Articles | Volume 18, issue 2
https://doi.org/10.5194/gmd-18-239-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-239-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
pathways-ensemble-analysis v1.1.0: an open-source library for systematic and robust analysis of pathway ensembles
Lara Welder
CORRESPONDING AUTHOR
Climate Analytics, Berlin, Germany
Neil Grant
Climate Analytics, Berlin, Germany
Matthew J. Gidden
Climate Analytics, Berlin, Germany
Energy Climate and Environment Program, International Institute for Applied System Analysis, Laxenburg, Austria
Related authors
No articles found.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Jarmo S. Kikstra, Zebedee R. J. Nicholls, Christopher J. Smith, Jared Lewis, Robin D. Lamboll, Edward Byers, Marit Sandstad, Malte Meinshausen, Matthew J. Gidden, Joeri Rogelj, Elmar Kriegler, Glen P. Peters, Jan S. Fuglestvedt, Ragnhild B. Skeie, Bjørn H. Samset, Laura Wienpahl, Detlef P. van Vuuren, Kaj-Ivar van der Wijst, Alaa Al Khourdajie, Piers M. Forster, Andy Reisinger, Roberto Schaeffer, and Keywan Riahi
Geosci. Model Dev., 15, 9075–9109, https://doi.org/10.5194/gmd-15-9075-2022, https://doi.org/10.5194/gmd-15-9075-2022, 2022
Short summary
Short summary
Assessing hundreds or thousands of emission scenarios in terms of their global mean temperature implications requires standardised procedures of infilling, harmonisation, and probabilistic temperature assessments. We here present the open-source
climate-assessmentworkflow that was used in the IPCC AR6 Working Group III report. The paper provides key insight for anyone wishing to understand the assessment of climate outcomes of mitigation pathways in the context of the Paris Agreement.
Malte Meinshausen, Zebedee R. J. Nicholls, Jared Lewis, Matthew J. Gidden, Elisabeth Vogel, Mandy Freund, Urs Beyerle, Claudia Gessner, Alexander Nauels, Nico Bauer, Josep G. Canadell, John S. Daniel, Andrew John, Paul B. Krummel, Gunnar Luderer, Nicolai Meinshausen, Stephen A. Montzka, Peter J. Rayner, Stefan Reimann, Steven J. Smith, Marten van den Berg, Guus J. M. Velders, Martin K. Vollmer, and Ray H. J. Wang
Geosci. Model Dev., 13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-2020, https://doi.org/10.5194/gmd-13-3571-2020, 2020
Short summary
Short summary
This study provides the future greenhouse gas (GHG) concentrations under the new set of so-called SSP scenarios (the successors of the IPCC SRES and previous representative concentration pathway (RCP) scenarios). The projected CO2 concentrations range from 350 ppm for low-emission scenarios by 2150 to more than 2000 ppm under the high-emission scenarios. We also provide concentrations, latitudinal gradients, and seasonality for most of the other 42 considered GHGs.
Leyang Feng, Steven J. Smith, Caleb Braun, Monica Crippa, Matthew J. Gidden, Rachel Hoesly, Zbigniew Klimont, Margreet van Marle, Maarten van den Berg, and Guido R. van der Werf
Geosci. Model Dev., 13, 461–482, https://doi.org/10.5194/gmd-13-461-2020, https://doi.org/10.5194/gmd-13-461-2020, 2020
Short summary
Short summary
We describe the methods used for generating gridded emission datasets produced for use by the modeling community, particularly for the Coupled Model Intercomparison Project Phase 6 (CMIP6). The development of three sets of gridded data (historical open burning, historical anthropogenic, and future scenarios) was coordinated to produce consistent data over 1750–2100. We discuss the methodologies used to produce these data along with limitations and potential for future work.
Matthew J. Gidden, Keywan Riahi, Steven J. Smith, Shinichiro Fujimori, Gunnar Luderer, Elmar Kriegler, Detlef P. van Vuuren, Maarten van den Berg, Leyang Feng, David Klein, Katherine Calvin, Jonathan C. Doelman, Stefan Frank, Oliver Fricko, Mathijs Harmsen, Tomoko Hasegawa, Petr Havlik, Jérôme Hilaire, Rachel Hoesly, Jill Horing, Alexander Popp, Elke Stehfest, and Kiyoshi Takahashi
Geosci. Model Dev., 12, 1443–1475, https://doi.org/10.5194/gmd-12-1443-2019, https://doi.org/10.5194/gmd-12-1443-2019, 2019
Short summary
Short summary
We present a suite of nine scenarios of future emissions trajectories of anthropogenic sources for use in CMIP6. Integrated assessment model results are provided for each scenario with consistent transitions from the historical data to future trajectories. We find that the set of scenarios enables the exploration of a variety of warming pathways. A wide range of scenario data products are provided for the CMIP6 scientific community including global, regional, and gridded emissions datasets.
