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Abstract. Knowledge of glacier ice volumes is crucial for
constraining future sea level potential, evaluating freshwater
resources, and assessing impacts on societies, from regional
to global. Motivated by the disparity in existing ice volume
estimates, we present IceBoost, a global machine learning
framework trained to predict ice thickness at arbitrary coordi-
nates, thereby enabling the generation of spatially distributed
thickness maps for individual glaciers. IceBoost is an ensem-
ble of two gradient-boosted trees trained with 3.7 million
globally available ice thickness measurements and an array
of 39 numerical features. The model error is similar to those
of existing models outside polar regions and is up to 30 %–
40 % lower at high latitudes. Providing supervision by expos-
ing the model to available glacier thickness measurements re-
duces the error by a factor of up to 2 to 3. A feature-ranking
analysis reveals that geodetic data are the most informative
variables, while ice velocity can improve the model perfor-
mance by 6 % at high latitudes. A major feature of IceBoost
is a capability to generalize outside the training domain, i.e.
producing meaningful ice thickness maps in all regions of the
world, including on the ice sheet peripheries.

1 Introduction

Under atmospheric heating by human forcing, with few ex-
ceptions, glaciers have been retreating worldwide at unprece-
dented rates (Hugonnet et al., 2021), with projections pre-
dicting one-third of the mass loss at the end of the century in

the most optimal +1.5 °C scenario (Rounce et al., 2023). At
present, glacier melting contributes to sea level rise equally to
ice sheets (Zemp et al., 2019; Fox-Kemper et al., 2021), with
far-reaching implications for coastal communities worldwide
(Pörtner et al., 2019). Ice mass loss from glacier shrinkage
also impacts water availability for an estimated population of
1.9 billion people living in or depending on glacier-sourced
freshwater (Huss and Hock, 2018; Rodell et al., 2018; Im-
merzeel et al., 2020).

Accurate and continuous knowledge of glacier ice thick-
ness spatial distributions over time is thus of critical impor-
tance for informing and refining numerical models to better
simulate future scenarios in a fast-changing climate (Zekol-
lari et al., 2022). Measurement campaigns and surveys have
led to direct ice thickness measurements for about 3000 of
the more than 216 000 existing glaciers (Welty et al., 2020).
The data are unsurprisingly sparse, but radar surveys from
airborne campaigns have significantly increased the amount
of measurements and coverage, particularly over polar re-
gions. Knowledge of absolute glacier volume thus heavily
relies on models or physical and mathematical interpolations.

An array of models has been proposed over time, with
varying degrees of applicability (Farinotti et al., 2017). Only
two have been applied to all glaciers on Earth. They are based
on principles of ice flow dynamics and use surface character-
istics, including ice surface velocity. The mass conservation
approach by Huss and Farinotti (2012) has been extended
with four additional regional models to produce a global con-
sensus ensemble (Farinotti et al., 2019). More recently, Mil-
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lan et al. (2022) also provided a global solution, leveraging a
complete coverage of glacier velocities and using a shallow
ice approximation (Cuffey and Paterson, 2010) with basal
sliding. The degree of applicability of thickness inversion
methods is broad. The main challenges relate to the validity
of the underlying physical assumptions, parameter calibra-
tion, and availability and quality of model input data. As an
example, the shallow ice approximation simplifies the stress
field by neglecting longitudinal stresses, lateral drag, and ver-
tical stress gradients. This setup works well in the interior of
an ice sheet or with ice masses with small depth-to-width ra-
tios. On mountain glaciers, Le Meur et al. (2004) found that
this approach can be acceptable for slope values less than
20 %. In relation to challenges of parameter calibration, Mil-
lan et al. (2022) tuned the creep parameter A on a regional
basis using ice thickness measurements, if present, and, if
not, from other regionally averaged values. The basal slid-
ing was parameterized indirectly by imposing assumptions
of surface ice velocity : slope ratios. Input data are crucial –
for example, a shallow ice approximation can only by used if
the ice velocity product is available. For glaciers not covered
by these data, the method cannot be applied. Previous meth-
ods have also suffered from incomplete surface ice velocity,
which is now becoming globally available, and quality sur-
face mass balance data. We refer the reader to Farinotti et al.
(2017) for a comprehensive overview of thickness inversion
models, their advantages, and their limitations.

A parallel line of research is exploring machine learning
methods. Few approaches based solely on deep learning have
been explored so far. Clarke et al. (2009) proposed a multi-
layer perceptron trained on neighbouring deglaciated regions
to reconstruct glacier bedrocks. This method does not invoke
physics but assumes similarity between glacier bedrocks and
the topography of nearby ice-free landscapes. Convolutional
neural networks (CNNs) are now the state-of-the-art archi-
tectures for physical model emulators, and they have gained
traction in glaciology with Jouvet et al. (2022) and Jouvet
(2023). Trained to represent physical models with a much
cheaper computational cost, emulators have the versatility to
both compute forward modelling and invert for ice thickness.
Uroz et al. (2024) trained a CNN to produce ice thickness
maps on 1400 Swiss glaciers by ingesting surface velocity
and digital elevation model (DEM) maps, with their ground
truth consisting of ice thickness fields obtained by a com-
bination of experimental data and glaciological modelling.
Growing attention is being directed to physics-informed neu-
ral networks, as they provide a natural setup for generating an
approximate solution of a differential equation and minimiz-
ing the misfit with observational data, if any. For a review,
we refer the reader to Liu et al. (2024).

In this work, we present IceBoost, a machine learning
system designed for modelling ice thickness across all of
Earth’s glaciers, including continental glaciers, ice caps, and
ice masses at the edges of ice sheets. The method is not ex-
plicitly based on any physical law. It is fully data-driven yet

contains the versatility to incorporate many relevant features
that do not easily lend themselves to classical physics mod-
elling. The only theoretical consideration of significance re-
lates to the architecture choice. We approach the problem as
a machine learning regression task, predicting ice thickness
at any arbitrary point within a glacier’s boundary. IceBoost
employs an ensemble of two gradient-boosted decision tree
models, XGBoost (Chen and Guestrin, 2016) and CatBoost
(Prokhorenkova et al., 2018), both trained with ice thickness
as a target. The target data are naturally tabular-structured
(measurements localized in space) and are extracted from
the Global Ice Thickness Database (GlaThiDa, or GTD here-
after), a centralized effort by the World Glacier Monitoring
Service (WGMS) detailed by Welty et al. (2020). The model
is informed by a set of 39 numerical features, extracted from
an array of (either gridded or tabular) products and organized
in a tabular structure. While CNNs are best suited to oper-
ation on gridded products (images) when data are tabular-
structured, tree-based models often provide a much faster
and powerful alternative to neural networks, as highlighted
from theoretical considerations (Grinsztajn et al., 2022) and
empirically from machine learning practitioners. CNNs are
also typically very demanding in terms of training data and
computational power and require elaborate methods for the
interpretability of internal layers. Instead, gradient-boosted
systems allow for straightforward interpretability in terms of
which features are important for the thickness inversion of
individual glaciers using Shapley values (Lundberg and Lee,
2017).

In the following sections we introduce the model concepts
(Sect. 2), describe feature interpretability (Sect. 3), illustrate
the model inference and compare its performance against ex-
isting global solutions (Sect. 4), describe some limitations
and possible improvements (Sect. 5), and consider the com-
putational cost (Sect. 6) before we conclude (Sect. 7).

2 Methods

Hereafter, we describe the datasets used to generate the fea-
tures for model training and inference. The mass balance fea-
ture is presented in Appendix A for brevity.

2.1 Datasets

As a ground truth, we use the GlaThiDa v.3.1.0 dataset
(GlaThiDa Consortium, 2020; Welty et al., 2020), which
comprises 3.8 million ice thickness measurements, integrated
with an additional 11 000 measurements from 44 glaciers in-
cluded in the IceBridge MCoRDS L2 Ice Thickness product
(Paden et al., 2010). The model is trained using the glacier
geometries digitized and stored in the Randolph Glacier In-
ventory (RGI) v.62 (Pfeffer et al., 2014). This version ex-
tends version 6 with 1000 additional ice bodies from the
Greenland periphery (connectivity level 2 to the ice sheet),
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hereafter still referred to as glaciers. RGI v.62 thus provides
the opportunity to train and test the model’s ability to repro-
duce thickness patterns in an ice sheet flow domain, a region
with an extensive amount of available thickness data from the
IceBridge mission. RGI glacier geometries include both the
glacier external boundaries and the ice-free regions contained
therein (hereafter referred to as nunataks). At the inference
time, IceBoost supports geometries from either RGI v.62
(n= 216 502) or RGI v.70 (n= 274 531).

