guages, enabling users to define complex statistical models and automatically perform inference on uncertain variables

Parametric model A model that explicitly assumes a specific functional form or mathematical relationship between variables, defined by
a fixed set of parameters that summarize the underlying process

Process level Model representations of the underlying processes responsible for the data generation

Posterior distribution A type of conditional probability that results from updating the prior probability with observational information sum-
marized by the likelihood

Prior distribution The assumed probability distribution before any observational evidence is taken into account, which can be uninforma-
tive or subjective based on a priori knowledge

Residual The difference between an observed and a modeled or predicted value
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Table 1. Continued.

Term Meaning

Relative sea level (RSL) Vertical distance between the solid Earth surface and the ocean surface. In the paleo-sea-level context, RSL is typically
measured relative to present day, where a positive value indicates a higher RSL and a negative value indicates a lower
RSL

Smoothness The characteristic of a process that reflects the gradualness of its variations over time or space, often controlled by the
kernel’s differentiability in Gaussian process models

Sampling covariance function A function that describes the covariance structure of a random process, derived from the variability observed in a set of
model ensembles or sampled data

Space–time separability A property of processes where the spatial and temporal components of the covariance function are treated as indepen-
dent, so the covariance is expressed as a product of purely spatial and purely temporal functions

Stationarity A property of processes or signals where their statistical properties, like mean and variance, remain consistent over time
or space

Uncertainty A parameter defining the range within which a measured value is likely to fall, given a specified probability.

Teleconnection A causal connection or correlation between meteorological or other environmental phenomena which occur a long
distance apart

Variational Bayesian analysis An analysis choice that approximates the full posterior distribution with a simpler parametric distribution, transforming
Bayesian inference into an optimization problem to reduce computational expense while estimating uncertainty

White noise Serially uncorrelated random variation (zero mean and finite variance)

essential characteristics of both the data and process levels
through the unobserved parameters.

In addition to constructing models at the data, process, and
parameter levels, often referred to as modeling choices (Ashe
et al., 2019), it is essential to choose an appropriate analysis
choice for a specific model. This involves decisions regarding
the implementation of a model structure, such as determin-
istic methods or probabilistic methods like Bayesian anal-
ysis. Deterministic methods, such as least-squares analysis
(Wilks, 1938) and likelihood maximization (Aitken, 1936),
rely on fixed relationships between states and events with-
out incorporating randomness into the modeling process. In
contrast, probabilistic methods, like Bayesian analysis (Hast-
ings, 1970), account for uncertainty explicitly by represent-
ing model parameters and outputs as probability distribu-
tions, enabling flexible and robust uncertainty quantifica-
tion. Analysis choices are also integral to addressing how
measurement uncertainties, particularly those arising from
geochronological techniques (i.e., input uncertainty), are in-
corporated and managed within the model. This ensures that
the uncertainty is properly quantified and reflected in the fi-
nal analysis outputs (Ashe et al., 2019). The selection of
modeling and analytical choices should consider the prob-
lem’s complexity, data size and resolution, computational re-
sources, and prior knowledge.

3 Software architecture

This section provides a comprehensive overview of Pale-
oSTeHM, detailing its foundational model implementation
(Sect. 3.1), the basic architecture for a typical PaleoSTeHM

experiment (Sect. 3.2), and the development of PaleoSTeHM
modules (Sects. 3.3, 3.4, and 3.5).

3.1 Model implementation

PaleoSTeHM is designed to be a functionally extensible and
high-performing toolkit for modeling paleo-data. It is fully
open-source and developed under a four-layer structure to
maintain a flexible and generic design that is agile to future
development (Fig. 1). The four layers, shown from bottom
to top in Fig. 1) are (L1) computing platforms, (L2) machine
learning platforms, (L3) PaleoSTeHM modules, and (L4) Pa-
leoSTeHM users. At the fundamental level, PaleoSTeHM uti-
lizes computational power from various platforms (L1), such
as clouds, clusters, and high-performance computing sys-
tems, to ensure scalability and flexibility for diverse appli-
cations. Built upon L1, L2 employs Python as the user inter-
face language, leveraging PyTorch (Paszke et al., 2019) and
Pyro (Bingham et al., 2019) as its high-performance machine
learning platforms. The fast-evolving ecosystem of these
popular machine learning platforms enables PaleoSTeHM
to support probabilistic programming, auto-differentiation,
GPU acceleration, and state-of-the-art optimization algo-
rithms, making it highly efficient and adaptable to a variety
of paleo-environmental statistical tasks.

The core toolkit and development reside in L3, which
comprises modules that integrate existing machine learn-
ing capabilities from L2. This layer includes three primary
components: (1) the modeling choices module, which pro-
vides options for data-, process-, and parameter-level mod-
eling (Sect. 3.3); (2) the Gaussian process kernel module,
a sub-module of the modeling choices module that sup-
ports kernel construction using GP priors (Sect. 3.4); and
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Figure 1. Schematic illustration of the four-layer structure of Pale-
oSTeHM. L1 specifies various computing platforms (clouds, clus-
ters, and HPC); L2 comprises machine learning platforms (Pyro
(Bingham et al., 2019) and PyTorch (Paszke et al., 2019)); L3 in-
cludes PaleoSTeHM modules (modeling choices, GP kernel, and
analysis choices; see Fig. 2); and L4 consists of the user layer, fa-
cilitating interaction with external packages and tools for practical
applications and scientific inquiries.

(3) the analysis choices module, which incorporates meth-
ods to propagate temporal uncertainty into inference results
(i.e., temporal uncertainty treatment) and Bayesian inference
(Sect. 3.5). These modules enable flexible and efficient spa-
tiotemporal hierarchical modeling for a wide range of paleo-
environmental applications.

We anticipate PaleoSTeHM interacting with external pack-
ages and/or tools for practical applications and address-
ing scientific questions on the PaleoSTeHM user layer (L4,
Fig. 1). Here, “External Packages” refers to external Python
libraries, which provide various pre-processing and post-
processing data functions. For example, in PaleoSTeHM tu-
torials (see Sect. 4), we use SciPy (Virtanen et al., 2020)
for interpolation and Matplotlib (Hunter, 2007) for visual-
ization. “Tools” represents frameworks and services adapted
by other developers to integrate PaleoSTeHM capabilities
into their toolkits (e.g., Framework for Assessing Changes
To Sea-level (FACTS); Kopp et al., 2023). Such plug-in im-
plementations will make it easy for users drawn from any of
the PaleoSTeHM categories to use, extend, or contribute to
core capabilities for various scientific applications.

3.2 PaleoSTeHM modeling workflow

Constructing and optimizing a hierarchical model within Pa-
leoSTeHM involves a workflow consisting of five sequential
selection steps (outlined in Fig. 2), with a focus on model-
ing and analysis choices in layer L3 as depicted in Fig. 1.
Typical PaleoSTeHM experiment steps include (1) selecting
data-level models for paleo-environmental data, (2) choosing
an appropriate process-level model to describe the latent pro-
cess, (3) defining prior distributions for each model param-
eter, (4) selecting a temporal uncertainty treatment method,
and (5) choosing a Bayesian inference method (Fig. 2). These
five steps reflect core functionalities of PaleoSTeHM mod-
ules (layer L3 shown in Fig. 1). To support the effective
selection of modeling and analytical choices provided by
PaleoSTeHM for various paleo-environmental applications,
the fundamental theories and example applications for each
modeling choice are introduced in Sect. 3.3.

3.3 Modeling choices module

As mentioned above, spatiotemporal hierarchical modeling
experiments begin with selecting an appropriate modeling
choice for a specific problem. This module offers a variety of
commonly used temporal and spatiotemporal modeling op-
tions for paleo-environmental studies (Fig. 2). While this pa-
per does not include a dedicated section for parameter-level
modeling, the integration of Pyro (Bingham et al., 2019) and
PyTorch (Paszke et al., 2019) enables users to define prior
probabilities for data- and process-level model parameters
using a wide range of commonly used probability distribu-
tions. This functionality allows users to customize priors as
needed for their specific modeling requirements.

3.3.1 Data-level modeling

The data level of a hierarchical statistical model characterizes
the relationship between true (unobserved) target signals and
uncertain observations due to multiple error sources. For ex-
ample, in reconstructing past sea-level changes, the data level
addresses uncertainties arising from elevation measurements,
indicative range, and leveling errors (Khan et al., 2017). Ad-
ditionally, proxy data are often subject to inherent temporal
uncertainties stemming from various geochronological meth-
ods (e.g., radiocarbon dating; Reimer et al., 2020; Heaton
et al., 2020). This relationship between observed data and la-
tent process can be formally expressed as

yi = f (xi, ti)+ ε
y
i , (5)

ti = t̂i + ε
t
i , (6)

where yi is the observed data, xi is the noise-free spatial lo-
cation of ith observation, ti is its true age, t̂i is the mean
observational age, and εti and ε

y
i are uncertainties in the

age measurement and target signal reconstruction. For paleo-
environmental studies, a commonly made assumption is that
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Figure 2. A schematic illustration of the PaleoSTeHM modeling workflow, providing more detailed information about layer L3 in Fig. 1.
The large numbered boxes represent five steps to build a hierarchical model, and it should be noted that the data-level model is specified
within each process-level model in PaleoSTeHM v1.0. The smaller boxes indicate different modeling choices within each step. Gray boxes
denote available choices that apply to other gray boxes in different steps. Red and purple boxes represent a specific data-level model and
temporal uncertainty treatment method corresponding to a specific process-level model (e.g., temporally linear and Gaussian process models),
as indicated by colored arrows. The dashed gray box (“Physical model”) highlights that no specific physical model is implemented in
PaleoSTeHM. Instead, PaleoSTeHM utilizes outputs from other physical models (see Sect. 3.3.2).

both εti and εyi are multivariate normally distributed with zero
mean and heteroscedastic covariance, so εy can be expressed
as

εy ∼N (0,6y), (7)

6y =


var(y1) cov(y1,y2) · · · cov(y1,yn)

cov(y2,y1) var(y2) · · · cov(y2,yn)
...