Stephanie Fiedler, Bjorn Stevens, Matthew Gidden, Steven J. Smith, Keywan Riahi, and Detlef van Vuuren
Geosci. Model Dev., 12, 989–1007, https://doi.org/10.5194/gmd-12-989-2019, https://doi.org/10.5194/gmd-12-989-2019, 2019
Related subject area
Integrated assessment modeling
MESSAGEix-Materials v1.1.0: representation of material flows and stocks in an integrated assessment model
GCAM–GLORY v1.0: representing global reservoir water storage in a multi-sector human–Earth system model
Long-term Hydro-economic Analysis Tool for Evaluating Global Groundwater Cost and Supply: Superwell v1.0
CLASH – Climate-responsive Land Allocation model with carbon Storage and Harvests
Carbon Monitor Power-Simulators (CMP-SIM v1.0) across countries: a data-driven approach to simulate daily power generation
Intercomparison of multiple two-way coupled meteorology and air quality models (WRF v4.1.1–CMAQ v5.3.1, WRF–Chem v4.1.1, and WRF v3.7.1–CHIMERE v2020r1) in eastern China
MESSAGEix-GLOBIOM nexus module: integrating water sector and climate impacts
Minimum-variance-based outlier detection method using forward-search model error in geodetic networks
Modelling long-term industry energy demand and CO2 emissions in the system context using REMIND (version 3.1.0)
Bidirectional coupling of the long-term integrated assessment model REgional Model of INvestments and Development (REMIND) v3.0.0 with the hourly power sector model Dispatch and Investment Evaluation Tool with Endogenous Renewables (DIETER) v1.0.2
emIAM v1.0: an emulator for Integrated Assessment Models using marginal abatement cost curves
GCAM-CDR v1.0: enhancing the representation of carbon dioxide removal technologies and policies in an integrated assessment model
The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures
Cyclone generation Algorithm including a THERmodynamic module for Integrated National damage Assessment (CATHERINA 1.0) compatible with Coupled Model Intercomparison Project (CMIP) climate data
A tool for air pollution scenarios (TAPS v1.0) to enable global, long-term, and flexible study of climate and air quality policies
Improved CASA model based on satellite remote sensing data: simulating net primary productivity of Qinghai Lake basin alpine grassland
Pixel-level parameter optimization of a terrestrial biosphere model for improving estimation of carbon fluxes with an efficient model–data fusion method and satellite-derived LAI and GPP data
Climate Services Toolbox (CSTools) v4.0: from climate forecasts to climate forecast information
TIM: modelling pathways to meet Ireland's long-term energy system challenges with the TIMES-Ireland Model (v1.0)
ANEMI_Yangtze v1.0: a coupled human–natural systems model for the Yangtze Economic Belt – model description
Nested leave-two-out cross-validation for the optimal crop yield model selection
GCAM-USA v5.3_water_dispatch: integrated modeling of subnational US energy, water, and land systems within a global framework
GOBLIN version 1.0: a land balance model to identify national agriculture and land use pathways to climate neutrality via backcasting
Globally consistent assessment of economic impacts of wildfires in CLIMADA v2.2
REMIND2.1: transformation and innovation dynamics of the energy-economic system within climate and sustainability limits
Parallel gridded simulation framework for DSSAT-CSM (version 4.7.5.21) using MPI and NetCDF
Estimating global land system impacts of timber plantations using MAgPIE 4.3.5
Gamze Ünlü, Florian Maczek, Jihoon Min, Stefan Frank, Fridolin Glatter, Paul Natsuo Kishimoto, Jan Streeck, Nina Eisenmenger, Dominik Wiedenhofer, and Volker Krey
Geosci. Model Dev., 17, 8321–8352, https://doi.org/10.5194/gmd-17-8321-2024, https://doi.org/10.5194/gmd-17-8321-2024, 2024
Short summary
Short summary
Extraction and processing of raw materials constitute a significant source of CO2 emissions in industry and so are contributors to climate change. We develop an open-source tool to assess different industry decarbonization pathways in integrated assessment models (IAMs) with a representation of material flows and stocks. We highlight the importance of expanding the scope of climate change mitigation options to include circular-economy and material efficiency measures in IAM scenario analysis.
Mengqi Zhao, Thomas B. Wild, Neal T. Graham, Son H. Kim, Matthew Binsted, A. F. M. Kamal Chowdhury, Siwa Msangi, Pralit L. Patel, Chris R. Vernon, Hassan Niazi, Hong-Yi Li, and Guta W. Abeshu
Geosci. Model Dev., 17, 5587–5617, https://doi.org/10.5194/gmd-17-5587-2024, https://doi.org/10.5194/gmd-17-5587-2024, 2024
Short summary
Short summary
The Global Change Analysis Model (GCAM) simulates the world’s climate–land–energy–water system interactions , but its reservoir representation is limited. We developed the GLObal Reservoir Yield (GLORY) model to provide GCAM with information on the cost of supplying water based on reservoir construction costs, climate and demand conditions, and reservoir expansion potential. GLORY enhances our understanding of future reservoir capacity needs to meet human demands in a changing climate.
Hassan Niazi, Stephen B. Ferencz, Neal T. Graham, Jim Yoon, Thomas B. Wild, Mohamad Hejazi, David J. Watson, and Chris R. Vernon
EGUsphere, https://doi.org/10.5194/egusphere-2024-799, https://doi.org/10.5194/egusphere-2024-799, 2024
Short summary
Short summary
Superwell is a physics-based hydro-economic model that helps understand the costs and availability of groundwater worldwide. It calculates how much groundwater can be extracted and at what cost, using detailed maps and data of the Earth's below-ground properties. Through these estimates, and by using them with other models, Superwell facilitates exploration of coupled human-environmental systems challenges, such as future water supply sustainability or multi-sectoral energy-water-land feedbacks.
Tommi Ekholm, Nadine-Cyra Freistetter, Aapo Rautiainen, and Laura Thölix
Geosci. Model Dev., 17, 3041–3062, https://doi.org/10.5194/gmd-17-3041-2024, https://doi.org/10.5194/gmd-17-3041-2024, 2024
Short summary
Short summary
CLASH is a numerical model that portrays land allocation between different uses, land carbon stocks, and agricultural and forestry production globally. CLASH can help in examining the role of land use in mitigating climate change, providing food and biogenic raw materials for the economy, and conserving primary ecosystems. Our demonstration with CLASH confirms that reduction of animal-based food, shifting croplands and storing carbon in forests are effective ways to mitigate climate change.