The features used to train the model are computed from
various datasets presented hereafter (Table 1). Elevation and
geodetic information is computed from the global Tandem-
X 30 m Edited Digital Elevation Model (EDEM; Bueso-
Bello et al., 2021; González et al., 2020; Martone et al.,
2018). The modelled spatially distributed surface mass bal-
ance from Greenland and Antarctica is obtained from the
Regional Atmospheric Climate Model (RACMO2) products
available at different spatial resolutions (Noël et al., 2018;
Noël and van Kampenhout, 2019; Noël et al., 2023). Glacier-
integrated mass balance values are imported from Hugonnet
et al. (2021). Temperature at 2 m (T2m hereafter) fields is
taken from ERA5 and ERA5-Land (Hersbach et al., 2020;
Muñoz Sabater et al., 2021). Surface ice velocity fields are
taken from Millan et al. (2022), except for glaciers listed
in Antarctica (RGI 19) and Greenland (RGI 5), where we
use the velocity products from Mouginot et al. (2019) and
Joughin et al. (2016), respectively.

Our solutions are compared with existing global models
while acknowledging that additional solutions exist with re-
gional validity. Outside the ice sheets, we compare them with
the Farinotti et al. (2019) ensemble and with the shallow
ice approximation by Millan et al. (2022). On the Antarc-
tic periphery (RGI 19), we compare them with Farinotti
et al. (2019) and BedMachine v3.7 (Morlighem, 2022). On
the Greenland periphery, we compare them with Farinotti
et al. (2019) and BedMachine v5 (Morlighem et al., 2022).
BedMachine Greenland and Antarctica are complete mod-
elled bed topographies and ice thickness maps of the two
ice sheets. They are constructed using different methods in
different regions and are continuously updated. Mass conser-
vation is typically applied where knowledge of the surface
speed is robust and sufficient. Elsewhere, other methods like
kriging interpolation and streamline diffusion are adopted.
At the time of writing, BedMachine Greenland v5 uses Mil-
lan et al. (2022) for isolated glaciers and ice caps and mass
conservation or kriging interpolation elsewhere.

2.2 Training features

The model is trained with a set of 39 numerical features ex-
tracted from the above-mentioned datasets (Table 1). Some
features are local, i.e. vary within the glacier. Others are per-
glacier constants. We use the main variables of a steady-state
mass-conservation-based inversion or physically based ap-
proximations (Huss and Farinotti, 2012; Millan et al., 2022):

ice velocity, mass balance, and spatial first- and second-order
gradients of the elevation field (hereafter referred to as slope
and curvature, respectively). We extend the amount of in-
formation with geometrical features that relate to topogra-
phies (e.g. U-shaped valleys) crafted in alpine landscapes
(distance to margins or internal deglaciated patches) and met-
rics of glacier size which are typical of scaling approaches
(Bahr et al., 2015). We also use variables that carry a finger-
print of a thermal regime and a climate setting (temperature
and distance from the ocean). It is worth mentioning that, in
a gradient-boosted tree approach, the same variable can be
used more than once in the decision tree scheme. For train-
ing, the features are calculated and stored offline in a training
dataset. At the inference time, all features are calculated on
the fly.

2.2.1 Constant features

The following features are per-glacier constants: area (Area),
perimeter (Perimeter), glacier minimum (zmin), maximum
(zmax) and median (zmed) elevations, glacier elevation delta
(1z= zmax−zmin), length (Lmax), and area of glacier cluster
(Acluster).

The elevations are calculated from the DEM. The areas,
perimeter, and glacier length are calculated from the glacier
geometries. The areas only include the iced region and ex-
clude nunataks. The area of a glacier cluster is determined
by summing the areas of all glaciers connected to the glacier
under investigation, considering connections up to a max-
imum level of 3. This feature indicates whether a glacier
is isolated (Area=Acluster) or part of a larger system. The
glacier length (Lmax) is calculated as the maximum distance
between any pair of points that lie on the glacier convex hull
(Appendix A1). The glacier convex hull is referred to as the
smallest convex set that contains the glacier itself. Except
for the elevations, the other constant features are metrics of
glacier size. Extensive previous research has been directed at
empirical scaling laws to relate glacier volume to, for exam-
ple, its area (Bahr et al., 2015). IceBoost retains the informa-
tion carried by metrics of glacier size in a machine learning
approach, without imposing explicit laws.

2.2.2 Distance from ice-free regions (dnoice) and
distance from the ocean (docean)

Given a point x0 inside a glacier g, we calculate the dis-
tance to the closest ice-free pixel. Such a target point may
lie within or outside the glacier. We define a glacier clus-
ter as the collection of all neighbouring glaciers. For exam-
ple, three glaciers {g1,g2,g3} form a cluster if g1 shares a
pixel with g2 and g2 shares a pixel with g3, despite g1 and
g3 not necessarily being adjacent glaciers. The glacier clus-
ter is calculated by detecting, starting from the glacier that
contains the point x0, all its proximal neighbours. The pro-
cedure is repeated iteratively for every neighbouring glacier
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Table 1. List of features and products used by IceBoost, together with their units, number of variables, and primary dataset for their calcula-
tion. Local features are flagged by circles. No circles indicate glacier mean values. RGI shapefiles are mostly derived from 30 m resolution
satellite data, and therefore variables calculated from RGI are indicated with 30 m horizontal resolution. The Tandem-X EDEM has a 3 arcsec
horizontal resolution, corresponding to approximately 30 m at the Equator. The model is trained with ice thickness data from the GlaThiDa
Consortium (GlaThiDa Consortium, 2020). See Fig. 2 for an analysis of the predictive power of the features.

Feature Variable name Local Unit No. of Primary dataset Horizontal
variables resolution

Curvature c50, c100, c150,
c300, c450, cgfa

• 0.01 m−1 6 Tandem-X EDEM 30 m

Distance from no ice dnoice • km 1 RGI 30 m

Distance from ocean docean • km 1 RGI, GSHHG 200 m

Elevation z • m 1 Tandem-X EDEM 30 m

Elevation normalized z01 • m 1 Tandem-X EDEM 30 m

Elevation above base z− zmin • m 1 Tandem-X EDEM 30 m

Glacier cluster area Acluster km2 1 RGI 30 m

Glacier area Area km2 1 RGI 30 m

Glacier aspect Aspect degrees 1 Tandem-X EDEM 30 m

Glacier curvature Curvature 0.01 m−1 1 Tandem-X EDEM 30 m

Glacier elevation delta 1z m 1 Tandem-X EDEM 30 m

Glacier length Lmax m 1 RGI 30 m

Glacier mass balance
(geodetic)

MB m w.e. yr−1 1 Hugonnet et al. (2021) –

Glacier perimeter Perimeter m 1 RGI 30 m

Glacier slope Slope – 1 Tandem-X EDEM 30 m

Glacier minimum,
maximum, and median
elevations

zmin, zmax, zmed m 3 Tandem-X EDEM 30 m

Mass balance mb • m w.e. yr−1 1 Hugonnet et al. (2021)
RACMO2

30 m
1–2 km

Slope s50, s75, s100, s125,
s150, s300, s450, sgfa

• – 8 Tandem-X EDEM 30 m

Temperature at 2 m T2m • K 1 ERA5, ERA5-Land 31 km, 9 km

Velocity v50, v100, v150,
v300, v450, vgfa

• m yr−1 6 Millan et al. (2022)
Joughin et al. (2016)
Mouginot et al. (2019)

50 m
250 m
450 m

until no further neighbours are found. In discrete mathemat-
ics, this structure is a graph. Once the cluster is computed,
all internal shared borders (the ice divides) of the cluster are
removed, while internal ice-free nunataks are kept. This pro-
cedure potentially results in collections of up to thousands of
geometries per cluster. The calculations to create the cluster
are made by setting up a graph-network structure using the
NetworkX Python library (Hagberg et al., 2008).