...
. . .

...

cov(yn,y1) cov(yn,y2) · · · var(yn)

 , (8)

where n indicates the number of observations available;
var(·) represents the variance of specific data; and cov(·, ·)
stands for covariance between two data points, which is of-
ten assumed to be 0 when all data are assumed to be inde-
pendently distributed. However, in practice, strong correla-
tions in paleo-environmental data can emerge from shared
processes or dependencies, such as sedimentary records from
the same core or data dated using age–depth modeling tech-
niques, where shared depositional history introduces corre-
lated uncertainties (Cahill et al., 2015; Blaauw, 2010). Ig-
noring these correlations can lead to biased estimates and
reduced model reliability. Adapting the likelihood structure
to account for covariance, for example, by using a structured
covariance model from age–depth modeling, allows more ac-
curate and robust inference (Cahill et al., 2015).

In PaleoSTeHM v1.0, the data-level model is specified
within each process-level model, which is assumed to be nor-
mally and independently distributed (Fig. 2). For illustrative
purposes, PaleoSTeHM v1.0 also includes an implementa-
tion of uniform likelihood together with a temporally linear
model (see Fig. 2 and Sect. 4.1). For specific problems re-
quiring different likelihood structures, users can replace the
likelihood sampling code (a probabilistic random-sampling

operation in Pyro) to utilize most of the standard probability
distributions supported by Pyro, such as multivariate normal
distributions with covariance structures mentioned above.

3.3.2 Process-level modeling

The process level is a hierarchical layer where the variabil-
ity in the paleo-environment signal is modeled and, in cer-
tain cases, decomposed. The process level reflects a scien-
tific understanding of environmental change processes. Pale-
oSTeHM v1.0 offers multiple process-level models for tem-
poral or spatiotemporal data analysis.

Temporally linear models. Starting with temporal data
analysis, probably the most straightforward method for
estimating linear trends and the average rate of paleo-
environmental change is to fit a linear model to the observed
data over time (i.e., straight-line model). For example, Engel-
hart et al. (2009) and Islam et al. (2021) applied linear regres-
sion to discrete paleo-environment data to estimate, respec-
tively, the average rate of sea-level, rainfall, and temperature
change during specific time intervals. Over those periods, the
observations were assumed to be well represented by a linear
trend. A temporally linear model can be expressed as

f (t)= α+βt, (9)

where f (t) is the modeled true RSL, β is the constant rate
of change in paleo-environmental variable, and α is the in-
tercept (Ashe et al., 2019).

Change-point models. Change-point models describe a
single time series by partitioning it into distinct, contigu-
ous segments, each characterized by a linear trend over time
(Carlin et al., 1992). These models are widely used to iden-
tify the timing of abrupt changes in past climate conditions.

Geosci. Model Dev., 18, 2609–2637, 2025 https://doi.org/10.5194/gmd-18-2609-2025
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For instance, Caesar et al. (2021) and Kemp et al. (2015), re-
spectively, employed change-point models to determine the
onset of reduced strength in the Atlantic Meridional Over-
turning Circulation and the commencement of modern sea-
level rise in Connecticut. With m change points, the change-
point model can be written as

f (t)=


α1+β1(t − γ1), when t < γ1

αj−1+βj (t − γj−1), when γj−1 < t < γj

αm+βm−1(t − γm), when γm ≤ t,

(10)

where γk represents a change point, αk denotes the expected
value of RSL at that change point, and βj indicates the rate
of RSL change for each of the m+ 1 segments. This model
incorporates a continuity constraint ensuring that αk equals
αk−1 plus the product of βk−1 and the difference between γk
and γk−1. In PaleoSTeHM, the change-point model is imple-
mented to allow users to specify any number of change points
(i.e., m in Eq. 10) in the model.

Gaussian process models. GP modeling is a non-
parametric Bayesian approach that has been frequently used
to infer temporal (or spatiotemporal) variation in paleo-
environmental change, including magnitude and rate (Ashe
et al., 2019). In models with GP priors, the relationships
among any set of points (e.g., over time or across both space
and time) are described by a multivariate normal distribu-
tion, fully characterized by a mean function and a covariance
function (or kernel). Unlike parametric models, such as lin-
ear or change-point models used for spatiotemporal analysis,
GP models offer greater flexibility because the shape of the
curve is determined by the covariance matrix, which reflects
the relationship between data points and is inferred directly
from the data, rather than being restricted by a predefined
functional form.

GP models have gained considerable traction in paleo-
environmental science, largely owing to their proficiency in
extracting meaningful insights from relatively small datasets.
They utilize a non-parametric framework to interpret intri-
cate data patterns effectively. For example, Kay et al. (2021)
utilized a GP model to assess herbivore richness for different
latitudes in Argentina. Apart from that, Walker et al. (2021)
estimated the trend and rate of RSL change across the US
Atlantic coast with a GP model. A spatiotemporal GP model,
which is defined by its mean function, µ(X), and covariance
function (i.e., kernel) K(X,X′), can be expressed as

f (X)∼ GP
(
µ(X),K

(
X,X′

))
, (11)

whereX indicates spatiotemporal location. A popular choice
for many paleo-environmental studies is using the zero-
mean function, indicatingµ(X)= 0 everywhere. In this case,
the predictions are only determined by covariance function
K(X,X′), which defines prior expectations about how infor-
mation is shared between points in different time and space,
which typically decays as the time and space differences in-
crease (Rasmussen and Williams, 2006).

Constructing the covariance function is a pivotal and chal-
lenging step in a GP model, as it significantly influences
the outcome of the inference results. However, justifying
the form of the covariance function in Gaussian processes
for paleo-environmental studies can be challenging because
the processes being modeled are influenced by a wide range
of spatial and temporal dependencies, many of which are
complex, non-stationary, and not well understood (Tingley
et al., 2012; Stein, 2012, 2005a). PaleoSTeHM addresses this
by incorporating a “GP kernel” module under the model-
ing choices module, designed to offer more flexibility and
customization extendability. This module provides a user-
friendly platform for creating and managing GP kernels,
streamlining the process of model construction, and enhanc-
ing the adaptability of the analysis to diverse problems. For
paleo-environmental applications, multiple choices of build-
ing kernels have been adopted in various studies (e.g. Walker
et al., 2021; Hay et al., 2015; Kopp et al., 2016, 2014, 2009),
and some examples are shown in Sect. 4.2.

Physical models. A physics-based model simulates real-
world changes with predictive capabilities anchored in the
causal mechanisms delineated by the laws of physics (Saltz-
man, 2001; Farrell and Clark, 1976). Comparatively, statis-
tical models mostly depend on data-driven correlations, of-
ten overlooking fundamental physical principles (e.g., mass
or energy conservation). Examples in paleo-environment re-
search include using global circulation models to understand
the response of the climate system to different climate forc-
ings (Kageyama et al., 2018) and employing ice sheet dy-
namic models to quantify past ice sheet response to cli-
mate change (DeConto and Pollard, 2016; Tarasov et al.,
2012). In the realm of modeling paleo-sea-level change, the
GIA model is a widely adopted tool to characterize sea-
level changes driven by the gravitational, rotational, and de-
formational (GRD) effects resulting from the redistribution
of ice and water mass (e.g. Lin et al., 2023a; Whitehouse,
2018). The predictive power of such a model is contingent
upon underlying formulation and core physical parameters
(Peltier et al., 2015; Kendall et al., 2005; Peltier, 2004), such
as the history of ice sheet fluctuations and the rheological
properties of the Earth’s interior for a GIA model (Lin and
Yousefi, 2025; Austermann et al., 2013). Validating the phys-
ical model against observational data should allow a more ac-
curate representation of spatially dependent patterns of sea-
level change, including those linked to sea-level fingerprints
(Lin et al., 2021; Mitrovica et al., 2001), in stark contrast to
statistical models that might merely presume correlation di-
minishes with distance (Walker et al., 2021).

Although PaleoSTeHM does not include a specific type
of physics-based model (Fig. 2), it offers multiple options
to incorporate physical model outputs into final estimates
(see examples in Sect. 4.2). Users can use PaleoSTeHM to
probabilistically calibrate physical model ensembles condi-
tioned upon observational data. For instance, latent paleo-
environmental processes can be modeled as a combination
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of physical model ensembles conditioned on different phys-
ical parameter combinations, using a Dirichlet distribution
prior. PaleoSTeHM also supports using a physical model as a
mean function in a GP model. In this context, the GP covari-
ance function essentially models the residuals – those pro-
cesses not captured by the physical model – between obser-
vations and the predicted mean function. Additionally, Pa-
leoSTeHM facilitates the construction of sampling covari-
ance functions derived from a physical model ensemble, fur-
ther enhancing its utility in model integration and assessment
(Hay et al., 2015). All of these capabilities are demonstrated
in Sect. 4.2, with accompanying source code provided on the
PaleoSTeHM GitHub page (see Code and data availability).