Léna Gurriaran, Yannig Goude, Katsumasa Tanaka, Biqing Zhu, Zhu Deng, Xuanren Song, and Philippe Ciais
Geosci. Model Dev., 17, 2663–2682, https://doi.org/10.5194/gmd-17-2663-2024, https://doi.org/10.5194/gmd-17-2663-2024, 2024
Short summary
Short summary
We developed a data-driven model simulating daily regional power demand based on climate and socioeconomic variables. Our model was applied to eight countries or regions (Australia, Brazil, China, EU, India, Russia, South Africa, US), identifying influential factors and their relationship with power demand. Our findings highlight the significance of economic indicators in addition to temperature, showcasing country-specific variations. This research aids energy planning and emission reduction.
Chao Gao, Xuelei Zhang, Aijun Xiu, Qingqing Tong, Hongmei Zhao, Shichun Zhang, Guangyi Yang, Mengduo Zhang, and Shengjin Xie
Geosci. Model Dev., 17, 2471–2492, https://doi.org/10.5194/gmd-17-2471-2024, https://doi.org/10.5194/gmd-17-2471-2024, 2024
Short summary
Short summary
A comprehensive comparison study is conducted targeting the performances of three two-way coupled meteorology and air quality models (WRF-CMAQ, WRF-Chem, and WRF-CHIMERE) for eastern China during 2017. The impacts of aerosol–radiation–cloud interactions on these models’ results are evaluated against satellite and surface observations. Further improvements to the calculation of aerosol–cloud interactions in these models are crucial to ensure more accurate and timely air quality forecasts.
Muhammad Awais, Adriano Vinca, Edward Byers, Stefan Frank, Oliver Fricko, Esther Boere, Peter Burek, Miguel Poblete Cazenave, Paul Natsuo Kishimoto, Alessio Mastrucci, Yusuke Satoh, Amanda Palazzo, Madeleine McPherson, Keywan Riahi, and Volker Krey
Geosci. Model Dev., 17, 2447–2469, https://doi.org/10.5194/gmd-17-2447-2024, https://doi.org/10.5194/gmd-17-2447-2024, 2024
Short summary
Short summary
Climate change, population growth, and depletion of natural resources all pose complex and interconnected challenges. Our research offers a novel model that can help in understanding the interplay of these aspects, providing policymakers with a more robust tool for making informed future decisions. The study highlights the significance of incorporating climate impacts within large-scale global integrated assessments, which can help us in generating more climate-resilient scenarios.
Utkan M. Durdağ
Geosci. Model Dev., 17, 2187–2196, https://doi.org/10.5194/gmd-17-2187-2024, https://doi.org/10.5194/gmd-17-2187-2024, 2024
Short summary
Short summary
This study introduces a novel approach to outlier detection in geodetic networks, challenging conventional and robust methods. By treating outliers as unknown parameters within the Gauss–Markov model and exploring numerous outlier combinations, this approach prioritizes minimal variance and eliminates iteration dependencies. The mean success rate (MSR) comparisons highlight its effectiveness, improving the MSR by 40–45 % for multiple outliers.
Michaja Pehl, Felix Schreyer, and Gunnar Luderer
Geosci. Model Dev., 17, 2015–2038, https://doi.org/10.5194/gmd-17-2015-2024, https://doi.org/10.5194/gmd-17-2015-2024, 2024
Short summary
Short summary
We extend the REMIND model (used to investigate climate mitigation strategies) by an industry module that represents cement, chemical, steel, and other industries. We also present a method for deriving scenarios of industry subsector activity and energy demand, consistent with established socioeconomic scenarios, allowing us to investigate the different climate change mitigation challenges and strategies in industry subsectors in the context of the entire energy–economy–climate system.
Chen Chris Gong, Falko Ueckerdt, Robert Pietzcker, Adrian Odenweller, Wolf-Peter Schill, Martin Kittel, and Gunnar Luderer
Geosci. Model Dev., 16, 4977–5033, https://doi.org/10.5194/gmd-16-4977-2023, https://doi.org/10.5194/gmd-16-4977-2023, 2023
Short summary
Short summary
To mitigate climate change, the global economy must drastically reduce its greenhouse gas emissions, for which the power sector plays a key role. Until now, long-term models which simulate this transformation cannot always accurately depict the power sector due to a lack of resolution. Our work bridges this gap by linking a long-term model to an hourly model. The result is an almost full harmonization of the models in generating a power sector mix until 2100 with hourly resolution.
Weiwei Xiong, Katsumasa Tanaka, Philippe Ciais, Daniel J. A. Johansson, and Mariliis Lehtveer
EGUsphere, https://doi.org/10.5194/egusphere-2022-1508, https://doi.org/10.5194/egusphere-2022-1508, 2023
Short summary
Short summary
The development and maintenance of Integrated Assessment Models (IAMs) requires large coordination efforts. The emulator we developed for IAMs (emIAM) can reproduce their emission outcomes well, paving a way to generate multi-IAM scenarios with small computational resources more easily. emIAM can be applied to extend the capabilities of simple climate models as a tool to calculate cost-effective pathways directly related to temperature targets.
David R. Morrow, Raphael Apeaning, and Garrett Guard
Geosci. Model Dev., 16, 1105–1118, https://doi.org/10.5194/gmd-16-1105-2023, https://doi.org/10.5194/gmd-16-1105-2023, 2023
Short summary
Short summary
GCAM-CDR is a variant of the Global Change Analysis Model that makes it easier to study the roles that carbon dioxide removal (CDR) might play in climate policy. Building on GCAM 5.4, GCAM-CDR adds several extra technologies to permanently remove carbon dioxide from the air and enables users to simulate a wider range of CDR-related policies and controls.