The minimum distance from the point x0 to an ice-free
region (dnoice) is the minimum distance between x0 and all
points x lying on the cluster’s valid geometries:

dnoice(x0)= arg min
x∈cluster

d(x0,x). (1)
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The valid geometries can either be the cluster’s external
boundaries or all of the cluster’s nunataks. The distances are
computed by querying K-dimensional trees, an approximate
nearest-neighbour lookup method, on the geometries defined
in the Universal Transverse Mercator (UTM) projection. We
compare the proximal points obtained from this method with
those from a brute-force calculation and find indiscernible
results. The pipeline is computed as a feature for the creation
of the training dataset and at inference time for every gener-
ated point. For computational speed-up, at inference time, the
number of geometries K used by the KD tree can be capped
to the closest 10 000 geometries. An example for dnoice is
shown in Fig. A1.

Similar to the distance to ice-free regions, we calcu-
late the closest distance to the ocean. We use the Global
Self-consistent, Hierarchical, High-resolution Geography
Database (GSHHG), containing all the world’s shoreline ge-
ometries at resolution “f” (full). Like dnoice, docean is calcu-
lated by querying a KD tree in the geometries in UTM pro-
jection. We find this feature to be relatively unimportant on
continental glaciers far from the coasts but increasingly in-
formative at high latitudes, where many marine-terminating
glaciers are located.

2.3 Elevation, curvature, and slope

We use the DEM to calculate the following features: lo-
cal elevation z, elevation above the glacier’s lowest eleva-
tion z− zmin, elevation normalized between 0 and 1 z01 =

(z− zmin)/(zmax− zmin), curvature, and slope.
To calculate the slopes, the DEM tiles are first projected in

UTM and differentiated, and the resulting vector magnitude
is convoluted using Gaussian filters of different kernel widths
to capture the variability across different spatial scales: 50,
75, 100, 125, 150, 300, and 450 m and an adaptive filter, af,
in Eq. (2):

af=
2A

πLmax
, (2)

where A and Lmax are the area and glacier maximum length
features. af corresponds to the semi-minor axis of an ellipse
of area A and the semi-major axis Lmax/2. This kernel aims
at estimating the glacier spatial size. For values lower than
100 or above 2000 m, af is capped to these values. Each train-
ing point yields eight slope features. The purpose of using
many kernels is to allow the model the freedom to account for
different glacier spatial scales. For small glaciers, the small
kernels are found to be more important than the bigger ker-
nels and vice versa (Fig. 2).

To limit the computational cost, for the calculation of the
curvature, the elevation field is smoothed using only the 50,
100, 150, 300, and 450 m and af kernels, thus resulting in six
features per point. All geodetic features are obtained from
linear interpolation.

The model is also informed by glacier-integrated (i.e.
mean) values of slope, curvature, and aspect (Slope, Curva-
ture, and Aspect; Table 1).

2.3.1 Mass balance

Glacier thickness is controlled by ice flow and mass balance
(Cuffey and Paterson, 2010). The latter is the net result of
positive precipitation and mass loss mechanisms, both at the
surface and at the glacier bed. We use two different mass bal-
ance features. The first is the glacier-mean 2000–2020 mass
balance value imported as is from Hugonnet et al. (2021).
Such a dataset is available for RGI v6 and is therefore suit-
able for training our model and for inference over RGI v6.
For inference on the latest RGI v7 geometries, we reference
the two RGI datasets or impute the regional mean for missing
IDs. The second mass balance feature is a local map of mass
balance, obtained by downscaling glacier-integrated values
for non-polar glaciers or directly interpolating RACMO for
ice sheet glaciers. It is discussed in Appendix A2 and Ap-
pendix D.

2.3.2 Surface ice velocity

Presently, the surface ice velocity is available with almost
global coverage and is therefore used as an input feature.
The velocity magnitude fields are smoothed with the six ker-
nels 50, 100, 150, 300, and 450 m and af, and they are lin-
early interpolated. The velocity products used have differ-
ent resolutions: Millan et al. (2022) (all regions except for
Greenland and Antarctica), Joughin et al. (2016) (Green-
land), and Mouginot et al. (2019) have resolutions of 50, 250,
and 450 m, respectively. If the product resolution is higher
than any kernel size, the kernels are set to match the prod-
uct resolution. For every training point, a total of six velocity
features are obtained. At the inference time, the missing ve-
locity features are treated according to the imputation policy
described in Appendix B2.

2.3.3 Temperature

The model is informed with the local T2m as a loose regional
indicator of thermal regime and ice thickness. Although a
weak indicator, this variable may still be useful in a decision
tree, helping to split the data at earlier stages and enabling
more powerful features to drive predictions at deeper levels
of the tree structure. We also use this feature to provide re-
gional context to a global model. We use ERA5-Land (0.1°
grid spacing; Muñoz Sabater et al., 2021) and, for the miss-
ing pixels caused by imperfect fractional land masks along
the coastlines and islands, we incorporate the ERA5 T2m
field (0.25° resolution; Hersbach et al., 2020), bilinearly in-
terpolated to the ERA5 0.1° resolution. We consider monthly
maps over 2000–2010 and average them over this time period
to generate one single global temperature field. This map is

https://doi.org/10.5194/gmd-18-2545-2025 Geosci. Model Dev., 18, 2545–2568, 2025



2550 N. Maffezzoli et al.: A gradient-boosted tree framework to model the ice thickness of the world’s glaciers

linearly interpolated at the measurement points (training) or
at the generated points (inference time).

2.4 Data pre-processing and time tagging

A significant number of zero-thickness measurements are
found in GlaThiDa. While some of these measurements are
found close to glacier boundaries, at times they are found in-
side glacier geometries. We decided to discard all GlaThiDa
zero-thickness entries. GlaThiDa thickness data from glacier
RGI60-19.01406 (peripheral glacier in Antarctica; 65.5° S,
100.8° E; maximum elevation 500 m a.s.l.) are erroneously
registered with a factor 10 too much (up to more than 3000 m
of ice). We divide these data by 10. All datasets used in this
work are tied to different time intervals. The glacier outlines
refer to 2000–2010 for most glaciers (Pfeffer et al., 2014).
The ice surface velocity outside the ice sheets is tied to 2017–
2018 (Millan et al., 2022). The Tandem-X EDEM results
from acquisitions between 2011 and 2015. The GlaThiDa
dataset stores ice thickness measurements from 1936 to
2017. The ERA5 and ERA5-Land fields are tagged to 2000–
2010. To homogenize temporally as much as possible all
datasets in the creation of the training set while maximiz-
ing its size, all ice thickness measurements older than 2005
are discarded. In addition, we discard all measurements that
lie outside glacier boundaries or inside nunataks. Overall, the
model is conservatively estimated to be trained on data span-
ning from 2005 to 2017.

The resulting GlaThiDa dataset comprises 3.7 million
points collected from 2300 glaciers (Fig. 1). To reduce the
amount of correlated data that are close to each other and
reduce computational costs, the training dataset is spatially
downscaled. Each glacier is divided into a grid of 100× 100
latitude–longitude pixels, and the per-pixel average is com-
puted for all features and thickness data. The original dataset
of 3.7 million points is thus encoded into a final train-
ing dataset of 300 000 entries. For baseline comparison, the
thickness fields from Millan et al. (2022) and Farinotti et al.
(2019) were also downscaled.