3.4 Gaussian process kernel module

The GP kernel module in PaleoSTeHM is a cornerstone
for modeling spatial and temporal variations in paleo-
environmental data based on GP priors (Figs. 1 and 2). It
includes a variety of widely used kernels as described in Ras-
mussen and Williams (2006). In paleo-environmental stud-
ies, examples of kernel applications include the linear (or
dot-product) kernel (Khan et al., 2017), radial basis function
kernel (Cahill et al., 2015), rational quadratic kernel (Turner
et al., 2023; Hay et al., 2015), Matérn kernel (Walker et al.,
2021; Kopp et al., 2016), and periodic kernel (Meltzner et al.,
2017). These kernels characterize features such as stationar-
ity, isotropy, smoothness, and periodicity in Gaussian pro-
cesses (Ashe et al., 2019). Detailed kernel information is
given in Table 2.

Each kernel possesses unique characteristics and necessi-
tates specific parameters (Table 2). For instance, the linear
kernel produces linear trends identical to a temporally lin-
ear model, suitable for modeling signals with long temporal
length scales (e.g., tectonic and GIA in Common Era and
future sea-level modeling; Kopp et al., 2016, 2014). The ra-
dial basis kernel and the Matérn family of kernels are highly
generalizable and allow specification of the degree of differ-
entiability (Table 2), making them suitable for representing
physical processes with different levels of smoothness. For
example, the GRD effects related to GIA are spatiotempo-
rally smooth, while sediment-compaction-induced sea-level
rise can be much more localized and rough (i.e., less differ-
entiable; Kopp et al., 2016; Mitrovica et al., 2011).

In the GP kernel module of PaleoSTeHM v1.0, all kernels
are designed for process-level modeling to capture temporal
and/or spatial correlations, except for the temporal and spa-
tial white noise kernels, which account for additional mea-
surement errors or unstructured variability by introducing se-
rially uncorrelated uncertainty at the data level (Eq. 5). Apart
from the linear kernel, all included kernels are stationary and
isotropic (Table 1). To enhance kernel construction flexibil-
ity, PaleoSTeHM supports combining different kernels, ei-
ther additively, multiplicatively, or both. Additive combina-
tions capture independent contributions from distinct pro-

cesses, such as long-term trends or periodic variations, treat-
ing them as separate effects. In contrast, multiplicative com-
binations create interactions between processes, resulting in
more structured patterns. For example, multiplying a peri-
odic kernel with a linear kernel produces a periodic varia-
tion with an amplitude that increases or decreases linearly
over time, effectively modeling phenomena where seasonal
patterns intensify or diminish progressively (Görtler et al.,
2019).

Designed for spatiotemporal data analysis, all GP kernels
in PaleoSTeHM support temporal data (represented as a one-
dimensional (1D) vector), and most of the kernels support
spatial data (represented as a two-dimensional matrix includ-
ing latitude and longitude; see Table 2). Temporal kernel cor-
relations are calculated using the one-dimensional Euclidean
distance between time points, while spatial kernel correla-
tions are derived from the one-dimensional geographical ra-
dial distance, calculated based on the spherical distance be-
tween pairs of longitude and latitude under the assumption of
a purely spherical Earth geometry. Users can choose to build
a temporal or spatial kernel by switching a parameter in each
kernel function.

3.5 Analysis choices module

To accommodate diverse computational resources and vary-
ing requirements for the trade-off between modeling ro-
bustness and computational demands, the analysis choices
module offers multiple methods for Bayesian inference of
model parameters as defined in the modeling choices mod-
ule (Fig. 2). This flexibility ensures users can optimize their
analyses based on available technology and specific model-
ing needs. Unlike deterministic methods (e.g., least-squares),
which have been extensively implemented in other studies
(e.g. Crichton et al., 2023; Lin et al., 2021), PaleoSTeHM fo-
cuses on developing Bayesian probabilistic approaches that
more effectively manage the inherent uncertainties associ-
ated with paleo-data.

3.5.1 Fully Bayesian analysis

A fully Bayesian analysis requires assigning prior probability
distributions to all model parameters, allowing them to take
on a range of values, potentially with different probabilities.
These priors can either incorporate informative prior knowl-
edge or remain uninformative and vague. Since the posterior
distribution is shaped by both the priors and the likelihood
of the observed data, it often becomes complex and analyti-
cally intractable. Markov chain Monte Carlo (MCMC) meth-
ods are crucial in this case, as they enable the efficient explo-
ration and approximation of the posterior distribution. Pale-
oSTeHM supports two advanced MCMC samplers, Hamil-
tonian Monte Carlo (HMC; Neal, 2011) and the No-U-Turn
sampler (NUTS; Hoffman and Gelman, 2014), which pro-
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Table 2. Summary of Gaussian process kernels in PaleoSTeHM, based on Stein (2012) and Rasmussen and Williams (2006).

Kernel name Supports spatial dataa Differentiability Equationb

Radial basis function Yes Infinitely differentiable k(X,X′)= σ 2 exp
(
−

1
2
|X−X′|2

`2

)
Rational quadratic Yes Infinitely differentiable k(X,X′)= σ 2

(
1+ |X−X

′
|
2

2α`2

)−α
Periodic No Infinitely differentiable k(X,X′)= σ 2 exp

(
−2 sin2(π(X−X′)/p)

`2

)
2/1 Matérn Yes Non-differentiable k(X,X′)= σ 2 exp

(
−
|X−X′|
`

)
3/2 Matérn Yes Once differentiable k(X,X′)= σ 2

(
1+
√

3 |X−X
′
|

`

)
exp

(
−
√

3 |X−X
′
|

`

)
5/2 Matérn Yes Twice differentiable k(X,X′)= σ 2

(
1+
√

5 |X−X
′
|

`
+

5
3
|X−X′|2

`2

)
exp

(
−
√

5 |X−X
′
|

`

)
Linear (or dot product) No Once differentiable k(t, t ′)= σ 2(t − γ ) · (t ′− γ )

Sampling covariance kernel Yes Not applicable k(X,X′)= Cov(m(X),m(X′)) c

Polynomial No λ times differentiable k(t, t ′)= σ 2(γ + t · t ′)λ

Constant No Not applicable k(X,X′)= σ 2

Temporal white noise No Not applicable k(t, t ′)= σ 2δ(t, t ′)

Spatial white noise Yes Not applicable k(x,x′)= σ 2δ(x,x′)

a All GP kernels can calculate temporal covariance, except the spatial white noise kernel. b X represents spatiotemporal location, incorporating both the age and spatial coordinates of the data; t
denotes the age of the sample; and x indicates the spatial coordinates. σ2 is variance; ` is the positive-characteristic length-scale parameter; α is the scale mixture parameter, when α→∞ and the
rational quadratic kernel is equivalent to the radial basis function kernel; γ is the offset or shift parameter, adjusting the baseline level of the kernel’s output; p is the periodicity parameter for the
periodic kernel, defining the cycle length of repeating patterns; and λ represents the degree of the polynomial, an integer determining the complexity of the model for the polynomial kernel.
c Cov(m(X),m(X′)) indicates the sampling covariance between outputs at different spatiotemporal points, derived from deterministic models under varying physical parameter assumptions.
Here, m(X) denotes the output at a specific location and time from a suite of physical models assuming different parameters.

vide more efficient sampling performance than traditional
Metropolis–Hastings MCMC (Hastings, 1970).

HMC significantly improves sampling efficiency over tra-
ditional Metropolis–Hastings MCMC by leveraging gradi-
ents of the probability distribution to guide the sampling
process, which involves generating random samples from
the underlying latent probability distribution. This method
reduces autocorrelation (the correlation between successive
samples in a Markov chain, indicating how dependent the
current sample is on previous ones), thereby increasing the
effective sample size (the number of independent samples,
accounting for autocorrelation) per iteration (a single step in
the sampling process where the algorithm generates a new
sample) and enabling faster convergence. Building on HMC,
NUTS further enhances efficiency by automatically adapt-
ing the path length (the distance traversed in parameter space
during a single Hamiltonian trajectory) and managing the
step size (the distance traveled in parameter space at each
leapfrog step during Hamiltonian dynamics; Bingham et al.,
2019). NUTS eliminates the need for manual tuning of these
parameters, facilitating more effective exploration of com-
plex, high-dimensional posterior distributions commonly en-
countered in Bayesian analysis.

Compared to other analysis choices such as empirical
Bayesian models or variational Bayesian models (Table 1),

a fully Bayesian model offers a more comprehensive esti-
mation of the uncertainties associated with model param-
eters (Piecuch et al., 2017). It also offers a direct frame-
work for sample age measurement uncertainty in an errors-
in-variables (EIV) manner (Dey et al., 2000). However, the
nature of MCMC-based samplers means they are computa-
tionally more demanding. Particularly within the EIV frame-
work, where the number of sampling parameters increases
linearly with data size, this leads to a polynomial increase
in the computational power required (Belloni and Cher-
nozhukov, 2009), which can be significant and unaffordable
when dealing with large datasets or complex models.