Jarmo S. Kikstra, Zebedee R. J. Nicholls, Christopher J. Smith, Jared Lewis, Robin D. Lamboll, Edward Byers, Marit Sandstad, Malte Meinshausen, Matthew J. Gidden, Joeri Rogelj, Elmar Kriegler, Glen P. Peters, Jan S. Fuglestvedt, Ragnhild B. Skeie, Bjørn H. Samset, Laura Wienpahl, Detlef P. van Vuuren, Kaj-Ivar van der Wijst, Alaa Al Khourdajie, Piers M. Forster, Andy Reisinger, Roberto Schaeffer, and Keywan Riahi
Geosci. Model Dev., 15, 9075–9109, https://doi.org/10.5194/gmd-15-9075-2022, https://doi.org/10.5194/gmd-15-9075-2022, 2022
Short summary
Short summary
Assessing hundreds or thousands of emission scenarios in terms of their global mean temperature implications requires standardised procedures of infilling, harmonisation, and probabilistic temperature assessments. We here present the open-source
climate-assessmentworkflow that was used in the IPCC AR6 Working Group III report. The paper provides key insight for anyone wishing to understand the assessment of climate outcomes of mitigation pathways in the context of the Paris Agreement.
Théo Le Guenedal, Philippe Drobinski, and Peter Tankov
Geosci. Model Dev., 15, 8001–8039, https://doi.org/10.5194/gmd-15-8001-2022, https://doi.org/10.5194/gmd-15-8001-2022, 2022
Short summary
Short summary
The CATHERINA model produces simulations of cyclone-related annualized damage costs at a country level from climate data and open-source socioeconomic indicators. The framework couples statistical and physical modeling of tropical cyclones to bridge the gap between general circulation and integrated assessment models providing a precise description of tropical-cyclone-related damages.
William Atkinson, Sebastian D. Eastham, Y.-H. Henry Chen, Jennifer Morris, Sergey Paltsev, C. Adam Schlosser, and Noelle E. Selin
Geosci. Model Dev., 15, 7767–7789, https://doi.org/10.5194/gmd-15-7767-2022, https://doi.org/10.5194/gmd-15-7767-2022, 2022
Short summary
Short summary
Understanding policy effects on human-caused air pollutant emissions is key for assessing related health impacts. We develop a flexible scenario tool that combines updated emissions data sets, long-term economic modeling, and comprehensive technology pathways to clarify the impacts of climate and air quality policies. Results show the importance of both policy levers in the future to prevent long-term emission increases from offsetting near-term air quality improvements from existing policies.
Chengyong Wu, Kelong Chen, Chongyi E, Xiaoni You, Dongcai He, Liangbai Hu, Baokang Liu, Runke Wang, Yaya Shi, Chengxiu Li, and Fumei Liu
Geosci. Model Dev., 15, 6919–6933, https://doi.org/10.5194/gmd-15-6919-2022, https://doi.org/10.5194/gmd-15-6919-2022, 2022
Short summary
Short summary
The traditional Carnegie–Ames–Stanford Approach (CASA) model driven by multisource data such as meteorology, soil, and remote sensing (RS) has notable disadvantages. We drove the CASA using RS data and conducted a case study of the Qinghai Lake basin alpine grassland. The simulated result is similar to published and measured net primary productivity (NPP). It may provide a reference for simulating vegetation NPP to satisfy the requirements of accounting carbon stocks and other applications.
Rui Ma, Jingfeng Xiao, Shunlin Liang, Han Ma, Tao He, Da Guo, Xiaobang Liu, and Haibo Lu
Geosci. Model Dev., 15, 6637–6657, https://doi.org/10.5194/gmd-15-6637-2022, https://doi.org/10.5194/gmd-15-6637-2022, 2022
Short summary
Short summary
Parameter optimization can improve the accuracy of modeled carbon fluxes. Few studies conducted pixel-level parameterization because it requires a high computational cost. Our paper used high-quality spatial products to optimize parameters at the pixel level, and also used the machine learning method to improve the speed of optimization. The results showed that there was significant spatial variability of parameters and we also improved the spatial pattern of carbon fluxes.
Núria Pérez-Zanón, Louis-Philippe Caron, Silvia Terzago, Bert Van Schaeybroeck, Llorenç Lledó, Nicolau Manubens, Emmanuel Roulin, M. Carmen Alvarez-Castro, Lauriane Batté, Pierre-Antoine Bretonnière, Susana Corti, Carlos Delgado-Torres, Marta Domínguez, Federico Fabiano, Ignazio Giuntoli, Jost von Hardenberg, Eroteida Sánchez-García, Verónica Torralba, and Deborah Verfaillie
Geosci. Model Dev., 15, 6115–6142, https://doi.org/10.5194/gmd-15-6115-2022, https://doi.org/10.5194/gmd-15-6115-2022, 2022
Short summary
Short summary
CSTools (short for Climate Service Tools) is an R package that contains process-based methods for climate forecast calibration, bias correction, statistical and stochastic downscaling, optimal forecast combination, and multivariate verification, as well as basic and advanced tools to obtain tailored products. In addition to describing the structure and methods in the package, we also present three use cases to illustrate the seasonal climate forecast post-processing for specific purposes.
Olexandr Balyk, James Glynn, Vahid Aryanpur, Ankita Gaur, Jason McGuire, Andrew Smith, Xiufeng Yue, and Hannah Daly
Geosci. Model Dev., 15, 4991–5019, https://doi.org/10.5194/gmd-15-4991-2022, https://doi.org/10.5194/gmd-15-4991-2022, 2022
Short summary
Short summary
Ireland has significantly increased its climate mitigation ambition, with a recent commitment to reduce greenhouse gases by an average of 7 % yr-1 in the period to 2030 and a net-zero target for 2050. This article describes the TIMES-Ireland model (TIM) developed to inform Ireland's energy system decarbonisation challenge. The paper also outlines a priority list of future model developments to better meet the challenge, taking into account equity, cost-effectiveness, and technical feasibility.