2.5 Model

We utilize two gradient-boosted decision tree (GBDT) mod-
els (Friedman, 2001). A GBDT model consists of multiple
additive decision trees and is trained iteratively. In each it-
eration, a new decision tree is added and tasked with fitting
the residuals of the previous tree by minimizing an objec-
tive function. Training continues until a stopping criterion
is met, either reaching a maximum number of iterations or
detecting overfitting through a separate validation dataset.
IceBoost is an ensemble model comprising two GBDT vari-
ants: XGBoost (Chen and Guestrin, 2016) and CatBoost
(Prokhorenkova et al., 2018). Both models use a second-
order Taylor approximation of the objective function and em-
ploy a depth-wise tree growth scheme. However, CatBoost

Figure 1. Statistics of glaciers and training data for each Randolph
Glacier Inventory (RGI) region. The total number of glaciers in
each region is represented by bar lengths on the left axis (104).
The numbers over each bar represent the absolute counts of glaciers
with available training data (blue circles, right axis). Out of 216 000
glaciers worldwide, only 2300 contain at least one training point.
RGI regions 6, 9, 14, 15, and 18 have no training data.

builds symmetric trees, which tends to act as a regularizer
against overfitting and handles categorical features natively
without requiring one-hot encoding. We train both models
independently using a squared loss, l = (h− ĥ)2, where h
represents the target thickness data from GlaThiDa and ĥ
represents the modelled thickness. The IceBoost ensemble
combines them by averaging their respective predictions.

Despite the different climates and glacier ice flow regimes
in various regions, we decide not to specialize IceBoost re-
gionally but rather to build one single model and optimize its
hyperparameters globally. The decision is driven by the ease
of deployment and the availability of certain features (par-
ticularly mass balance, temperature, and distance from the
ocean) that can provide some regional context to the model.
It should be noted that the model optimal parameters may
reflect the imbalance of the training data among different re-
gions, potentially making them slightly more biased towards
polar regions where more training data are available. Poten-
tial solutions to specializing the model regionally would in-
clude optimizing the hyperparameters separately for each re-
gion and/or applying a heavier penalty within the regions of
interest. We note that high thickness values are underrepre-
sented in the training dataset (Fig. S1 in the Supplement).
However, no significant bias is observed in regions with the
thickest ice, such as Greenland and Antarctica (Table 2).

2.6 Model training, hyperparameter optimization, and
performance

Hyperparameter tuning is conducted independently for XG-
Boost and CatBoost, both referred to as “model” for simplic-
ity, and in an identical manner using a Bayesian hyperparam-
eter optimization framework (Optuna; Akiba et al., 2019).
The best parameters are determined by training each model
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Figure 2. (a) SHAP analysis of n= 2000 random instances (each ice measurement instance is represented by a dot in each feature row). Fea-
tures are ordered from top to bottom by decreasing mean absolute SHAP values: top features are more important. The horizontal coordinate
indicates how the model output changes with respect to its baseline, in a positive or negative direction, and hence how predictive the features
are. The colour bar reflects the normalized feature variability range. See Table 1 for the variable names. (b) The same analysis is carried out
on a random set of points in RGI 11 (Central Europe). See Fig. A3 for the feature rankings based solely on absolute mean SHAP values.

over n= 200 trials. In each trial, a different set of hyperpa-
rameters is selected, the model is trained on an 80 % ran-
dom split of the data, and the objective error loss is eval-
uated and monitored on the remaining 20 % split. Consid-
ering that the target ice thickness variable is not uniformly
distributed (Fig. S1), to reduce the risk of overfitting to a par-
ticular data split, the 80 %–20 % random split is recreated
every time the optimizer calls the objective function during
a hyperparameter search. This approach effectively incorpo-
rates the dataset’s variability as part of the noise. Its main
advantage is that it helps identify hyperparameters that gen-
eralize well across different data splits, aiming for a more ro-
bust model. The trade-off is that randomizing the data splits
in each trial introduces variability into the objective function,
which can make convergence to the optimal hyperparameters
more challenging. However, such variability in the loss is
generally manageable within Bayesian optimization frame-
works. To further prevent overfitting by reducing the model
complexity, we enforce early stopping in each optimization
trial (for both XGBoost and CatBoost). Early stopping is a
form of regularization that halts training if performance on
the 20 % split does not improve for a fixed number of rounds
(n= 50). The best hyperparameters are identified as those se-
lected in the trial for which the objective loss is minimized

(Appendix A3). The XGBoost model is also optimized with
respect to the following parameters that combat overfitting:
lambda, alpha, and subsample.

We acknowledge that hyperparameter optimization is typ-
ically performed by leaving out a smaller third set for offline
evaluation. However, we found that such evaluations were
highly dependent on the data split, due to the stochasticity
of the random split and the non-uniformity of the target vari-
able. This dependency made the results less informative. For
example, if Antarctic high-thickness data were included in
the test set, the test set error would be disproportionately
high. Consequently, no separate test set was created, and the
entire dataset was allocated to training (80 %) and validation
(20 %).

IceBoost performance is quantified by fixing the best set
of hyperparameters, training the model, and evaluating its
performance regionally using a cross-validation scheme (Ta-
ble 2). We evaluate (i) the median of the residual distribu-
tion res=GTD− IceBoost and (ii) the root mean square er-
ror (RMSE) on a test set consisting of a 20 % random split
of the regional data. Cross-validation involves training the
model n= 100 times, each time randomizing the regional
20 % test split. Two different routines are considered to pro-
duce the 20 % test split. In the first routine (“with supervi-
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Table 2. IceBoost performance and comparison with existing models, as measured by RMSE, on a regional basis. All units are in metres.
The numbers in parentheses refer to 1 standard deviation across n= 100 regional cross-validation runs. GTD: GlaThiDa.

RGI Region GTD – RMSE IceBoost RMSE IceBoost RMSE RMSE
IceBoost with supervision without supervision Millan et al. (2022)b Farinotti et al. (2019)

1 Alaska 16 (20) 47 (2) 116 (21) 151 173
2 Western Canada and US – – – – –
3 Arctic Canada North −5 (4) 32 (1) 83 (7) 131 129
4 Arctic Canada South 0 (5) 18 (1) 58 (9) 103 115
5 Greenland Periphery −5 (4) 28 (2) 93 (23) 112 112a

6 Iceland – – – – –
7 Svalbard −8 (9) 14 (1) 52 (7) 66 51
8 Scandinavia −1 (9) 20 (1) 42 (6) 60 53
9 Russian Arctic – – – – –
10 North Asia −8 (5) 4 (1) 15 (3) 19 23
11 Central Europe −7 (5) 10 (1) 35 (5) 46 35
12 Caucasus and Middle East 16 (1) 9 (1) 56 (1) 65 56
13 Central Asia −6 (6) 8 (1) 36 (12) 62 37
14 South Asia West – – – – –
15 South Asia East – – – – –
16 Low Latitudes – – – – –
17 Southern Andes −22 (16) 12 (1) 43 (8) 35 40
18 New Zealand – – – – –
19 Antarctic and Subantarctic 4 (10) 47 (2) 109 (20) 113 192a

a The evaluation is limited to glaciers with no connectivity to the ice sheet. b In RGI 5, this column integrates the results of BedMachine v.5 (Morlighem et al., 2022b). In RGI 19,
this column refers to BedMachine v3.7 (Morlighem et al. 2022a).

sion”), the 20 % measurements are taken from glaciers where
other data are considered for the 80 % training split. This ap-
proach allows the model to be trained on one glacier datum
and tested on other locations within the same glacier (no data
used for training are ever used for testing). In the second rou-
tine (“without supervision”), we impose a stricter constraint
by creating the 20 % test from completely unseen glaciers.
The model performance is reported in Table 2 for regions
with sufficient data in the training set (Fig. 1). We cannot
evaluate the model performance in regions 2, 6, 9, 14, 15,
16, and 18 due to too few or absent data. For regions 10, 12,
13, and 17, where the limited data are available, statistics are
provided but are considered only indicative of regional per-
formance. Nevertheless, a similar model behaviour is likely
expected for regions that are geographically close and have
a similar ice flow regime and similar mean thickness or fea-
ture values: 13–14–15 (extensive Himalayan glaciers), 6–7–9
(high-latitude glaciers and ice caps), and 8–11–12–18 (small-
to medium-sized mountain glaciers). An example of one iter-
ation of training without supervision is displayed in Figs. S3–
S4.