3.5.2 Empirical Bayesian analysis

Unlike fully Bayesian analysis, which requires full probabil-
ity distributions for prior and posterior, empirical Bayesian
analysis offers a practical alternative. This approach approx-
imates a fully Bayesian treatment where parameters at the
highest level of the hierarchy are fixed at their most likely
values rather than being integrated out. This optimization is
typically achieved using the maximum likelihood estimate,
leading to a posterior distribution that is conditional on the
data and these optimized parameters:

p
(
f |y, θ̂s, θ̂d

)
∝ p

(
y|f, θ̂d

)
p
(
f |θ̂s

)
. (12)
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Here, the posterior probability of the latent processes f is
inferred, assuming that the hyperparameters at the data and
process levels (θ̂d and θ̂s) are known and fixed. While the
existing code base allows explicit bounds to be set on hyper-
parameters for the maximum likelihood estimate (e.g. Ashe
et al., 2019; Kopp et al., 2016), it does not provide for an
explicit prior distribution for the parameters. In other words,
it only supports uniformly distributed prior information, lim-
iting the ability to incorporate informative prior knowledge.
By leveraging Pyro’s variational inference capabilities (de-
tails in Sect. 3.5.3), PaleoSTeHM enables users not only to
optimize hyperparameters using their maximum likelihood
estimate but also to define many commonly used distribu-
tions for each prior model parameter explicitly. This allows
optimization to be conducted in a maximum a posteriori
probability estimation manner, assuming the variational dis-
tribution is a Dirac delta function. In PaleoSTeHM, by de-
fault, the optimization is achieved using Adam, a stochastic
optimizer (Kingma and Ba, 2014). While empirical Bayesian
analysis generally requires fewer computational resources
than fully Bayesian methods, it is important to note that, as-
suming hyperparameters at the data and process levels are
known and fixed, it may lead to substantial underestimation
in the inference uncertainty (Piecuch et al., 2017).

3.5.3 Variational Bayesian analysis

Considering the computational expense required to perform
MCMC in fully Bayesian analysis and the limitations of em-
pirical Bayesian methods that fail to account for the uncer-
tainty of hyperparameters, PaleoSTeHM also supports varia-
tional Bayesian analysis, which emerges as an efficient in-
termediary. Rather than directly sampling from the poste-
rior distribution through MCMC, variational Bayesian meth-
ods aim to approximate the true posterior probability distri-
bution (p(f,θs,θd |y)) with a simpler, parametric probabil-
ity distribution (q(f |φ)). Thus, Bayesian inference is trans-
formed from a sampling challenge into an optimization prob-
lem – known as variational inference – requiring significantly
fewer computational resources while facilitating uncertainty
estimation (Wingate and Weber, 2013).

In PaleoSTeHM, variational Bayesian analysis is achieved
by optimizing the variational parameters φ to minimize the
Kullback–Leibler (KL) divergence, a metric to effectively
measure the difference between two distributions:

φ = argmin
φ

KL
[
q(f,θs,θd |φ)||p(f,θs,θd |y)

]
. (13)

For more details above KL divergence, readers can refer to
Blei et al. (2017). Adam facilitates this minimization, and the
variational distribution for PaleoSTeHM is a normal distribu-
tion by default. In contrast to MCMC-based fully Bayesian
analysis, which often requires computational power that in-
creases polynomially with the number of data points, the
optimization-driven approach of variational Bayesian anal-
ysis generally scales linearly (Ko et al., 2024; Hoffman and

Blei, 2015). Consequently, variational methods can handle
larger datasets more effectively, making them suitable for
large-scale problems prohibitively for full Bayesian analysis.

3.5.4 Incorporation of temporal uncertainty

PaleoSTeHM provides two methods to incorporate tempo-
ral uncertainty into final estimations. The first method uses
EIV framework (Cahill et al., 2015; Dey et al., 2000), which
directly incorporates temporal uncertainty through MCMC
sampling of the distribution. The second approach adopts the
noisy-input framework (McHutchon and Rasmussen, 2011),
which applies a first-order Taylor series approximation – a
linear expansion around each input point – to account for
errors in the independent variable, time, thereby translating
these into equivalent errors in the dependent variable:

f (xi, ti)≈ f
(
xi, t̂i

)
+ εti

∂f
(
xi, t̂i

)
∂t

. (14)

Here, t̂i and εti are the same as in Eq. (6), standing for
mean observational age and age uncertainty, respectively.
The integration of temporal uncertainty within PaleoSTeHM
is executed alongside each process-level model (Fig. 2). All
process-level models are implemented using an EIV frame-
work, while, for the GP models, both EIV and noisy-input
frameworks are available (Fig. 2).

3.6 Model validation

After implementing and optimizing a hierarchical model in
PaleoSTeHM, it is essential to perform a model validation
step to further ensure the robustness and reliability of the
trained model. This process involves evaluating how well the
model fits the observed data, assessing its predictive accu-
racy, and diagnosing potential issues such as convergence
problems. PaleoSTeHM includes a range of techniques for
model validation, such as residual analysis, posterior predic-
tive checks, MCMC convergence diagnostics (e.g., effective
sample size and Gelman–Rubin statistic; Gelman and Ru-
bin, 1992), visual inspections (e.g., optimization trace plots,
true vs. predicted plot), and simulation validation and cross-
validation methods. These tools allow users to critically ex-
amine the model’s assumptions, quantify uncertainties, and
compare competing models to select the most appropriate
one for their specific paleo-environmental application.

To complement these validation techniques, we demon-
strate their application in various case studies presented in
Sect. 4. Each case study incorporates specific model valida-
tion methods tailored to the modeling and analysis choices
used. For example, prior and posterior predictive checks are
employed to evaluate the performance of optimized mod-
els (Sect. 4.1.1); residual plots, weighted mean squared er-
ror (wMSE), and cross-validation are used to assess the per-
formance of different process-level models (Sects. 4.1.2 and
4.2); and effective sample size and the Gelman–Rubin statis-
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tic ensure good model convergence for MCMC-based anal-
yses (Sect. 4.1.3). Detailed implementations and usage of
these validation methods for various PaleoSTeHM experi-
ments, including those mentioned above but not covered in
detail in the following sections, are available in the Pale-
oSTeHM tutorials (see Code and data availability).

4 Case studies

This section presents illustrative case studies using a
tutorial format to demonstrate PaleoSTeHM’s usabil-
ity. All codes and data are accessible and actively
managed on the PaleoSTeHM GitHub page (https://
github.com/radical-collaboration/PaleoSTeHM, last access:
1 April 2025). The case studies include the following:

1. reconstruction of temporal sea-level changes using coral
reef data from the Great Barrier Reef with different
data-level models (Sect. 4.1.1),

2. reconstruction of temporal sea-level changes using salt
marsh data from New Jersey with different process-level
models (Sect. 4.1.2),

3. reconstruction of temporal sea-level changes using salt
marsh data from North Carolina with different Bayesian
inference methods (Sect. 4.1.3),

4. reconstruction of spatiotemporal sea-level changes us-
ing various geological proxies from the US Atlantic
coast with different process-level models (Sect. 4.2).

Although these examples focus on modeling paleo-sea level,
additional tutorials are available for analyzing other paleo-
environmental data, such as ocean temperature anomalies
and concentration of carbon dioxide.

The prior and posterior distributions and analysis choice
for each model are provided in Table A1. It should be noted
this section only briefly describes the modeling results; for
a more systematic analysis of paleo-environmental modeling
results based on different statistical techniques, the user can
refer to Ashe et al. (2019), PAGES2k Consortium (2019), and
Tingley et al. (2012).

4.1 Time series analysis

4.1.1 Data-level modeling

In this section, we examine the impact of the data-level
model on inference results. Although numerous paleo-
environmental applications commonly assume that proxy
reconstruction uncertainties are normally distributed (Ashe
et al., 2019; Khan et al., 2019; Tingley et al., 2012), certain
types of proxies may exhibit different forms of uncertainty.
For instance, coral reef sea-level proxies indicate past sea-
level changes through a quantifiable relationship between the

coral’s living-habitat depth and the concurrent sea level (Hi-
bbert et al., 2016). Representations of coral living-habitat
depth uncertainties are often modeled using either a normal
distribution (e.g. Khan et al., 2019) or a uniform distribution
(Lin et al., 2021). To illustrate such data-level impact on in-
ference results, we apply a temporally linear model within
an EIV framework to coral reef data from the Great Barrier
Reef (Yokoyama et al., 2018) using two alternative data-level
models. The first can be expressed as

ε
y

1 ∼ U(τl−ω1,τu+ω1), (15)

where U indicates a uniform distribution between lower and
upper ranges defined by specific coral species (τl and τu) and
an additional noise, defined by hyperparameter ω1, which
follows a prior distribution of

ω1 ∼ U
(
10−4,10

)
. (16)

The second data-level model can be represented as

ε
y

2 ∼N
(
µ2,σ

2
2 +ω

2
2
)
, (17)

where N indicates a normal distribution with mean µ2
and a standard deviation σ2, both of which are determined
by specific coral species, and ω2 is an additional noise
hyperparameter, following the same prior distribution as
ω1. The same prior distributions for each parameter are
used for both data-level models, which are represented as
non-informative uniform distributions. The characteristics of
these non-informative priors are evident in the prior predic-
tive check (Fig. A1), which reveals a wide and flat spread of
predictions, reflecting the absence of observational influence
at this stage.

For both models, the posterior distribution is determined
by 11 000 posterior samples drawn from a NUTS sampler,
with the first 1000 samples discarded as burn-in steps. The
posterior predictive checks (Fig. A1) illustrate that the pos-
terior predictions for both models align closely with the
observed data, suggesting successful model convergence.
It can be seen in Fig. 3 that, although the inference re-
sults from different data-level models are overall similar,
there are still some noticeable differences in the inferred
sea-level change trend and rate. Uniform and normal like-
lihoods yield average sea-level rates of 5.91 mmyr−1 (4.45–
7.38 mmyr−1; 90 % credible interval; CI) and 6.29 mmyr−1

(4.81–7.73 mmyr−1), respectively. These likelihood assump-
tions also produce considerably different additional noise pa-
rameter distributions. Therefore, users should select an ap-
propriate data-level model to better represent the specific
characteristics of different paleo-environmental data.