Haiyan Jiang, Slobodan P. Simonovic, and Zhongbo Yu
Geosci. Model Dev., 15, 4503–4528, https://doi.org/10.5194/gmd-15-4503-2022, https://doi.org/10.5194/gmd-15-4503-2022, 2022
Short summary
Short summary
The Yangtze Economic Belt is one of the most dynamic regions of China. The fast urbanization and strong economic growth in the region pose severe challenges for its sustainable development. To improve our understanding of the interactions among coupled human–natural systems in the Belt and to provide the foundation for science-based policy-making for the sustainable development of the Belt, we developed an integrated system-dynamics-based simulation model (ANEMI_Yangtze) for the Belt.
Thi Lan Anh Dinh and Filipe Aires
Geosci. Model Dev., 15, 3519–3535, https://doi.org/10.5194/gmd-15-3519-2022, https://doi.org/10.5194/gmd-15-3519-2022, 2022
Short summary
Short summary
We proposed the leave-two-out method (i.e. one particular implementation of the nested cross-validation) to determine the optimal statistical crop model (using the validation dataset) and estimate its true generalization ability (using the testing dataset). This approach is applied to two examples (robusta coffee in Cu M'gar and grain maize in France). The results suggested that the simple models are more suitable in crop modelling where a limited number of samples is available.
Matthew Binsted, Gokul Iyer, Pralit Patel, Neal T. Graham, Yang Ou, Zarrar Khan, Nazar Kholod, Kanishka Narayan, Mohamad Hejazi, Son Kim, Katherine Calvin, and Marshall Wise
Geosci. Model Dev., 15, 2533–2559, https://doi.org/10.5194/gmd-15-2533-2022, https://doi.org/10.5194/gmd-15-2533-2022, 2022
Short summary
Short summary
GCAM-USA v5.3_water_dispatch is an open-source model that represents key interactions across economic, energy, water, and land systems in a global framework, with subnational detail in the United States. GCAM-USA can be used to explore future changes in demand for (and production of) energy, water, and crops at the state and regional level in the US. This paper describes GCAM-USA and provides four illustrative scenarios to demonstrate the model's capabilities and potential applications.
Colm Duffy, Remi Prudhomme, Brian Duffy, James Gibbons, Cathal O'Donoghue, Mary Ryan, and David Styles
Geosci. Model Dev., 15, 2239–2264, https://doi.org/10.5194/gmd-15-2239-2022, https://doi.org/10.5194/gmd-15-2239-2022, 2022
Short summary
Short summary
The GOBLIN (General Overview for a Backcasting approach of Livestock INtensification) model is a new high-resolution integrated
bottom-upbiophysical land use model capable of identifying broad pathways towards climate neutrality in the agriculture, forestry, and other land use (AFOLU) sector. The model is intended to bridge the gap between hindsight representations of national emissions and much larger globally integrated assessment models.
Samuel Lüthi, Gabriela Aznar-Siguan, Christopher Fairless, and David N. Bresch
Geosci. Model Dev., 14, 7175–7187, https://doi.org/10.5194/gmd-14-7175-2021, https://doi.org/10.5194/gmd-14-7175-2021, 2021
Short summary
Short summary
In light of the dramatic increase in economic impacts due to wildfires, the need for modelling impacts of wildfire damage is ever increasing. Insurance companies, households, humanitarian organisations and governmental authorities are worried by climate risks. In this study we present an approach to modelling wildfire impacts using the open-source modelling platform CLIMADA. All input data are free, public and globally available, ensuring applicability in data-scarce regions of the Global South.
Lavinia Baumstark, Nico Bauer, Falk Benke, Christoph Bertram, Stephen Bi, Chen Chris Gong, Jan Philipp Dietrich, Alois Dirnaichner, Anastasis Giannousakis, Jérôme Hilaire, David Klein, Johannes Koch, Marian Leimbach, Antoine Levesque, Silvia Madeddu, Aman Malik, Anne Merfort, Leon Merfort, Adrian Odenweller, Michaja Pehl, Robert C. Pietzcker, Franziska Piontek, Sebastian Rauner, Renato Rodrigues, Marianna Rottoli, Felix Schreyer, Anselm Schultes, Bjoern Soergel, Dominika Soergel, Jessica Strefler, Falko Ueckerdt, Elmar Kriegler, and Gunnar Luderer
Geosci. Model Dev., 14, 6571–6603, https://doi.org/10.5194/gmd-14-6571-2021, https://doi.org/10.5194/gmd-14-6571-2021, 2021
Short summary
Short summary
This paper presents the new and open-source version 2.1 of the REgional Model of INvestments and Development (REMIND) with the aim of improving code documentation and transparency. REMIND is an integrated assessment model (IAM) of the energy-economic system. By answering questions like
Can the world keep global warming below 2 °C?and, if so,
Under what socio-economic conditions and applying what technological options?, it is the goal of REMIND to explore consistent transformation pathways.
Phillip D. Alderman
Geosci. Model Dev., 14, 6541–6569, https://doi.org/10.5194/gmd-14-6541-2021, https://doi.org/10.5194/gmd-14-6541-2021, 2021
Short summary
Short summary
This paper documents a framework for accessing crop model input data directly from spatially referenced file formats and running simulations in parallel across a geographic region using the Decision Support System for Agrotechnology Transfer Cropping Systems Model (a widely used crop model system). The framework greatly reduced the execution time when compared to running the standard version of the model.
Abhijeet Mishra, Florian Humpenöder, Jan Philipp Dietrich, Benjamin Leon Bodirsky, Brent Sohngen, Christopher P. O. Reyer, Hermann Lotze-Campen, and Alexander Popp
Geosci. Model Dev., 14, 6467–6494, https://doi.org/10.5194/gmd-14-6467-2021, https://doi.org/10.5194/gmd-14-6467-2021, 2021
Short summary
Short summary
Timber plantations are an increasingly important source of roundwood production, next to harvest from natural forests. However, timber plantations are currently underrepresented in global land-use models. Here, we include timber production and plantations in the MAgPIE modeling framework. This allows one to capture the competition for land between agriculture and forestry. We show that increasing timber plantations in the coming decades partly compete with cropland for limited land resources.