The performance of XGBoost and CatBoost, evaluated in-
dividually on ground truth data, is comparable within 1σ sta-
tistical fluctuations, with neither consistently outperforming
the other (Table S1). A qualitative comparison at inference
time on selected glaciers suggests that the same conclusion
holds, with similar predicted patterns even in the absence of
ground truth data (Academy of Sciences ice cap shown in

Fig. S2). We create IceBoost by taking an unweighted mean
of XGBoost and CatBoost. Alternative approaches, such as
applying regional weighting or per-glacier weighting based
on feature explainability, could be explored but are left to fu-
ture work.

Evaluated against ground truth data, IceBoost error is com-
parable to state-of-the-art global solutions outside polar re-
gions and is up to 30 %–40 % lower in polar regions (Ta-
ble 2). The much lower errors when training with supervision
indicate that providing the model with glacier context proves
to be beneficial. While this conclusion seems consistent on
a regional scale, we find that, on a glacier-by-glacier basis,
the model is not always sensitive to additional tie points, re-
gardless of where the context is provided (further discussion
in Sect. 4). On the Greenland and Antarctic peripheries, it
is noteworthy that the Farinotti et al. (2019) model perfor-
mance is only evaluated on glaciers not connected to the ice
sheet. In Greenland (RGI 5), the statistics reported by Millan
et al. (2022) combine their own shallow ice approximation
for glaciers and ice caps not connected to the ice sheet, with
Morlighem et al. (2022) kriging and mass conservation else-
where. On the Antarctic periphery (RGI 19), as ground truth
data are only found in the Antarctic continent (and none in
the Subantarctic islands), the reported statistics refer entirely
to BedMachine v.3.7 (Morlighem, 2022).
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Figure 3. Modelling of Malaspina Glacier (RGI60-01.13696, Alaska) by IceBoost (this work, panels a and b), Millan et al. (2022) (c)
and Farinotti et al. (2019) (d). IceBoost is trained without and with supervision in panels (a) and (b), respectively. The glacier ice volume
difference between the two cases is 1.3 %. In panels (b), (c), and (d), the ground truth thickness data are represented as large circles. The
Tandem-X EDEM hillshade is shown in transparency.

3 Model interpretability

To understand the relative strengths of the features for the
model prediction, we carry out a feature ranking analysis
using SHapley Additive exPlanations (SHAP; Lundberg and
Lee, 2017). For the analysis we consider the XGBoost model.
SHAP is a framework based on cooperative game theory
where the goal is to equitably distribute the total gains to
players (i.e. the model features) based on their individual
contributions. A feature SHAP value reflects its marginal
contribution to the model, specifically the change in the
model’s prediction when the feature is added or removed.
Positive (negative) SHAP values indicate that the feature in-
creases (decreases) the model prediction with respect to its
average baseline (the sum of all SHAP values for a given in-
stance equals the model’s prediction for that instance), while
SHAP absolute values represent the magnitude of the feature
contribution to the model prediction, regardless of the direc-
tion.

A SHAP analysis is shown in Fig. 2 for a random global
subset of n= 2000 training data points. Each instance is rep-
resented by a dot. The features are ordered from top to bot-
tom by decreasing mean absolute values. That is, more im-
portant features are on top (a less informative but more com-
pact visualization is shown in Fig. A3). The feature SHAP
values are the x coordinates, while the feature values are rep-

resented in the colour bar. As an example, points with high
distance-from-ice-free-region values typically have higher
SHAP values. That is, they will push the model towards
higher thickness predictions. For almost all features except
for the slope and the curvature, higher feature values will lead
to higher ice thickness predictions.

Local slopes and curvature are important features, high-
lighting the DEM quality as a crucial input for accurate
glacier thickness estimates (see Appendix B5 for DEM-
driven model artifacts). The elevation from the glacier min-
imum, rather than the absolute elevation above sea level, is
found to be most informative.

The closest distance to ice-free areas is a powerful feature
that often mirrors the ice thickness spatial distribution in con-
tinental valley glaciers. This feature retains its power even in
large glacier systems with multiple nunataks (e.g. Fig. A1).

As is known from area–volume scaling models (Bahr
et al., 2015), metrics for glacier extent (Area,Lmax) are found
to be powerful predictors. By providing regional context for
different flow regimes and metrics of continentality, the 2 m
temperature, T2m, and distance to the ocean docean are found
to be moderately informative. The local mass balance (mb)
(Appendix A2) is also found to be relatively informative de-
spite our simple elevation-based downscaling mass balance
approach. We also acknowledge that most glaciers are cur-
rently out of equilibrium, likely resulting in the accumula-
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Figure 4. Modelling of Mittie Glacier (RGI60-03.01517, Arctic Canada North) by IceBoost (this work, panels a and b), Millan et al.
(2022) (c), and Farinotti et al. (2019) (d). IceBoost is trained without and with supervision in panels (a) and (b), respectively. The glacier ice
volume difference between the two cases is 9.5 %. In panels (b), (c), and (d), the ground truth thickness data are represented as large circles.
The Tandem-X EDEM hillshade is shown in transparency.

tion and ablation zones being altered by the climate signal.
Ice velocity is found to be a major predictor, but, perhaps
surprisingly, it is not as strong globally as those mentioned
above. Possibly, the wide range of variability across over 3
orders of magnitude in velocity makes this information diffi-
cult to account for, in addition to, possibly, data uncertainty.
The role of surface velocity is investigated further by train-
ing the model without velocity information. We find that the
error increases by up to a maximum of 6 % for high-latitude
regions, while no substantial difference is found elsewhere.
We speculate that, at high latitudes, where more extensive
glaciers are located, geodetic information becomes relatively
less informative (low and uniform values of slope and curva-
ture; absolute elevations of glaciers are less informative), in-
creasing the ranking of the surface velocity. Since the largest
ice volumes are stored at high latitudes, all velocity features
are retained in the model.

Except for the metrics related to glacier size and glacier
elevation difference 1z, all other glacier-integrated features
(Slope, Aspect, and Curvature) are found to be relatively
unimportant, including the glacier geodetic mass balance val-
ues mb (see also Appendix C). Overall, the analysis high-
lights the crucial importance of high-quality DEMs.

The analysis provides a general overview of the predicting
power of the feature set by accounting for a random global
set of training entries. A slight reshuffling of the feature rank-

ing is expected, however, when evaluating glaciers individu-
ally (an example is discussed in Sect. 4) or regionally (e.g.
RGI 11 in Fig. 2). The SHAP analysis proves very instructive
for accessing the information gain provided to the model by
each feature. It can be used to decide which features should
be retained and which ones can be dropped without substan-
tial loss of performance.

4 Model deployment

At deployment time, the model ensemble is tasked with
producing a continuous glacier ice thickness solution. The
pipeline consists in generating n discrete points randomly
inside the glacier boundary and outside nunataks, calculat-
ing the feature vector xn and querying the model locally:
hn = IceBoost(xn). The feature vector xn is calculated on
the fly (Appendix B1). The glacier volume is calculated by
Monte Carlo method (Appendix B3). An approximately con-
tinuous solution can be obtained in the limit limn→∞hn(xn).
Typically, n= 10 000 provides a good representation even for
relatively big glaciers.

To investigate the effect of added supervision, we consider
Malaspina Glacier (RGI60-01.13696). The glacier, located
in coastal southern Alaska, is the world’s largest piedmont
glacier with an area of 3900 km2. Its piedmont lobe is largely
grounded below sea level. Measurements on this glacier are

Geosci. Model Dev., 18, 2545–2568, 2025 https://doi.org/10.5194/gmd-18-2545-2025



N. Maffezzoli et al.: A gradient-boosted tree framework to model the ice thickness of the world’s glaciers 2555

found in our training dataset. A recent campaign has vastly
increased the number of measurements on the glacier and
provided a detailed overview of the terminus thickness dis-
tribution and bedrock topography (see Fig. 5 in Tober et al.,
2023).