4.1.2 Process-level modeling

To demonstrate the impact of different process-level mod-
els on inferring paleo-sea-level time series, we use the same
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Figure 3. The impact of data-level models on temporal sea-level change inference at the Great Barrier Reef. Posterior probability density
functions of sea-level change rate (a), intercept (b), and standard deviation of additional noise (c), assuming either a uniform likelihood (blue)
or a normal likelihood (orange). Inferred mean sea-level trends (d) and rates (e) along with a 90 % credible interval, where sea-level data are
represented by red boxes, with horizontal range indicating ±2σ age uncertainty and vertical range indicating the reconstructed maximum
and minimum sea-level range determined by coral species (i.e., τl and τu in Eq. 15). A negative RSL value indicates that the local RSL in the
Great Barrier Reef was lower than present-day levels, reflecting the significant amount of water stored in continental ice sheets. CI: credible
interval. BP: before present.

data-level model together with process-level models intro-
duced in Sect. 3.3.2, employing non-informative priors (Ta-
ble A1). The sea-level data used here are a near-continuous
core record from single cores of salt marsh sediment from
Leeds Point (New Jersey) covering the Common Era (Kemp
et al., 2013). For this database, a normal-likelihood data-level
model is adopted with sea-level reconstruction uncertainties
provided by the original study. Here, we test three process-
level models: (a) a temporally linear model, (b) a change-
point model (assuming three change points; following Ashe
et al., 2019), and (c) a Gaussian process model with a radial
basis function (RBF) kernel. Posterior distributions for mod-
els (a) and (b) were obtained using a variational Bayesian
approach, while model (c) employed an empirical Bayesian
method.

Figure 4 shows estimated RSL trends and rates of RSL
change for each process model. The resulting trends and fit
to the data (quantified using wMSE) differ significantly due
to the fundamentally different model formulations. The tem-
porally linear model can only estimate an averaged trend and
rate of sea-level change and will never predict an accelerated
RSL change. Consequently, it exhibits the highest wMSE
(2.53) with systematic errors with strong temporal correla-
tions displayed in residual plots (Fig. A2), both of which re-
flect a poor fit to the observations.

Comparatively, the change-point model is able to cap-
ture a noticeable change in RSL rate from 1.49 mmyr−1

(1.26–1.70 mmyr−1) between −500 CE and 1839 CE
(1824–1852 CE) to 3.91 mmyr−1 (3.72–4.10 mmyr−1) after
1839 CE. This added flexibility substantially improves the
model’s fit to the data, achieving a wMSE of 0.38 and
producing a less structured error distribution (Fig. A2).
Such flexibility makes the change-point model particularly
suitable for identifying the time of emergence in various
environmental change contexts (e.g. Walker et al., 2022;
Caesar et al., 2021; Lyu et al., 2014).

As a non-parametric approach, the GP model produces
continuous distributions of RSL change rates over time, al-
lowing the estimation of multiple inflection points (Walker
et al., 2022). This flexibility results in the lowest wMSE
(0.31), alongside minimal temporal structure in the residu-
als (Fig. A2), indicating the best overall fit to the observa-
tions. However, the infinite differentiability of the RBF ker-
nel can lead to overly smooth predictions in time series anal-
ysis, potentially oversmoothing sharp changes that are criti-
cal in many environmental contexts, such as abrupt sea-level
rise (Lin et al., 2021), ocean circulation slowdowns (Caesar
et al., 2018), and extreme events like heavy rainfall (Stein,
2012). Alternative kernels (e.g., Matérn kernels) can provide
alternative levels of differentiability.
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Figure 4. The impact of process-level models on temporal sea-level change inference at New Jersey. Common Era sea-level comparison of
a linear model (a, e), a change-point model (assuming three change points; b, f), and a Gaussian process model with an RBF kernel (c, g),
where input data are continuous cores. Output includes estimates of RSL (a–d) and rates of RSL change (e–h), which are each shown with
mean and 90 % credible intervals. Paleo-sea-level data are modeled here using a normal likelihood. The horizontal and vertical ranges of
red boxes indicate ±2σ age and relative sea-level reconstruction uncertainties, respectively. Sea-level data were reconstructed here using a
near-continuous record from single cores of salt marsh sediment from Leeds Point (New Jersey; Kemp et al., 2013). wMSE: weighted mean
squared error. CE: Common Era.

4.1.3 Analysis choices

Using similar near-continuous core data from Sand Point,
North Carolina (Kemp et al., 2011), we illustrate the effects
of analysis choices on RSL inference. Here, we only use a
subset of the original data to better demonstrate the differ-
ence between various analysis choices. The adopted data-
and process-level models employ a normal likelihood with a
GP model using an RBF kernel (Table A1). The hyperparam-
eters are sampled using empirical, fully Bayesian. and varia-
tional Bayesian methods. For the fully Bayesian method, the
posterior distribution is determined by 5500 posterior sam-

ples drawn from a NUTS sampler, with the first 200 samples
discarded as burn-in steps. For the empirical and variational
Bayesian methods, the hyperparameters were optimized us-
ing the Adam optimizer over 1000 iterations (Kingma and
Ba, 2014). The run times of each implementation are re-
ported on a 2023 MacBook Pro with an Apple M2 Pro chip.

For MCMC-based fully Bayesian analysis, PaleoSTeHM
employs the Gelman–Rubin statistic (Gelman and Rubin,
1992) to verify that the Markov chains have converged to
a stationary phase, indicating good convergence. Addition-
ally, the effective sample size is used to assess the amount of
information retained, accounting for the correlation in the se-
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quence (Bürkner, 2017). Typically, a Gelman–Rubin statistic
of less than 1.1 and an effective sample size greater than 1000
suggest reliable sampling of the posterior distribution. In this
case, the analysis meets these criteria with a Gelman–Rubin
statistic of 1.0 and an effective sample size exceeding 3000.
For empirical and variational Bayesian methods, validation
is typically conducted through the inspection of optimization
trace plots (plots showing how optimization target function
improve with each iteration), where successful optimization
is characterized by a steadily decreasing loss function and
parameter convergence over iterations. These conditions are
also satisfied in this analysis, as illustrated in the correspond-
ing optimization trace plots (Figs. A3 and A4).

Figure 5 compares posterior distributions of RSL trend
and rate of change and the computational time for each
analysis choice. The empirical Bayesian method requires
the least computational power, only providing a point esti-
mate of hyperparameters without accounting for their under-
lying uncertainty. Although more computationally demand-
ing, the fully Bayesian method captures the hyperparameter
uncertainties effectively. As an intermediary, the variational
Bayesian method requires slightly more computational time
compared to the empirical method but can derive a varia-
tional posterior distribution that is largely similar to that ob-
tained by the fully Bayesian method through MCMC sam-
pling. In contrast, the point estimate obtained through the
empirical Bayesian method falls at the third percentile of the
posterior hyperparameter distributions derived from the fully
Bayesian method, highlighting a significant bias introduced
by the overly simplistic approach.

Because of the near-continuous sea-level data with
smoothly rising sea-level trend in North Carolina, the in-
ference results from these three methods are similar. How-
ever, given that geological sea-level data are often sparsely
distributed across both spatial and temporal domains and
may be subject to an abrupt change in rate, neglecting the
underlying uncertainty of hyperparameters by the empirical
Bayesian method can result in a significant underestimation
of the final inference uncertainty compared with the fully
Bayesian method.

4.2 Spatiotemporal analysis

Spatiotemporal analysis presents a common challenge in
paleo-environmental studies, such as reconstructing contin-
uous spatiotemporal signals from sparse and noisy data. To
address this, PaleoSTeHM provides a range of approaches,
spanning purely statistical to purely physical methods. Here,
we present an illustrative example to recover the spatiotem-
poral RSL pattern and its associated uncertainty. This anal-
ysis utilizes a sea-level database containing 1043 proxy
records spanning from 11 ka to the present, compiled by
Ashe et al. (2019) from previous studies (Kemp et al.,
2013, 2014, 2015, 2017a, b; Khan et al., 2017; Engelhart and
Horton, 2012). The database includes sea-level proxies such

as salt marsh, mangrove, beach rock, and coral. All records
were used to train the model except for 51 sea-level data
points from New York (Engelhart and Horton, 2012), which
were reserved for cross-validation, a technique used to eval-
uate model performance on unseen data (shown as a gray dot
in Fig. 6m–p).

We demonstrate four process-level models that were used
in previous studies: (i) a GP model with a zero mean function
and multiple isotropic kernels (Ashe et al., 2019), (ii) a GP
model with the mean function determined by a GIA model
and multiple isotropic kernels (Walker et al., 2021; Kopp
et al., 2016), (iii) a GP model with a zero mean function and
a sampling covariance kernel determined by a GIA model
ensemble (Kopp et al., 2009), and (iv) a purely GIA model
ensemble (Lin et al., 2023a). All models assume a data-level
model with a normal likelihood determined by RSL recon-
struction uncertainty and an additional white noise term. For
this analysis, we implement a noisy-input framework to ad-
dress temporal uncertainty and use the empirical Bayesian
method to optimize hyperparameters for models (i), (ii), and
(iii), while model (iv) is optimized through the variational
Bayesian method (Table A1).

For model (i), we follow the kernel structure as in Ashe
et al. (2019), which can be expressed as

f (X)∼ GP
(
0,K1

(
X,X′

))
, (18)

K1
(
X,X′

)
= g(t)+ r(x, t)+ l(x, t), (19)

where g(t) represents a spatially uniform covariance func-
tion, while r(x, t) and l(x, t) are regional and local varying
isotropic covariance functions, respectively. These are char-
acterized by a 3/2 Matérn temporal kernel (Table 2) for g(t)
and a product of a 3/2 Matérn temporal kernel and a 1/2
Matérn spatial kernel (Table 2) for r(x, t) and l(x, t), which
are distinguished by their prior distributions of hyperparam-
eters.