Cited articles
Achakulwisut, P., Erickson, P., Guivarch, C., Schaeffer, R., Brutschin, E., and Pye, S.: Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions, Nat. Commun., 14, 5425, https://doi.org/10.1038/s41467-023-41105-z, 2023.
Budinis, S., Krevor, S., Dowell, N. M., Brandon, N., and Hawkes, A.: An assessment of CCS costs, barriers and potential, Energy Strateg. Rev., 22, 61–81, https://doi.org/10.1016/j.esr.2018.08.003, 2018.
Byers, E., Krey, V., Kriegler, E., Riahi, K., Schaeffer, R., Kikstra, J., Lamboll, R., Nicholls, Z., Sandstad, M., Smith, C., van der Wijst, K., Al -Khourdajie, A., Lecocq, F., Portugal-Pereira, J., Saheb, Y., Stromman, A., Winkler, H., Auer, C., Brutschin, E., Gidden, M., Hackstock, P., Harmsen, M., Huppmann, D., Kolp, P., Lepault, C., Lewis, J., Marangoni, G., Müller-Casseres, E., Skeie, R., Werning, M., Calvin, K., Forster, P., Guivarch, C., Hasegawa, T., Meinshausen, M., Peters, G., Rogelj, J., Samset, B., Steinberger, J., Tavoni, M., and van Vuuren, D.: AR6 Scenarios Database (1.1), Zenodo [data set], https://doi.org/10.5281/zenodo.7197970, 2022.
Climate Action Tracker: Modelled domestic pathways, https://climateactiontracker.org/methodology/cat-rating-methodology/modelled-domestic-pathways/ (last access: 17 January 2024), 2024.
Climate Analytics: 2030 targets aligned to 1.5 °C: Evidence from the latest global pathways, https://climateanalytics.org/publications/2023/2030-targets-aligned-to-15c-evidence-from-the-latest-global-pathways/ (last access: 15 June 2023), 2023.
Climate Analytics: 1.5 °C National Pathway Explorer, https://1p5ndc-pathways.climateanalytics.org (last access: 1 October 2024), 2024.
Creutzig, F., Ravindranath, N. H., Berndes, G., Bolwig, S., Bright, R., Cherubini, F., Chum, H., Corbera, E., Delucchi, M., Faaij, A., Fargione, J., Haberl, H., Heath, G., Lucon, O., Plevin, R., Popp, A., Robledo-Abad, C., Rose, S., Smith, P., Stromman, A., Suh, S., and Masera, O.: Bioenergy and climate change mitigation: An assessment, GCB Bioenergy, 7, 916–944, https://doi.org/10.1111/gcbb.12205, 2015.
Dekker, M. M., Daioglou, V., Pietzcker, R., Rodrigues, R., de Boer, H.-S., Dalla Longa, F., Drouet, L., Emmerling, J., Fattahi, A., Fotiou, T., Fragkos, P., Fricko, O., Gusheva, E., Harmsen, M., Huppmann, D., Kannavou, M., Krey, V., Lombardi, F., Luderer, G., Pfenninger, S., Tsiropoulos, I., Zakeri, B., van der Zwaan, B., Usher, W., and van Vuuren, D.: Identifying energy model fingerprints in mitigation scenarios, Nature Energy, 8, 1395–1404, https://doi.org/10.1038/s41560-023-01399-1, 2023a.
Dekker, M. M., Hof, A. F., van den Berg, M., Daioglou, V., van Heerden, R., van der Wijst, K.-I., and van Vuuren, D. P.: Spread in climate policy scenarios unravelled, Nature, 624, 309–316, https://doi.org/10.1038/s41586-023-06738-6, 2023b.
Ferrari, L., Carlino, A., Gazzotti, P., Tavoni, M., and Castelletti, A.: From optimal to robust climate strategies: expanding integrated assessment model ensembles to manage economic, social, and environmental objectives, Environ. Res. Lett., 17, 084029, https://doi.org/10.1088/1748-9326/ac843b, 2022.
Frank, S., Gusti, M., Havlík, P., Lauri, P., DiFulvio, F., Forsell, N., Hasegawa, T., Krisztin, T., Palazzo, A., and Valin, H.: Land-based climate change mitigation potentials within the agenda for sustainable development, Environ. Res. Lett., 16, 024006, https://doi.org/10.1088/1748-9326/abc58a, 2021.
Fuss, S., Lamb, W. F., Callaghan, M. W., Hilaire, J., Creutzig, F., Amann, T., Beringer, T., De Oliveira Garcia, W., Hartmann, J., Khanna, T., Luderer, G., Nemet, G. F., Rogelj, J., Smith, P., Vicente, J. V., Wilcox, J., Del Mar Zamora Dominguez, M., and Minx, J. C.: Negative emissions – Part 2: Costs, potentials and side effects, Environ. Res. Lett., 13, 063002, https://doi.org/10.1088/1748-9326/aabf9f, 2018.
GitLab: Pathways Ensemble Analysis, GitLab [data set], https://gitlab.com/climateanalytics/pathways-ensemble-analysis (last access: 18 January 2025), 2025.
Grant, N., Hawkes, A., Napp, T., and Gambhir, A.: The appropriate use of reference scenarios in mitigation analysis, Nat. Clim. Change, 10, 605–610, https://doi.org/10.1038/s41558-020-0826-9, 2020.