We train the model with and without the available mea-
surements included in the training dataset (hereafter referred
to as “with and without supervision”). We note that, in con-
trast to a kriging technique, IceBoost does not use the data
explicitly but rather adjusts its parameters at training time.
The model trained without supervision predicts an ice thick-
ness of up to 700–800 m at the terminus and in the other,
deepest parts of the glacier (Fig. 3a). Next, we include the
measurements in the training set and train the model with
supervision. The model output changes drastically at the ter-
minus (Fig. 3b), with the solution values closer to the ground
truth, although the model still struggles to fully capture the
high thickness values that correspond to localized deep sub-
glacial channels found by radar surveys (Tober et al., 2023).
Note that the solution changes in other parts of the termi-
nus as well and also relatively far from the data. Training
IceBoost with supervision greatly improves the model skill,
suggesting that a significant advantage compared to existing
approaches is achieved when data are available by (i) improv-
ing the general model performance by increasing the training
data and (ii) improving the prediction on individual glaciers.
While it is not trivial to understand why IceBoost predic-
tion without supervision deviates from the ground truth for
Malaspina Glacier, the model error is consistent with what
has been found in this region at cross-validation (RGI 1, Ta-
ble 2). The RMSE evaluated on ground truth data (n= 588)
for this glacier is 147 m when the model is trained without su-
pervision. Incorporating supervision with 20 % of the data re-
duces the RMSE to 31 m on the remaining 80 %, representing
a 4.7-fold improvement. This experiment also shows that, al-
though the model does not explicitly account for dependence
between points (in contrast to a neural network structure), it
produces a meaningful covariant pattern in both cases.

The same analysis is carried out for Mittie Glacier, a
large and surge-type glacier in Arctic Canada North (Fig. 4).
The RMSE is 68 m when training without supervision and
27 m with supervision, a reduction by a factor of 2.5 – ap-
proximately half the improvement observed for Malaspina
Glacier. The comparison would suggest that not all mod-
elled glaciers benefit equally from added supervision. We
speculate that the improvement in model performance ob-
tained with supervision is likely attributable to the inclusion
of high-thickness data (and/or out-of-distribution feature val-
ues), which provide valuable information for modelling deep
glaciers.

To assess how the feature set influences the model pre-
diction, we conducted a SHAP analysis of Mittie Glacier,
evaluating feature SHAP values using the XGBoost module
(Figs. 5 and 6). At each point, the sum of all feature SHAP
values,

∑
f |SHAP(f )|, reflects the overall contribution of

the feature set to the model prediction (Fig. 5a). On Mit-
tie Glacier, the feature set provides the most information in
the deep ice streams of the south and at the marine terminus
in the north-east. Differences between individual XGBoost
and CatBoost predictions reach up to 150–200 m in the deep-
est regions (Fig. 5b). These differences mimic the IceBoost-
averaged output (Fig. 4b). Averaged across the whole glacier,
the five most important features (inset in Fig. 5a) are the
slope (s300, s150, and s450), the elevation above the glacier
base (z− zmin), and the distance to ice-free regions (dnoice).
The spatial variability in SHAP values reveals the areas
where each feature contributes most (Fig. 6). The slope field
smoothed with the widest kernel (s450) is particularly in-
formative near broad, flat glacier streams, while the slope
smoothed with the smallest kernel (s150) provides value over
the steep, mountainous terrain located in between nunataks.
The dnoice feature is also most informative near nunataks,
whereas the elevation above the base (z− zmin) is especially
valuable at the marine terminus and less so elsewhere. While
the IceBoost model does not inherently provide an uncer-
tainty estimate of predicted ice thickness, valuable insights
can be derived by using the Shapley analysis on the feature
set and to some extent by comparing the separate predictions
of XGBoost and CatBoost.

The spatial resolution of the IceBoost model is consid-
ered hereafter. The input features are extracted from products
with varying resolutions (Table 1). For example, the satel-
lite products range from 30 m (DEM) to 250 m for surface
velocity fields over the ice sheets. Convolution with various
kernels of different sizes is also implemented when generat-
ing the features, enlarging the receptive field. Other features
are per-glacier constants. The minimal spatial variation of
the thickness maps generated by IceBoost, loosely referred
to as the model resolution, is evaluated by visually assessing
the predictions (examples in Fig. 7), and it is estimated to
be ' 100 m. The model has neither the capabilities (it is not
trained to) nor the resolution to predict smaller-scale basal
features, unless their fingerprints are clearly reflected on the
surface.

We note that the model predicts at times rather fine-
grained details in ice thickness, such as transitions close to
ice shelves or in the proximity of high-elevation gradients
(Fig. 7).

An extensive comparison between IceBoost and other
models can be found in the Supplement (see the “Code and
data availability” section) for 190 glaciers. For each 1 of the
19 RGI regions, n= 10 glaciers are modelled with IceBoost
and compared to Millan et al. (2022) or BedMachine (when-
ever applicable, RGI 5: Morlighem et al., 2022, and RGI 19:
Morlighem, 2022) and the ensemble of Farinotti et al. (2019).
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Figure 5. (a) Sum of absolute SHAP values of all features, calculated for Mittie Glacier. Higher (lower) values indicate greater (lesser)
contributions from the feature set to the model. The top-five features are displayed in the inset, ranked from most important to least important
by decreasing mean SHAP values. (b) Absolute difference between the XGBoost and CatBoost individual modules. The reader is referred to
Fig. 4 for the geographical setting of the glacier.

Figure 6. Absolute SHAP spatial variability of the top-five ranked
features, calculated for Mittie Glacier. The colours range from white
(low values) to saturated (high values). dnoice is important close to
the glacier ice-free regions. The slope features s150, s300, and s450
show similar patterns, with the widest 450 m slope more informative
on the broad ice rivers and less valuable elsewhere. The z− zmin
feature is very informative close to the marine terminus.

5 Applications, improvements, and limitations

The ice thickness maps produced by IceBoost have signifi-
cant potential in numerical modelling of future glacier evo-
lution by providing a modern initial condition. Valuable in-
sights can also be gained by utilizing IceBoost-derived maps
compared to outputs from other inversion techniques, such
as those of Millan et al. (2022) and Farinotti et al. (2019).
A notable advantage of a machine learning model operating
on tabular data is its flexibility in predicting point estimates
of other variables, such as surface ice velocity or mass bal-
ance, by setting them as a training target. In these cases, ice

thickness, if known, can serve as an additional input feature.
Ice velocity maps (or mass balance) can be generated from
scratch or used to fill gaps in existing products. Additionally,
modelling the ice thickness of past glaciers can be explored,
if their geometry is known, by leveraging knowledge of past
feature records or using present-day features under specific
assumptions.

Improvements to IceBoost can be explored by expanding
the training dataset, both in the number of entries and the in-
clusion of more informative features. Prioritizing an increase
in high-thickness data would be particularly beneficial. En-
sembling with other machine learning models, such as a
multi-layer perceptron, may further enhance performance by
reducing point estimate error and improving the smoothness
of the output solution, which is an important factor in nu-
merical modelling. Additionally, implementing or running in
parallel other machine learning schemes that generate prob-
ability distributions as output (e.g. NGBoost; Duan et al.,
2020) could yield valuable uncertainty maps alongside pre-
dictions.

Enhancing the quality of the products used to generate the
features, particularly the DEM, will certainly improve the
model. Artifacts in the input DEM are the primary source
of errors in the generated thickness maps. They are directly
reflected in the model outputs, leading to visible inaccura-
cies in the proximity of the artifact (Fig. B3). Artifacts can
also occur when the smoothing kernels applied to the input
products are not sized appropriately. For instance, in the case
of Glacier RGI60-19.00134 (Alexander Island, Antarctica,
Fig. B3), the kernels used in this study may be too small
to adequately capture and remove the elevation roughness
present at the spatial scales of this glacier (∼ 4000 km2). This
mismatch results in artifacts manifesting as (likely unrealis-
tic) high ice thickness gradients (Fig. B3).
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Figure 7. IceBoost-modelled glaciers at different spatial scales, overlaid on the Tandem-X EDEM hillshade. The small circles reflect the
modelled ice thickness evaluated at random locations. In panel (a) the ground truth thickness data are represented as large circles.