Similarly, model (ii) can be written as

f (X)∼ GP
(
GIA(X),K2

(
X,X′

))
, (20)

K2
(
X,X′

)
= r(x, t)+ l(x, t). (21)

Here, the mean RSL expectation is determined by RSL pre-
diction from the ICE_7G ice model with the VM5a Earth
model (Roy and Peltier, 2018; Peltier et al., 2015), and r(x, t)
and l(x, t) are the same as in Eq. (19). We do not include
the g(t) kernel here, as the RSL prediction derived from the
ICE_7G model – embedded within the GP mean function and
rigorously calibrated against comprehensive RSL and geode-
tic datasets across North America (Roy and Peltier, 2018;
Peltier et al., 2015) – is assumed to adequately capture all
spatially uniform signals.

Model (iii) can be denoted as

f (X)∼ GP
(
0,K3

(
X,X′

))
, (22)

K3
(
X,X′

)
= Cov

(
m(X),m

(
X′
))
· exp

(
− |t − t ′|/τ 2). (23)
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Figure 5. The impact of analysis choices on temporal sea-level change inference at North Carolina. (a, b) GP model hyperparameter op-
timization results along with the required computational time in seconds (based on a 2023 MacBook Pro with an Apple M2 Pro chip).
(c, d) Common Era sea-level comparison between three analysis choices; the results indicate 90 % credible interval of RSL change trend (c)
and rate (d). Paleo-sea-level data are modeled here using a normal likelihood. The horizontal and vertical ranges of red boxes indicate ±2σ
age and relative sea-level reconstruction uncertainties, respectively. Sea-level data were reconstructed here using a near-continuous record
from single cores of salt marsh sediment from Sand Point (North Carolina, Kemp et al., 2011).

Here, Cov(·) indicates a sampling covariance function
through a physical model ensemble m. In this context, the
covariance between data points is not directly determined
by their spatiotemporal proximity but instead depends on the
variance within the physical model ensemble, conditioned on
various combinations of physical parameters. For this (iv),
m includes an ensemble of forward GIA models: (a) the
ICE_7G ice model with the VM5a Earth model, (b) the Pa-
leoMIST ice model (Gowan et al., 2021) with 71 km litho-
sphere and 0.3 and 70× 1021 Pa s upper- and lower-mantle
viscosity, and (c) the ANU ice model (Lambeck et al., 2014)
with 71 km lithosphere and 1 and 10× 1021 Pa s upper- and
lower-mantle viscosity. To expand the variability in physical
model predictions, we create six synthetic GIA model out-
puts by enlarging or shrinking these three GIA model out-
puts by 1.5. Therefore, this physical model ensemble con-
sists of predictions from nine models. More details about the
physics-based GIA model used here can be found in Lin et al.
(2023b). To stabilize the estimate and reduce variability re-
lated to finite sample size, we applied a temporal Gaussian
taper function to this kernel, controlled by a parameter τ .
Following Hay et al. (2015) and Kopp et al. (2009), we set τ
to 3000 years.

Lastly, model (iv) can be written as a weighted mean of
different physical models:

f (X)=

N∑
n=1

νiGIAi(X), (24)

ν ∼ Dirichlet(αd). (25)

In this model, ν represents the relative weights associated
with each GIA model. These probabilities follow a Dirichlet
distribution (or multivariate beta distribution) characterized
by a concentration parameter αd . A value greater than 1 for
αd indicates a preference for a more evenly distributed prob-
ability across all models. In contrast, a value less than 1 in-
dicates a preference for more concentrated probabilities on
fewer models (Lin et al., 2023b). For this experiment, we set
αd according to each GIA model prediction fit to RSL ob-
servation (using weighted root mean square as a metric; see
Table A1).

A comparison of RSL inference results between different
spatiotemporal process-level models is provided in Fig. 6.
At the purely statistical end of the process model spectrum,
model (i) correlates RSL from various locations and times
based solely on their spatiotemporal proximity, a property
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Figure 6. The impact of process-level modeling choices for spatiotemporal sea-level change inference along the US Atlantic coast. Each
column represents a different process-level model. (a–d) Mean and 90 % credible or confidence interval for RSL predictions at Florida, also
indicated by a red dot in panels (m–p). The horizontal and vertical ranges of red boxes indicate±2σ age and relative sea-level reconstruction
uncertainties, with data from Khan et al. (2017). (b) For model (ii), the GP mean function, determined by the ICE_7G model (Roy and
Peltier, 2018; Peltier et al., 2015), is depicted with a black line. (e–h) Normalized residuals, which represent the difference between observed
and predicted values normalized by observational uncertainty, for Florida RSL predictions generated by each process-level modeling choice.
Dashed red lines represent 0 error. The weighted mean squared error for each model is given above each panel. (i–l) Mean RSL prediction
for the year −5500 CE. (m–p) Standard deviation of the RSL prediction for the year −5500 CE, where white dots indicate the locations at
which sea-level data were collected and gray dots represent the location of New York (where 51 data points were held for testing purposes).
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derived from the adopted isotropic kernels. According to
model (i), the RSL change along the US Atlantic coast during
the Holocene was dominated by a spatially uniform signal
(produced by the spatially uniform kernel, g(t), in Eq. 19;
Table A1), which contributed to more than 25 m of RSL rise.
In contrast, r(x, t) and l(x, t) only produce up to 5 m of spa-
tially variable RSL signal, resulting in virtually no spatial
pattern in the mean RSL prediction of this model. In the tem-
poral domain, multiple studies have demonstrated that GP
models like model (i) can accurately recover multi-millennial
sea-level variation trends at locations with abundant sea-level
observations, such as Florida, as shown in Fig. 6a (Tang et al.,
2023; Ashe et al., 2019; Cahill et al., 2015). This is further
supported by the residual plot (Fig. 6e), which exhibits a low
wMSE (1.1) and minimal temporal structure in the residuals,
indicating a good agreement with the observed data.

However, spatial inferences based on isotropic and sta-
tionary kernels of model (i) are often considered overly sim-
plistic (Stein, 2005a), partly due to the sparse nature of ge-
ological data and the complexity of environmental change
mechanisms. As see in Fig. 6m, geological sea-level data are
mostly collected across paleo-coastal areas. Therefore, RSL
inferences from model (i) are only representative of coastal
areas (as opposed to terrestrial or marine areas) and cannot
adequately reflect the physical knowledge of paleo-sea-level
change (e.g., the RSL uncertainty caused by the existence of
the Laurentide Ice Sheet).

Model (ii) uses a deterministic GIA model (ICE_7G ice
model with VM5a Earth model; Roy and Peltier, 2018;
Peltier et al., 2015) as the GP mean function. By harness-
ing a physics-based model, model (ii) captures intricate spa-
tial sea-level variation patterns due to the GIA-induced GRD
effects (Fig. 4). In this setup, the covariance functions de-
scribe residuals between the GIA model and RSL observa-
tions (mostly captured by r(x, t) in Eq. 21). Similarly to
model (i), RSL predictions for Florida by model (ii) closely
align with observations, demonstrating a low wMSE (1.0)
and an unstructured residual distribution. In the spatial do-
main, at −5500 CE, model (ii) suggests the GIA model un-
derestimates ∼ 10 m RSL at New Jersey (Fig. A5), which
may reflect oversimplified physics (e.g., neglecting 3D solid
Earth rheology; Austermann et al., 2013), biased sampling
of physical parameters (such as poorly constrained ice his-
tory), or missing physical processes in the GIA model (e.g.,
sediment isostatic adjustment; Lin et al., 2023a). Because
model (ii) assumes no uncertainty in GIA modeling, the un-
certainty quantification here also relies solely on the radial
distance from RSL data points (Fig. 6n).

Model (iii) utilizes a kernel constructed by sampling co-
variances between various forward GIA models based on
alternative ice and Earth models. By incorporating relevant
physical processes into GP kernel construction, model (iii)
effectively captures anisotropic behaviors, non-stationarities,
heterogeneities, and teleconnections that are intrinsic to the
physical dynamics of RSL change but are challenging to

represent with standard classes of covariance functions (Ta-
ble 2). For instance, the size of the Laurentide Ice Sheet
exhibits a positive correlation with RSL around the north-
ern Great Lakes while displaying a negative correlation
with RSL in peripheral bulge regions such as New Jersey
(Fig. 6k).

Model (iii) also has certain limitations, including the com-
putational cost of thoroughly sampling physical model pa-
rameters and the presence of structural errors within the
physical models, such as oversimplifications or omitted pro-
cesses. As shown in the residual plot of Fig. 6g, there is a sig-
nificant mismatch between RSL observations and model (iii)
predictions, reflected in a high wMSE value (17.99) and pro-
nounced temporal structure in the residuals. This poor fit may
stem from biased sampling of ice and Earth models and from
the reliance on an oversimplified 1D rheology. Furthermore,
the model prioritizes fitting regions with denser data distri-
bution, such as the mid-northern US Atlantic coast. For in-
stance, model (iii) provides a good fit to unseen RSL ob-
servations in New York (Fig. 7c and g), but this prioritiza-
tion comes at the expense of accuracy in regions with sparser
data, such as Florida, where substantial misfits are observed.
Additionally, the posterior mean and standard deviation gen-
erated by this method are less directly interpretable compared
to those produced by model (iv).