Grant, N., Hawkes, A., Mittal, S., and Gambhir, A.: The policy implications of an uncertain carbon dioxide removal potential, Joule, 5, 2593–2605, https://doi.org/10.1016/j.joule.2021.09.004, 2021.
Grant, N., Wilson, R., Majid, A., Welder, L., Hörsch, J., Fyson, C., and Hare, B.: 1.5 °C Pathways for the EU27: accelerating climate action to deliver the Paris Agreement, https://climateanalytics.org/publications/15c-pathways-for-the-eu27-accelerating-climate-action-to (last access: 18 January 2025), 2022a.
Grant, N., Gambhir, A., Mittal, S., Greig, C., and Köberle, A. C.: Enhancing the realism of decarbonisation scenarios with practicable regional constraints on CO2 storage capacity, Int. J. Greenh. Gas Con., 120, 103766, https://doi.org/10.1016/j.ijggc.2022.103766, 2022b.
Guivarch, C., Kriegler, E., Joana Portugal-Pereira, V. B., Edmonds, J., Fischedick, M., Havlík, P., Jaramillo, P., Krey, V., Lecocq, F., Lucena, A. F. P., Meinshausen, M., Mirasgedis, S., O'Neill, B., Peters, G. P., Rogelj, J., Rose, S., Saheb, Y., Strbac, G., Strømman, A. H., van Vuuren, D. P., and Zhou, N.: Annex III: Scenarios and modelling methods, in: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Shukla, P. R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., Belkacemi, M., Hasija, A., Lisboa, G., Luz, S., and Malley, J., Cambridge University Press, Cambridge, UK and New York, NY, USA, 1841–1908, https://doi.org/10.1017/9781009157926.022, 2022a.
Guivarch, C., Le Gallic, T., Bauer, N., Fragkos, P., Huppmann, D., Jaxa-Rozen, M., Keppo, I., Kriegler, E., Krisztin, T., Marangoni, G., Pye, S., Riahi, K., Schaeffer, R., Tavoni, M., Trutnevyte, E., van Vuuren, D., and Wagner, F.: Using large ensembles of climate change mitigation scenarios for robust insights, Nat. Clim. Change, 12, 428–435, https://doi.org/10.1038/s41558-022-01349-x, 2022b.
Huppmann, D., Rogelj, J., Kriegler, E., Krey, V., and Riahi, K.: A new scenario resource for integrated 1.5 °C research, Nat. Clim. Change, 8, 1027–1030, https://doi.org/10.1038/s41558-018-0317-4, 2018.
Huppmann, D., Gidden, M., Nicholls, Z., Hörsch, J., Lamboll, R., Kishimoto, P., Burandt, T., Fricko, O., Byers, E., Kikstra, J., Brinkerink, M., Budzinski, M., Maczek, F., Zwickl-Bernhard, S., Welder, L., Alvarez Quispe, E., and Smith, C.: pyam: Analysis and visualisation of integrated assessment and macro-energy scenarios, version 2; peer review: 3 approved, Open Research Europe, 1, 74, https://doi.org/10.12688/openreseurope.13633.2, 2021.
Huppmann, D., Gidden, M. J., Nicholls, Z., Hörsch, J., Lamboll, R. D., Kishimoto, P. N., Burandt, T., Fricko, O., Byers, E., Kikstra, J. S., Brinkerink, M., Budzinski, M., Maczek, F., Zwickl-Bernhard, S., Welder, L., Alvarez Quispe, E. F., and Smith, C. J.: pyam: analysis and visualization of integrated- assessment and macro-energy scenarios, Zenodo [code], https://doi.org/10.5281/zenodo.10391054, 2023.
Huppmann, D., Wienpahl, L., Hackstock, P., and Castella, L.: nomenclature, Zenodo [data set], https://doi.org/10.5281/zenodo.10462491, 2024.
IAMC: IAMC time-series data template: https://www.iamconsortium.org/scientific-working-groups/data-protocols-and-management/iamc-time-series-data-template/ (last access: 19 January 2024), 2024.
IPCC: Climate Change: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Lee, H., and Romero, J., IPCC, Geneva, Switzerland, Intergovernmental Panel on Climate Change (IPCC), https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023.
Keppo, I., Butnar, I., Bauer, N., Caspani, M., Edelenbosch, O., Emmerling, J., Fragkos, P., Guivarch, C., Harmsen, M., Lefevre, J., Le Gallic, T., Leimbach, M., Mcdowall, W., Mercure, J. F., Schaeffer, R., Trutnevyte, E., and Wagner, F.: Exploring the possibility space: taking stock of the diverse capabilities and gaps in integrated assessment models, Environ. Res. Lett., 16, 053006, https://doi.org/10.1088/1748-9326/abe5d8, 2021.
Krey, V.: Global energy-climate scenarios and models: A review, WIREs Energy Environ., 3, 363–383, https://doi.org/10.1002/wene.98, 2014.
Minx, J. C., Lamb, W. F., Callaghan, M. W., Fuss, S., Hilaire, J., Creutzig, F., Amann, T., Beringer, T., De Oliveira Garcia, W., Hartmann, J., Khanna, T., Lenzi, D., Luderer, G., Nemet, G. F., Rogelj, J., Smith, P., Vicente Vicente, J. L., Wilcox, J., and Del Mar Zamora Dominguez, M.: Negative emissions - Part 1: Research landscape and synthesis, Environ. Res. Lett., 13, 063001, https://doi.org/10.1088/1748-9326/aabf9b, 2018.
Parker, W. S.: Ensemble modeling, uncertainty and robust predictions, WIREs Clim. Change, 4, 213–223, https://doi.org/10.1002/wcc.220, 2013.
Peters, G. P., Al Khourdajie, A., Sognnaes, I., and Sanderson, B. M.: AR6 scenarios database: an assessment of current practices and future recommendations, npj Climate Action, 2, 31, https://doi.org/10.1038/s44168-023-00050-9, 2023.