6 Computational cost

The memory load for creating the training dataset is 80 GB,
primarily due to the memory necessary to import, merge, and
operate on the DEM tiles. Downgrading to Tandem-X 90 m
would certainly reduce the computational cost at the expense
of accuracy. Model training and deployment can be done on
either a GPU or a CPU. Model training requires a few min-
utes. The inference phase requires generation of the feature
vector on the fly and querying of the model. The former re-
quires between 1 s and 1 min for the most complex glaciers,
almost independently of the choice of the number of points to
generate (104–105). The latter is faster and requires approx-
imately 10−1 s per glacier. The feature generation dominates
the computational cost, and parallelization with multiple pro-
cessors is implemented in the model for regional simulations.
For higher spatial details, the point density can be selectively
increased locally up to O(105). We recommend not increas-
ing n above a million points as the information gain is lim-
ited by the model resolution (' 100 m). The hard disk mem-
ory recommendation is 500 GB. All of Earth’s glaciers can be
run conservatively on a 1 TB hard disk, 128 GB of RAM, and
1–20 CPUs. Unless feature calculation is moved to a GPU
(e.g. RAPIDS Development Team, 2023), a graphics card is

deemed unnecessary since the time overhead of data transfer
surpasses the benefit of a marginally faster model query on a
GPU.

7 Conclusions

To the best of our knowledge, IceBoost is the first global ma-
chine learning model capable of predicting ice thickness at
arbitrary coordinates, enabling the creation of distributed ice
thickness maps for glaciers worldwide. The model operates
using a set of 39 numerical features; its parameters are opti-
mized globally. The model error is similar to state-of-the-art
models in mid- to low-latitude glaciers and is up to 30 %–
40 % lower at high latitudes. However limited, the compar-
ison with BedMachine also demonstrates the skills of the
machine-learned approach in the ice sheet peripheries. As is
typical of machine learning methods, the model performance
is expected to improve by increasing the training dataset’s
size. Data from future measurement campaigns should be in-
tegrated into the training dataset. The large amount of train-
ing data available at high latitudes and the model errors in
these regions suggest that, for our modelling approach, pro-
viding more data is more beneficial than providing more ac-
curate data. Providing supervision (i.e. measurements) fur-
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ther reduces the model error by a factor of roughly ' 2 to
3. Measurement campaigns targeting deep ice zones would
prove extremely beneficial for improving IceBoost estimates
of ice volumes. However, we find that not all glaciers benefit
equally from added supervision on an individual basis. With
the exception of DEMs which are available at high resolu-
tion and increasing accuracy, our modelling approach is not
hard-constrained by the availability of a specific input fea-
ture, notably ice velocity. Ice velocity improves the model by
up to 6 % at high latitudes, though no improvement is found
elsewhere. Despite its marginal impact, this area holds the
majority of Earth’s ice volume. The most informative fea-
tures are the distances to ice-free regions, surface slopes, sur-
face curvature, and metrics of glacier size. An improved mass
balance feature will likely improve the model performance.
We consider that our current local mass balance feature is
only a simplified estimate. Our machine learning approach is
fully data-driven, with its primary advantage being the abil-
ity to learn directly from data. However, deeper insights can
be achieved by integrating physical principles into machine
learning systems. Research in this direction would be a logi-
cal step forward.

Appendix A: Training features

A1 Glacier length (Lmax) and distance from ice-free
regions (dnoice)

Figure A1. (a) RGI60-10315 glacier length (Lmax). (b) RGI60-05.13995 glacier feature dnoice. The cluster external geometry with ice
divides removed is shown in black. All cluster nunataks are shown in grey.
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A2 Mass balance

A2.1 Polar ice sheet peripheries

In addition to glacier-averaged mass balance data from
Hugonnet et al. (2021), we inform the model with local mass
balance values. For the Greenland and Antarctic peripheries,
we leverage the RACMO2 (Noël et al., 2018) product ver-
sions, downscaled, respectively, to 1 km (Noël and van Kam-
penhout, 2019) and 2 km (Noël et al., 2023). Before linearly
interpolating the mass balance fields, we (i) compute the time
average over the 1961–1990 and 1979–2021 time periods and
(ii) fill some gaps in the dataset by convolving with Gaus-
sian kernels of 1 and 2 km, respectively. A few gaps still re-
main in the mass balance fields in some areas and glaciers
(Subantarctic islands and a few glaciers off the coasts of the
Antarctic Peninsula) not covered by these datasets. For these
areas, as well as for all the other glaciers, we use the approach
described below.

A2.2 Glaciers outside polar ice sheets

For all glaciers outside the Greenland and Antarctic pe-
ripheries, we use the 2000–2020 mean glacier-integrated
mass balance values from Hugonnet et al. (2021) and esti-
mate the local variability by downscaling using approximate
elevation–mass balance rates. In particular, for all glaciers
within the same region, we assume a linear variation of mass
balance with elevation:

y = s ·h+ q, (A1)

where y is the mass balance and h is the elevation. s ex-
presses the rate of change in the mass balance with elevation,
while q reflects the mass balance at zero elevation. For any
pair of glaciers,

y1 = s1 ·h1+ q1, (A2)
y2 = s2 ·h2+ q2. (A3)

By using the glacier mean values mb= y from Hugonnet
et al. (2021) and further assuming that for close glaciers
s1 = s2 =m and q1 = q2 = q, we obtain

s =
mb1−mb2

h1−h2
, (A4)

q =mb1− sh1 =mb2− sh2. (A5)

For a given glacier i, compute its mean rate si by extending
the calculation in Eq. (A4) to all the other glaciers in the
region j 6= i, weighting the mean by the inverse of the glacier

distances:

si =

∑
i 6=j

1mbij
1hij
·

1
d2
ij∑

i 6=j

1
d2
ij

, (A6)

qi =mbi − sihi, (A7)

where1mbij =mbi−mbj and1hij = h1−h2 are the differ-
ences in glacier mass balance and average elevation between
glacier i and some glacier j , while dij is the distance between
the two glacier centre values.

As an example, the distribution of (si , qi) calculated for all
glaciers in RGI 11 (Central Europe, 3927 glaciers) is shown
in Fig. A2.

To compute mass balance maps for each glacier in each
region, we use the regional mean values s and q listed in
Table A1.

Using this method, we can replicate the glacier-integrated
mass balance values (Hugonnet et al., 2021) within a factor
of ≈ 2–3. Given all the hypotheses made, we consider our
downscaling approach to be an attempt to provide the model
with crude, yet local, mass balance approximations. An anal-
ysis of the impact of uncertainties in (s, q) on the modelled
glacier volumes is presented in Appendix D.
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Figure A2. Distribution of (si , qi ) for RGI 11 along with the mass balance distribution for the Aletsch Glacier.

Table A1. Regional values of s and q.

RGI 1 2 3 4 5 6 7 8 9 10

s (mm w.e. yr−1 m−1) 0.46 0.34 0.22 0.65 0.55 0.84 0.86 0.56 0.64 0.30
q (mm w.e. yr−1) −1038 −1019 −485 −879 −703 −1082 −524 −1088 −405 −1034

RGI 11 12 13 14 15 16 17 18 19

s (mm w.e. yr−1 m−1) 0.41 0.14 0.46 0.16 0.32 0.52 0.45 0.14 0.41
q (mm w.e. yr−1) −1739 −919 −1956 −919 −2054 −2889 −1051 −440 −191

A3 IceBoost hyperparameters

The best XGBoost hyperparameters found dur-
ing the Bayesian optimization pipeline are
tree_method=hist, lambda=76.814, alpha=76.374, col-
sample_bytree=0.9388, subsample=0.741501, learn-
ing_rate=0.079244, max_depth=20, min_child_weight=19,
and gamma=0.18611. We use 1000 trees (num_boost_round)
with early_stopping_rounds=50. For CatBoost, iter-
ations=10 000, early_stopping_rounds=50, depth=6,
and learning_rate=0.1. For the parameter descrip-
tion, we refer to the XGBoost documentation at
https://xgboost.readthedocs.io/en/stable/parameter.html
(last access: 16 October 2024) and the CatBoost documenta-
tion at https://catboost.ai/en/docs/concepts/parameter-tuning
(last access: 16 October 2024).
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A4 Mean absolute SHAP values

Figure A3. Feature ranking: the ranking of each feature is taken to be the mean absolute shape value for that feature over n= 2000 random
samples (a) and over n= 2000 samples from Central Europe (RGI 11, b).