Model (iv) represents the purely physical end of the
process-level spectrum and is formulated as a weighted linear
combination of physical models, with weights determined by
data–model misfits (e.g., wMSE and chi-square misfit; Lin
et al., 2021; Li et al., 2020; Lambeck et al., 2014). The mean
and uncertainty estimated by this method reflect the para-
metric uncertainty inherent in a given physical model, al-
lowing direct interpretation of physical parameters, such as
deriving posterior distributions of global ice history (Creel
et al., 2024). However, this approach is also susceptible to
structural errors within the model, similar to those observed
in model (iii). The limited sample size of physical parame-
ters – only nine models were used in this analysis – and the
model’s tendency to prioritize fitting denser sea-level data
in mid-northern locations result in uncertainty estimates that
appear underestimated and biased, as illustrated by substan-
tial misfits to observations (Fig. 6d and h). Furthermore, the
difficulty in directly quantifying certain physical parameters
often leads to oversimplified model predictions. For exam-
ple, the scarcity of direct constraints on ice history (Dalton
et al., 2020) reduces the ability of forward GIA models to
resolve centennial-scale sea-level variations. This limitation
makes these models less effective in capturing centennial-
scale variability compared to models (i)–(iii) (Fig. 6).

Due to the dense distribution of sea-level data along the
mid-northern US Atlantic coast, all models effectively cap-
ture the general trend of RSL variation observed in the with-
held data from New York (Fig. 7), as evidenced by low
wMSE values and minimal temporal structure in the resid-
ual plots. While model (ii) achieves the lowest wMSE and
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model (iv) exhibits slight bias in its residuals, all mod-
els demonstrate comparable overall performance in recon-
structing sea-level changes. In contrast, significant variation
in model performance is observed for RSL predictions at
Florida (Fig. 6a–h), where models (iii) and (iv) show substan-
tial misfit to RSL observations. This misfit stems from the re-
quirement to preserve the overall consistency of the physical
systems constrained by the ensemble of physical models.

It is important to note that high-quality and standardized
datasets, such as those available for the mid-northern US
Atlantic coast, are rare in many paleo-environmental fields,
such as deep-sea isotopes or ice core records (Shackleton
et al., 2021; Lemieux-Dudon et al., 2010). Consequently,
users must carefully evaluate factors such as data availabil-
ity, computational resources, the need for interpretability, and
the level of understanding of underlying physical processes
when selecting a process-level model. Generally, physics-
based models offer superior interpretability and better ex-
trapolation capabilities to spatiotemporal locations with min-
imal data, as they are rooted in well-established theoreti-
cal frameworks. However, discovering and validating new
physical laws can be time-intensive and often computation-
ally demanding. In contrast, machine learning or statistical
approaches provide flexibility and computational efficiency
but often face challenges in extrapolating nonlinear functions
(Xu et al., 2020; Goodfellow et al., 2016), while they require
large volumes of training data and rigorous validation to en-
sure consistency with physical principles. For a more detailed
discussion on the integration of physics-based and machine
learning models, readers are referred to Lai et al. (2025).

5 Discussion

5.1 Generalization for paleo-environmental problems

This paper focuses on demonstrating the functionality of
PaleoSTeHM in paleo-sea-level applications. However, the
flexibility of hierarchical models, where any statistical model
can be interpreted hierarchically, allows the PaleoSTeHM
framework to be readily applicable to a wide range of
paleo-environmental problems. By using hierarchical mod-
els, transparency is enhanced by distinguishing between
modeling assumptions and analytical methods and by sep-
arating process variability from observational noise.

The common characteristics of paleo-sea-level datasets,
such as sparsity and discreteness, are shared by many other
paleo-environmental datasets, including paleo-temperature
(PAGES2k Consortium, 2017), past ice sheet thickness
(Small et al., 2019), and sediment deposition depth (Wang
et al., 2018). As a result, the data- and process-level mod-
els introduced in this paper can be readily generalized to
these paleo-environmental fields. For example, Tingley et al.
(2012) and Stein (2005b) proposed that using a GP model is
a reasonable approach to describe latent space–time climate

processes, such as annual mean surface temperature anoma-
lies and daily wind speed; Lin et al. (2023a) applied a spatial
GP model to recover the spatial pattern of Holocene coral
reef depth based on a Holocene coral reef deposition depth
database across the Great Barrier Reef (Hinestrosa et al.,
2022); and Caesar et al., 2018 implemented a change-point
model on multiple proxy datasets to detect significant reduc-
tions in the strength of the Atlantic Meridional Overturning
Circulation.

Beyond the process-level models featured in PaleoSTeHM
v1.0, various approaches have been employed for paleo-
environmental analyses. Common techniques for addressing
problems in this field include principal component analy-
sis (equivalent to the empirical orthogonal function method
when temporal aspects are considered), autoregressive mod-
els, and generalized additive models. For instance, Shakun
and Carlson (2010) used an empirical orthogonal function
approach to detect modes of deglacial temperature variabil-
ity; Piecuch et al. (2017) adopted a degree-1 autoregressive
model to reconstruct sea-level evolution using tide gauge
data; and Simpson (2018) and Upton et al. (2023) devel-
oped a series of generalized additive models to model paleo-
ecology and paleo-sea level, respectively. While the reim-
plementation of these models in PaleoSTeHM is beyond the
scope of this paper, doing so would benefit from the frame-
work’s multiple analysis options and its capacity for smooth
integration with flexible data- and parameter-level models.

5.2 Future developments

From a scientific perspective, numerous promising directions
exist for further development of PaleoSTeHM.

Existing data-level models only support a common class
of likelihood. However, in paleo-environmental studies, it is
typical for proxy data to be subject to complex likelihoods
(Ashe et al., 2022; Hibbert et al., 2016). For instance, organic
matter that has been radiocarbon-dated undergoes a calibra-
tion procedure to account for the time-evolving atmospheric
carbon concentration, which can yield a data chronology
characterized by multi-modal distributions that significantly
differ from each other. Similarly, it is common for paleo-
environmental studies to use multiple types of proxy data
with different likelihoods to infer a common signal. Recently,
new approaches have been developed to account for non-
parametric proxy distributions within a hierarchical model-
ing framework (e.g. Ashe et al., 2022), which could better
characterize the underlying uncertainty but can be computa-
tionally expansive.

While PaleoSTeHM allows users to specify any number
of change points (m in Eq. 10) in the model, determin-
ing the optimal number of change points can be challeng-
ing and may require additional modeling strategies. Recent
advancements, such as Bayesian transdimensional models
(e.g. Sambridge, 2016; Bodin et al., 2012; Gallagher et al.,
2011), provide a flexible framework by treating the num-
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Figure 7. Performance of different process-level modeling choices on unseen sea-level data from New York. (a–d) Mean and 90 % credible
or confidence intervals for RSL predictions at New York (locations shown in Fig. 6m–p as gray dots). The gray boxes represent ±2σ
uncertainties in both age and relative sea-level reconstructions, with data from Engelhart et al. (2009). For model (ii), the GP mean function,
derived from the ICE_7G model (Roy and Peltier, 2018; Peltier et al., 2015), is shown as a black line (b). (e–h) Normalized residuals, which
represent the difference between observed and predicted values normalized by observational uncertainty, for New York RSL predictions
generated by each process-level modeling choice. Dashed red lines represent 0 error. The weighted mean squared error for each model is
given above the panels.

ber of change points as an unknown parameter, allowing it
to be inferred alongside other model parameters. Incorporat-
ing such approaches into PaleoSTeHM is a potential avenue
for future development to address this complexity in abrupt
paleo-environmental change problems.

The current GP kernel module incorporates commonly
used kernel options that are stationary, isotropic, and space–
time separable. While these assumptions simplify calcula-
tions significantly, they may not be suitable for some envi-
ronmental applications. For example, temperature and dew
point variations often exhibit strong non-stationary behavior
influenced by diverse geographic and atmospheric conditions
(Poppick and Stein, 2014). Additionally, the assumption of
stationarity may cause rate uncertainty estimates to fail in
properly reflecting the reduced uncertainty expected during
periods with abundant data, as shown in Fig. 5d, largely be-
cause the model’s variance is uniformly applied across the
entire temporal domain (Heinonen et al., 2016). Furthermore,
temperature anomalies over the last 2 millennia (Mann et al.,
2008) demonstrate strong space–time interactions, which
cannot be captured by a space–time-separable kernel (Tin-
gley et al., 2012). Developing a scientifically richer class
of kernel structures could be an important future advance-
ment for PaleoSTeHM. However, given the fundamental dif-

ferences across various paleo-environmental problems, gen-
eralizing sophisticated kernel structures to multiple fields re-
mains challenging.

Another outstanding issue for GP-based process-level
models is scalability: the standard GP models included in
PaleoSTeHM v1.0 cannot scale well to large datasets (>
10000 data points) due to the computational cost, which in-
creases at a rate of O(n3), where n is the number of data
points (Hensman et al., 2013). Thus, implementing alter-
native classes of GP models within PaleoSTeHM to model
large datasets, especially when incorporating modern envi-
ronmental observations, which often consist of millions of
data points, is an important next step for PaleoSTeHM to de-
velop in the future. Some potentially efficient methods in-
clude sparse GP (Quinonero-Candela and Rasmussen, 2005),
stochastic variational GP (Hensman et al., 2013), and ex-
act GP with black-box matrix–matrix inference (Wang et al.,
2019).