Riahi, K., Bertram, C., Huppmann, D., Rogelj, J., Bosetti, V., Cabardos, A., Deppermann, A., Drouet, L., Frank, S., Fricko, O., Fujimori, S., Harmsen, M., Hasegawa, T., Krey, V., Zwaan, B. V. D., Vrontisi, Z., Longa, F. D., Després, J., Keramidas, K., Kishimoto, P., Kriegler, E., Meinshausen, M., Nogueira, L. P., Oshiro, K., Popp, A., Rochedo, P. R. R., Ünlü, G., Ruijven, B. V., Takakura, J., Tavoni, M., and Vuuren, D. V.: Cost and attainability of meeting stringent climate targets without overshoot, Nat. Clim. Change, 11, 1063–1069, https://doi.org/10.1038/s41558-021-01215-2, 2021.
Riahi, K., Schaeffer, R., Arango, J., Calvin, K., Guivarch, C., Hasegawa, T., Jiang, K., Kriegler, E., Matthews, R., Peters, G. P., Rao, A., Robertson, S., Sebbit, A. M., Steinberger, J., Tavoni, M., and Van Vuuren, D. P.: Mitigation pathways compatible with long-term goals., in: IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Shukla, P. R., Skea, J., Slade, R., Khourdajie, A. A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., Belkacemi, M., Hasija, A., Lisboa, G., Luz, S., and Malley, J., Cambridge University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.1017/9781009157926.005, 2022.
Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V., Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., Mundaca, L., Gomis, M. I., Lonnoy, E., Maycock, T., and Tignor, M.: Mitigation Pathways Compatible with 1.5 °C in the Context of Sustainable Development, Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, IPCC, https://www.ipcc.ch/sr15/chapter/chapter-2/ (last access: 18 January 2025), 2018.
Smith, C. J.: A framework for downweighting similar scenarios in integrated assessment model ensembles, Scenarios Forum, Laxenburg, Austria, https://scenariosforum.org/wp-content/uploads/sites/3/2022/06/SF22_Agenda.pdf (last access: 18 January 2025), 2022.
Smith, S. M., Geden, O., Nemet, G. F., Gidden, M. J., Lamb, W. F., Powis, C., Bellamy, R., Callaghan, M. W., Cowie, A., Cox, E., Fuss, S., Gasser, T., Grassi, G., Greene, J., Lück, S., Mohan, A., Müller-Hansen, F., Peters, G. P., Pratama, Y., Repke, T., Riahi, K., Schenuit, F., Steinhauser, J., Strefler, J., Valenzuela, J. M., and Minx, J. C.: The State of Carbon Dioxide Removal – 1st Edition, The State of Carbon Dioxide Removal, https://doi.org/10.17605/OSF.IO/W3B4Z, 2023.
van Soest, H. L., Aleluia Reis, L., Baptista, L. B., Bertram, C., Després, J., Drouet, L., den Elzen, M., Fragkos, P., Fricko, O., Fujimori, S., Grant, N., Harmsen, M., Iyer, G., Keramidas, K., Köberle, A. C., Kriegler, E., Malik, A., Mittal, S., Oshiro, K., Riahi, K., Roelfsema, M., van Ruijven, B., Schaeffer, R., Silva Herran, D., Tavoni, M., Unlu, G., Vandyck, T., and van Vuuren, D. P.: Global roll-out of comprehensive policy measures may aid in bridging emissions gap, Nat. Commun., 12, 6419, https://doi.org/10.1038/s41467-021-26595-z, 2021.
van de Ven, D. J., Mittal, S., Gambhir, A., Lamboll, R. D., Doukas, H., Giarola, S., Hawkes, A., Koasidis, K., Köberle, A. C., McJeon, H., Perdana, S., Peters, G. P., Rogelj, J., Sognnaes, I., Vielle, M., and Nikas, A.: A multimodel analysis of post-Glasgow climate targets and feasibility challenges, Nat. Clim. Change, 13.6, 570–578 https://doi.org/10.1038/s41558-023-01661-0, 2023.
van Diemen, R., Matthews, J. B. R., Möller, V., Fuglestvedt, J. S., Masson-Delmotte, V., Méndez, C., Reisinger, A., and Semenov, S.: Annex I: Glossary, in: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Shukla, P. R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., Belkacemi, M., Hasija, A., Lisboa, G., Luz, S., and Malley, J., Cambridge University Press, Cambridge, UK and New York, NY, USA, 1793–1820, https://doi.org/10.1017/9781009157926.020, 2022.
Welder, L. and Grant, N.: pathways-ensemble-analysis, Zenodo [code], https://doi.org/10.5281/zenodo.10197980, 2023.
Welder, L. and Grant, N.: pathways-ensemble-analysis, Zenodo [code], https://doi.org/10.5281/zenodo.11057268, 2024.
Weyant, J.: Some Contributions of Integrated Assessment Models of Global Climate Change, Rev. Env. Econ. Policy, 11, 115–137, https://doi.org/10.1093/reep/rew018, 2017.
Wilson, C., Guivarch, C., Kriegler, E., van Ruijven, B., van Vuuren, D. P., Krey, V., Schwanitz, V. J., and Thompson, E. L.: Evaluating process-based integrated assessment models of climate change mitigation, Climatic Change, 166, 3, https://doi.org/10.1007/s10584-021-03099-9, 2021.
Short summary
Pathways investigating the link between emissions and global warming have been continuously used to inform climate policy. We have developed a tool that can facilitate the systematic and robust analysis of ensembles of such pathways. We describe the structure of this tool and then show an illustrative application of it. The application indicates the usefulness of the tool to the research community and shows how it can be used to establish best practices.
Pathways investigating the link between emissions and global warming have been continuously used...