Appendix B: Model inference

B1 Fetching features on the fly

At inference time, the features are generated on the fly fol-
lowing the same pipeline described for the creation of the
training set. As an example, Fig. B1 shows the extraction of
the v50 feature for n= 1500 random points.

Figure B1. Pipeline for feature generation at inference time. (a) Ice
velocity (v50, from Joughin et al. (2016) over glacier RGI60-
05.13501 in East Greenland). (b) Feature calculated for n= 1500
random points.
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B2 Feature imputation policies

Feature imputation is needed whenever any feature is not
available, either for the creation of the training dataset or at
inference time. Unless specified, we adopt the same policy in
both cases. Hereafter we describe the imputation policies for
ice velocity and mass balance.

B2.1 Ice velocity

No imputation is implemented at training time: if any ve-
locity feature is missing at any point, the point is not in-
cluded in the training dataset. This condition occurs if the
training point falls outside the velocity field (old measure-
ment or measurement inside a nunatak or incomplete veloc-
ity coverage) or if it is too close to the geometry such that
the interpolation fails. At inference time, complete velocity
feature coverage is required as input for the model. A three-
layer progressive policy is implemented to fill any missing
data and ensure complete coverage of all velocity features:
(i) kernel-based interpolation using a fast Fourier transform
convolution and Gaussian kernels, (ii) glacier-median impu-
tation, and (iii) regional-median imputation.

B2.2 Mass balance

– Glacier-mean values: for glacier IDs listed in RGI v.62
but not present in the Hugonnet et al. (2021) mass bal-
ance dataset, which is tied to the RGI v.6 glacier dataset,
we impute a regional median value. To be able to use
the Hugonnet et al. (2021) dataset for glaciers in RGI
v7, we link all glacier IDs from RGI v6 to RGI v7 by
finding the glacier in RGI v7 that has the maximum area
overlap with any RGI v6 glacier. If no glacier is found,
we impute a regional median value from RGI v6.

– The RACMO products used for Greenland and Antarc-
tica do not cover some glaciers located on islands
proximal to the ice sheets. Among them are almost
all glaciers from the sub-Antarctic islands. For these,
we use the downscaling approach described in Ap-
pendix A2.2.

B3 Glacier volume calculation

The glacier volume is approximated by Monte Carlo method
as Vgl = AglN

−1
·
∑
x,yh(x,y), where Agl is the glacier area,

h(x,y) is the modelled thickness at point (x,y) inside the
glacier, and N is the total number of generated points. This
method, tested by comparing Farinotti’s interpolated thick-
ness values against their true values, allows us to quantify
its error to be less than 1 %, even for the biggest glaciers.
While N = 104 allows for a precise volume estimate, to bet-
ter evaluate the spatial variability of the solution over scales
of tens of metres, N can be increased to O(105), depending
on glacier size, or increased locally to target specific regions.

Figure B2. Glacier RGI60-05.13501 modelled by IceBoost and
BedMachine v5 (Morlighem et al., 2022).

B4 Comparison with BedMachine Greenland

Figure B2 shows a comparison between IceBoost and Bed-
Machine v5 (Morlighem et al., 2022) for a glacier with a
direct connection to the ice sheet. Note the additional com-
plexity of the fjord system predicted by IceBoost compared
to BedMachine. While an extensive comparison with Bed-
Machine is beyond the scope of this work, we highlight the
potential of IceBoost on the ice sheet peripheries.
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B5 Artifacts in the modelled output

Figure B3. Modelled glacier ice thickness. Artifacts in the Tandem-X EDEM are visible for glaciers RGI60-05.11268, RGI60-08.02969,
and RGI60-08.01126. The effects of such artifacts are visible in the modelled thickness map. Glacier RGI60-19.00134’s modelled thickness
shows some high-frequency noise that mimics the roughness of the surface.

Appendix C: Sensitivity of model outputs to the input
glacier-integrated mass balance

We assess the model’s sensitivity to input mass balance val-
ues (feature mb, imported from Hugonnet et al., 2021) using
the Unteraargletscher (Switzerland; 46°34′0′′ N, 8°13′0′′ E)
as a case study. This glacier was chosen due to extensive sur-
veys conducted by Swiss glaciologists over decades, together
with ground truth measurements. The reference mass bal-
ance value is −1.59 m w.e. yr−1 (Hugonnet et al., 2021). Ice-
Boost is run over a range of mass balance values from −4.0
to 4.0 m w.e. yr−1, extending beyond realistic limits for this
glacier and including the reference value −1.59 m w.e. yr−1

(Fig. C1). Glacier volume shows limited dependence on mass
balance, varying by at most 20 % across the entire range, with
some predictions differing by less than 0.001 km3. In our
model setup, glacier-integrated mass balance is a weak pre-
dictor of local ice thickness. This finding aligns with global
results obtained from the variable ranking analysis of the
training dataset (Sect. A4, Fig. A3).
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Figure C1. Unteraargletscher ice thickness modelled with different input mass balance values indicated in the insets. The reference mass
balance for this glacier is −1.59 m w.e. yr−1 (Hugonnet et al., 2021). The circles refer to ground truth data.
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Appendix D: Sensitivity of model outputs to the input
spatially distributed mass balance

The uncertainty in the inferred regional values of (s, q)
used to calculate mass balance maps (feature mb; see Ap-
pendix A2.2) is investigated here. These parameters repre-
sent, respectively, the rate of change in the mass balance with
elevation (s) and the mass balance at zero elevation (q). The
parameters are calculated regionally, and hence all glaciers
in the same region share the same values.

We analyse two glaciers in Switzerland: Unteraar-
gletscher (46°34′0′′ N, 8°13′0′′É) and Aletsch (46°26′32′′ N,
8°4′38′′ E). For both glaciers, s = 0.41 mm w.e. yr−1 m−1

and q =−1739 mm w.e. yr−1 (Appendix A2.2). We conduct
three Monte Carlo simulations with n= 500 iterations. For
each set of simulations, random noise drawn from a Gaus-
sian distribution is added to the s and q input variables, with
widths of 10 %, 20 %, and 50 % of their nominal values. The
resulting distributions of modelled output volumes are shown
in Fig. D1, compared to the nominal values of 3.06 km3

(Unteraargletscher) and 14.4 km3 (Aletsch) obtained without
added noise.

Figure D1. Monte Carlo simulations of modelled glacier volumes for Unteraargletscher and Aletsch, incorporating Gaussian noise into the
input parameters (s and q). Noise levels of 10 % (orange), 20 % (green), and 50 % (blue) are applied. These parameters are used to compute
the spatially distributed mass balance (Appendix A2.2). The black line represents the modelled glacier volume without added noise.

For a 50 % uncertainty in s and q, the modelled glacier
volume changes, on average, by 9.5 % (Unteraargletscher)
and 2.2 % (Aletsch), with variabilities of 14 % and 9.5 %, re-
spectively. The total uncertainties, combining systematic and
random components, are ±17 % for Unteraargletscher and
±9.8 % for Aletsch. With a 20 % uncertainty, the volume er-
rors are ±8.2 % (Unteraargletscher) and ±6.4 % (Aletsch),
while for a 10 % uncertainty they are ±3.7 % and ±0.5 %,
respectively.

This sensitivity test, though limited to two glaciers in Cen-
tral Europe, suggests that the error in the modelled glacier
volumes due to uncertainty in the mass balance parameteri-
zation can be safely considered to not exceed 15 %.
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Code and data availability. The IceBoost source code is re-
leased on GitHub: https://github.com/nmaffe/iceboost (Maffez-
zoli, 2025). IceBoost-trained modules (XGBoost and CatBoost)
are deposited on Zenodo as .json and .cbm files, respectively:
https://doi.org/10.5281/zenodo.13145836 (Maffezzoli, 2024). On
Zenodo we also archive the Supplement: the training dataset, the
model outputs for selected glaciers, and the comparisons with other
models discussed in the text.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-2545-2025-supplement.
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