Building upon machine learning infrastructure, another
promising direction for the future development of Pale-
oSTeHM is integrating spatiotemporal hierarchical modeling
with machine-learning-based emulators as a process-level
model. An emulator indicates a statistical model that mim-
ics the behavior of the physics-based simulator but is com-
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putationally cheap to run (Reichstein et al., 2019), which is
particularly useful for fast sensitivity analysis, model param-
eter calibration, and derivation of confidence intervals for the
estimate. The use of statistical emulators trained by phys-
ical models will enable hierarchical models to capture the
non-stationary physical systems better and enable better in-
terpretation of the modeling results. For paleo-environment,
Holden et al. (2019) present a GP-based emulator for an
atmosphere–ocean general circulation model with interme-
diate complexity, and Lin et al. (2023b) developed a neural-
network-based emulator for GIA-induced global sea-level
change.

More broadly, PaleoSTeHM has been developed by a
small team specialized in modeling paleo-sea-level changes
over multi-millennial timescales. Moving forward, a critical
objective is to expand PaleoSTeHM into a larger-scale paleo-
environmental community project, where modules are devel-
oped autonomously by diverse research teams. The design
of PaleoSTeHM, which allows modules to act as wrappers
for independently developed code, is specifically intended to
facilitate this collaborative effort.

6 Conclusions

Paleo-environmental records provide critical out-of-sample
information essential for contextualizing current global
changes and testing models used to simulate future envi-
ronmental scenarios. However, our understanding of past
environmental changes is often complicated by the sparse
nature of geological records, geochronological uncertain-
ties, and the indirect relationships between proxies and eco-
logical variables. Hierarchical modeling offers a conceptu-
ally straightforward framework to address these challenges,
though the limited availability of user-friendly software of-
ten hinders it. PaleoSTeHM offers a flexible and open-source
platform that facilitates the rapid and easy implementa-
tion of hierarchical models for paleo-environmental applica-
tions. The inclusion of multiple process-level models in Pa-
leoSTeHM allows it to be readily applicable across a broad
spectrum of paleo-environmental studies. Additionally, its
flexibility allows customization to meet the specific needs
of diverse paleo-environmental problems, such as using dif-
ferent Gaussian process kernels or substituting alternative
process-level models.
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Appendix A: Additional model information

Table A1. Summary of model characteristics. The posterior is reported with a mean value with 90 % credible interval. GBR: Great Barrier
Reef. NJ: New Jersey, NC: North Carolina. EIV: errors-in-variables. NI: noisy input.

Task Analysis choice Data level Process level Prior for parameters Posterior

GBR coral Fully Uniform likelihood
with additional white
noise

Temporally linear α ∼ U(−30,30)m −6.3 (−28.3, 16.2)
time series Bayesian; β ∼ U(−10,10)mmyr−1 5.9 (4.5, 7.4)

EIV ω ∼ U(0.0001,10)m 0.8 (0.1, 2.0)

GBR coral Fully Normal likelihood with
additional white noise

Temporally linear α ∼ U(−30,30)m −0.2 (−22.8, 21.9)
time series Bayesian; β ∼ U(−10,10)mmyr−1 6.3 (4.8, 7.7)

EIV ω ∼ U(0.0001,10)m 1.4 (0.01, 1.97)

NJ salt Variational Normal likelihood Temporally linear α ∼ U(−5,5)m −3.38 (−3.47, −3.30)
marsh time Bayesian; β ∼ U(−10,10)mmyr−1 1.63 (1.57, 1.69)
series EIV

NJ salt Variational Normal likelihood Change-point model α1 ∼ U(−15,0)m −4.92 (−5.01, −4.84)
marsh time Bayesian; β1 ∼ U(−10,10)mmyr−1 1.6 (1.5, 1.8)
series EIV β2 ∼ U(−10,10)mmyr−1 1.53 (1.46, 1.60)

β3 ∼ U(−10,10)mmyr−1 1.31 (1.22, 1.39)
β4 ∼ U(−10,10)mmyr−1 3.92 (3.73, 4.10)
γ2 ∼ U(−476,1020)CE −42.0 (−139.6, 58.2)
γ3 ∼ U(23,1518)CE 1004.3 (893.1, 1106.0)
γ4 ∼ U(521,2017)CE 1838.0 (1823.6, 1853.2)

NJ salt Empirical Normal likelihood Gaussian process with
one RBF kernel

`∼ U(1,5000) yr 1038
marsh time Bayesian; σ ∼ U(1,22.4)m 20.79
series NI

NC salt Empirical Normal likelihood Gaussian process with
one RBF kernel

`∼ U(1,10000) yr 2175
marsh time Bayesian; σ ∼ U(1,100)m 1.75
series NI

NC salt Fully Normal likelihood Gaussian process with
one RBF kernel

`∼ U(1,10000) yr 6889 (2845, 9766)
marsh time Bayesian σ ∼ U(1,100)m 12.5 (3.4, 28.1)
series EIV

NC salt Variational Normal likelihood Gaussian process with
one RBF kernel

`∼ U(1,10000) yr 7305 (3559, 9509)
marsh time Bayesian; σ ∼ U(1,100)m 10.4 (3.8, 18.4)
series NI

US Atlantic Empirical Normal likelihood with
additional white noise

Gaussian process with
a zero mean function
and multiple isotropic
kernels

ω ∼ U(0.01,10)m 0.02
spatio- Bayesian; `g ∼ U(100,20000) yr 11 567
temporal NI σg ∼ U(0.01,33.3)m 30.7
analysis σr ∼ U(0.2,10)m 1.7

`r,x ∼ U(319,1593) km 345
`r,t ∼ U(500,5000) yr 3254
σl ∼ U(0.1,3.3)m 0.14
`l,x ∼ U(64,319) km 317.4
`l,t ∼ U(100,2000) yr 1978

US Atlantic Empirical Normal likelihood with
additional white noise

Gaussian process with
ICE_7G as mean
function and multiple
isotropic kernels

ω ∼ U(0.01,10)m 0.02
spatio- Bayesian; σr ∼ U(0.2,10)m 6.1
temporal NI `r,x ∼ U(319,1593) km 1586
analysis `r,t ∼ U(500,5000) yr 4683

σl ∼ U(0.1,3.3)m 0.12
`l,x ∼ U(64,319) km 312
`l,t ∼ U(100,2000) yr 1970

US Atlantic Empirical Normal likelihood with
additional white noise

Gaussian process
with zero mean and
a sampling kernel
determined by a GIA
model ensemble

ω ∼ U(0.01,10)m 0.4
spatio- Bayesian;
temporal NI
analysis
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Table A1. Continued.

Task Analysis
Choice

Data Level Process Level Parameter Level Posterior

US Atlantic Variational Normal likelihood with
additional white noise

A GIA model ensemble
(consists of nine indi-
vidual models)

ω ∼ U(0.01,0.5) 0.042 (0.028, 0.056)
spatio- Bayesian; ν1 ∼ Beta(0.22,0.78) 0.04 (0.03, 0.05)
temporal NI ν2 ∼ Beta(0.02,0.98) 0. (0., 0.)
analysis ν3 ∼ Beta(0.02,0.98) 0. (0., 0.)

ν4 ∼ Beta(0.09,0.91) 0. (0., 0.)
ν5 ∼ Beta(0.01,0.99) 0. (0., 0.)
ν6 ∼ Beta(0.02,0.98) 0. (0., 0.)
ν7 ∼ Beta(0.16,0.84) 0.39 (0.36, 0.42)
ν8 ∼ Beta(0.29,0.71) 0.35 (0.32, 0.37)
ν9 ∼ Beta(0.17,0.83) 0.22 (0.20, 0.24)

Figure A1. Prior and posterior predictive checks for modeling results presented in the main text, Sect. 4.1.1. A random data point is selected
for illustrative purposes. (a) Prior predictions compared with observational data, assuming uniform (blue) and normal (orange) likelihood
functions. (b) Posterior predictions compared with observational data, assuming a uniform likelihood function. (c) Posterior predictions
compared with observational data, assuming a normal likelihood function.

Figure A2. Residual plots for the three process-level models introduced in main text, Sect. 4.1.2. The weighted mean squared error (wMSE)
for each model is given above each plot. Dashed red lines represents 0 error.
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Figure A3. Optimization trace plot of empirical Bayesian analysis introduced in main text, Sect. 4.1.3.

Figure A4. Optimization trace plot of variational Bayesian analysis introduced in main text, Sect. 4.1.3. Note that the parameters shown here
are variational inference parameters in Pyro, which are optimized to approximate the posterior distribution but do not directly correspond to
the actual parameters of probability distribution.
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Figure A5. Model prediction from model (ii) for relative sea level at time point −5500 CE along the US Atlantic coast. (a) Mean relative
sea-level prediction, representing the sum of components in panels (b) and (c). (b) Relative sea-level prediction derived from the Gaussian
process mean function, based on a glacial isostatic adjustment model incorporating the ICE_7G ice model and VM5a Earth model (Roy and
Peltier, 2018; Peltier et al., 2015). (c) Relative sea-level change induced by the GP covariance function. (d) Standard deviation of relative sea
level, as estimated by the GP covariance function.

Code and data availability. The development version of
PaleoSTeHM is available under an MIT license in a
Git version-controlled repository at https://github.com/
radical-collaboration/PaleoSTeHM (last access: 1 April 2025).
The latest release is archived on Zenodo with the identi-
fier https://doi.org/10.5281/zenodo.12730140 (Lin et al.,
2024). Documentation of PaleoSTeHM is available at
https://paleostehm.org/ (Lin and Reedy, 2025). All codes
required to generate results and figures shown in Sect. 4
are available in the repository. Video tutorials are avail-
able at https://youtube.com/playlist?list=PLR4-1Y89NM_
10x3zwnxc5nI2mU3pplGzIa3&si=5VoDvpZAWwLE2by4 (Lin,
2024).
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