Articles | Volume 18, issue 9
https://doi.org/10.5194/gmd-18-2545-2025
https://doi.org/10.5194/gmd-18-2545-2025
Model description paper
 | 
09 May 2025
Model description paper |  | 09 May 2025

A gradient-boosted tree framework to model the ice thickness of the world's glaciers (IceBoost v1.1)

Niccolò Maffezzoli, Eric Rignot, Carlo Barbante, Troels Petersen, and Sebastiano Vascon

Related authors

High-resolution aerosol data from the top 3.8 kyr of the East Greenland Ice coring Project (EGRIP) ice core
Tobias Erhardt, Camilla Marie Jensen, Florian Adolphi, Helle Astrid Kjær, Remi Dallmayr, Birthe Twarloh, Melanie Behrens, Motohiro Hirabayashi, Kaori Fukuda, Jun Ogata, François Burgay, Federico Scoto, Ilaria Crotti, Azzurra Spagnesi, Niccoló Maffezzoli, Delia Segato, Chiara Paleari, Florian Mekhaldi, Raimund Muscheler, Sophie Darfeuil, and Hubertus Fischer
Earth Syst. Sci. Data, 15, 5079–5091, https://doi.org/10.5194/essd-15-5079-2023,https://doi.org/10.5194/essd-15-5079-2023, 2023
Short summary
Detection of ice core particles via deep neural networks
Niccolò Maffezzoli, Eliza Cook, Willem G. M. van der Bilt, Eivind N. Støren, Daniela Festi, Florian Muthreich, Alistair W. R. Seddon, François Burgay, Giovanni Baccolo, Amalie R. F. Mygind, Troels Petersen, Andrea Spolaor, Sebastiano Vascon, Marcello Pelillo, Patrizia Ferretti, Rafael S. dos Reis, Jefferson C. Simões, Yuval Ronen, Barbara Delmonte, Marco Viccaro, Jørgen Peder Steffensen, Dorthe Dahl-Jensen, Kerim H. Nisancioglu, and Carlo Barbante
The Cryosphere, 17, 539–565, https://doi.org/10.5194/tc-17-539-2023,https://doi.org/10.5194/tc-17-539-2023, 2023
Short summary
Five thousand years of fire history in the high North Atlantic region: natural variability and ancient human forcing
Delia Segato, Maria Del Carmen Villoslada Hidalgo, Ross Edwards, Elena Barbaro, Paul Vallelonga, Helle Astrid Kjær, Marius Simonsen, Bo Vinther, Niccolò Maffezzoli, Roberta Zangrando, Clara Turetta, Dario Battistel, Orri Vésteinsson, Carlo Barbante, and Andrea Spolaor
Clim. Past, 17, 1533–1545, https://doi.org/10.5194/cp-17-1533-2021,https://doi.org/10.5194/cp-17-1533-2021, 2021
Short summary
A 120 000-year record of sea ice in the North Atlantic?
Niccolò Maffezzoli, Paul Vallelonga, Ross Edwards, Alfonso Saiz-Lopez, Clara Turetta, Helle Astrid Kjær, Carlo Barbante, Bo Vinther, and Andrea Spolaor
Clim. Past, 15, 2031–2051, https://doi.org/10.5194/cp-15-2031-2019,https://doi.org/10.5194/cp-15-2031-2019, 2019
Short summary
Bromine, iodine and sodium in surface snow along the 2013 Talos Dome–GV7 traverse (northern Victoria Land, East Antarctica)
Niccolò Maffezzoli, Andrea Spolaor, Carlo Barbante, Michele Bertò, Massimo Frezzotti, and Paul Vallelonga
The Cryosphere, 11, 693–705, https://doi.org/10.5194/tc-11-693-2017,https://doi.org/10.5194/tc-11-693-2017, 2017
Short summary

Related subject area

Cryosphere
Towards deep-learning solutions for classification of automated snow height measurements (CleanSnow v1.0.2)
Jan Svoboda, Marc Ruesch, David Liechti, Corinne Jones, Michele Volpi, Michael Zehnder, and Jürg Schweizer
Geosci. Model Dev., 18, 1829–1849, https://doi.org/10.5194/gmd-18-1829-2025,https://doi.org/10.5194/gmd-18-1829-2025, 2025
Short summary
Quantitative sub-ice and marine tracing of Antarctic sediment provenance (TASP v1.0)
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev., 18, 1673–1708, https://doi.org/10.5194/gmd-18-1673-2025,https://doi.org/10.5194/gmd-18-1673-2025, 2025
Short summary
Tuning parameters of a sea ice model using machine learning
Anton Korosov, Yue Ying, and Einar Ólason
Geosci. Model Dev., 18, 885–904, https://doi.org/10.5194/gmd-18-885-2025,https://doi.org/10.5194/gmd-18-885-2025, 2025
Short summary
WRF-Chem simulations of snow nitrate and other physicochemical properties in northern China
Xia Wang, Tao Che, Xueyin Ruan, Shanna Yue, Jing Wang, Chun Zhao, and Lei Geng
Geosci. Model Dev., 18, 651–670, https://doi.org/10.5194/gmd-18-651-2025,https://doi.org/10.5194/gmd-18-651-2025, 2025
Short summary
Clustering simulated snow profiles to form avalanche forecast regions
Simon Horton, Florian Herla, and Pascal Haegeli
Geosci. Model Dev., 18, 193–209, https://doi.org/10.5194/gmd-18-193-2025,https://doi.org/10.5194/gmd-18-193-2025, 2025
Short summary

Cited articles

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: A Next-generation Hyperparameter Optimization Framework, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, 4–8 August 2019, https://doi.org/10.1145/3292500.3330701, 2019. a
Bahr, D. B., Pfeffer, W. T., and Kaser, G.: A review of volume-area scaling of glaciers, Rev. Geophys., 53, 95–140, 2015. a, b, c
Bueso-Bello, J.-L., Martone, M., González, C., Sica, F., Valdo, P., Posovszky, P., Pulella, A., and Rizzoli, P.: The global water body layer from TanDEM-X interferometric SAR data, Remote Sens., 13, 5069, https://doi.org/10.3390/rs13245069, 2021.​​​​​​​ a
Chen, T. and Guestrin, C.: Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA, 13–17 August 2016, 785–794, https://doi.org/10.1145/2939672.2939785, 2016. a, b
Clarke, G. K., Berthier, E., Schoof, C. G., and Jarosch, A. H.: Neural networks applied to estimating subglacial topography and glacier volume, J. Climate, 22, 2146–2160, 2009. a
Download
Short summary
In this work we introduce IceBoost, a machine learning framework to model the ice thickness distribution of all the world's glaciers with greater accuracy than state-of-the-art methods. The model is trained on 3.7 million measurements globally available and provides skilful estimates across all regions. This advancement will help in better assessing future sea level changes and freshwater resources, with significance for both the scientific community and society at large.
Share