Articles | Volume 18, issue 2
https://doi.org/10.5194/gmd-18-239-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-239-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
pathways-ensemble-analysis v1.1.0: an open-source library for systematic and robust analysis of pathway ensembles
Lara Welder
CORRESPONDING AUTHOR
Climate Analytics, Berlin, Germany
Neil Grant
Climate Analytics, Berlin, Germany
Matthew J. Gidden
Climate Analytics, Berlin, Germany
Energy Climate and Environment Program, International Institute for Applied System Analysis, Laxenburg, Austria
Related authors
No articles found.
Detlef van Vuuren, Brian O'Neill, Claudia Tebaldi, Louise Chini, Pierre Friedlingstein, Tomoko Hasegawa, Keywan Riahi, Benjamin Sanderson, Bala Govindasamy, Nico Bauer, Veronika Eyring, Cheikh Fall, Katja Frieler, Matthew Gidden, Laila Gohar, Andrew Jones, Andrew King, Reto Knutti, Elmar Kriegler, Peter Lawrence, Chris Lennard, Jason Lowe, Camila Mathison, Shahbaz Mehmood, Luciana Prado, Qiang Zhang, Steven Rose, Alexander Ruane, Carl-Friederich Schleussner, Roland Seferian, Jana Sillmann, Chris Smith, Anna Sörensson, Swapna Panickal, Kaoru Tachiiri, Naomi Vaughan, Saritha Vishwanathan, Tokuta Yokohata, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3765, https://doi.org/10.5194/egusphere-2024-3765, 2025
Preprint archived
Short summary
Short summary
We propose a set of six plausible 21st century emission scenarios, and their multi-century extensions, that will be used by the international community of climate modeling centers to produce the next generation of climate projections. These projections will support climate, impact and mitigation researchers, provide information to practitioners to address future risks from climate change, and contribute to policymakers’ considerations of the trade-offs among various levels of mitigation.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Jarmo S. Kikstra, Zebedee R. J. Nicholls, Christopher J. Smith, Jared Lewis, Robin D. Lamboll, Edward Byers, Marit Sandstad, Malte Meinshausen, Matthew J. Gidden, Joeri Rogelj, Elmar Kriegler, Glen P. Peters, Jan S. Fuglestvedt, Ragnhild B. Skeie, Bjørn H. Samset, Laura Wienpahl, Detlef P. van Vuuren, Kaj-Ivar van der Wijst, Alaa Al Khourdajie, Piers M. Forster, Andy Reisinger, Roberto Schaeffer, and Keywan Riahi
Geosci. Model Dev., 15, 9075–9109, https://doi.org/10.5194/gmd-15-9075-2022, https://doi.org/10.5194/gmd-15-9075-2022, 2022
Short summary
Short summary
Assessing hundreds or thousands of emission scenarios in terms of their global mean temperature implications requires standardised procedures of infilling, harmonisation, and probabilistic temperature assessments. We here present the open-source
climate-assessmentworkflow that was used in the IPCC AR6 Working Group III report. The paper provides key insight for anyone wishing to understand the assessment of climate outcomes of mitigation pathways in the context of the Paris Agreement.
Cited articles
Achakulwisut, P., Erickson, P., Guivarch, C., Schaeffer, R., Brutschin, E., and Pye, S.: Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions, Nat. Commun., 14, 5425, https://doi.org/10.1038/s41467-023-41105-z, 2023.
Budinis, S., Krevor, S., Dowell, N. M., Brandon, N., and Hawkes, A.: An assessment of CCS costs, barriers and potential, Energy Strateg. Rev., 22, 61–81, https://doi.org/10.1016/j.esr.2018.08.003, 2018.
Byers, E., Krey, V., Kriegler, E., Riahi, K., Schaeffer, R., Kikstra, J., Lamboll, R., Nicholls, Z., Sandstad, M., Smith, C., van der Wijst, K., Al -Khourdajie, A., Lecocq, F., Portugal-Pereira, J., Saheb, Y., Stromman, A., Winkler, H., Auer, C., Brutschin, E., Gidden, M., Hackstock, P., Harmsen, M., Huppmann, D., Kolp, P., Lepault, C., Lewis, J., Marangoni, G., Müller-Casseres, E., Skeie, R., Werning, M., Calvin, K., Forster, P., Guivarch, C., Hasegawa, T., Meinshausen, M., Peters, G., Rogelj, J., Samset, B., Steinberger, J., Tavoni, M., and van Vuuren, D.: AR6 Scenarios Database (1.1), Zenodo [data set], https://doi.org/10.5281/zenodo.7197970, 2022.
Climate Action Tracker: Modelled domestic pathways, https://climateactiontracker.org/methodology/cat-rating-methodology/modelled-domestic-pathways/ (last access: 17 January 2024), 2024.
Climate Analytics: 2030 targets aligned to 1.5 °C: Evidence from the latest global pathways, https://climateanalytics.org/publications/2023/2030-targets-aligned-to-15c-evidence-from-the-latest-global-pathways/ (last access: 15 June 2023), 2023.
Climate Analytics: 1.5 °C National Pathway Explorer, https://1p5ndc-pathways.climateanalytics.org (last access: 1 October 2024), 2024.
Creutzig, F., Ravindranath, N. H., Berndes, G., Bolwig, S., Bright, R., Cherubini, F., Chum, H., Corbera, E., Delucchi, M., Faaij, A., Fargione, J., Haberl, H., Heath, G., Lucon, O., Plevin, R., Popp, A., Robledo-Abad, C., Rose, S., Smith, P., Stromman, A., Suh, S., and Masera, O.: Bioenergy and climate change mitigation: An assessment, GCB Bioenergy, 7, 916–944, https://doi.org/10.1111/gcbb.12205, 2015.
Dekker, M. M., Daioglou, V., Pietzcker, R., Rodrigues, R., de Boer, H.-S., Dalla Longa, F., Drouet, L., Emmerling, J., Fattahi, A., Fotiou, T., Fragkos, P., Fricko, O., Gusheva, E., Harmsen, M., Huppmann, D., Kannavou, M., Krey, V., Lombardi, F., Luderer, G., Pfenninger, S., Tsiropoulos, I., Zakeri, B., van der Zwaan, B., Usher, W., and van Vuuren, D.: Identifying energy model fingerprints in mitigation scenarios, Nature Energy, 8, 1395–1404, https://doi.org/10.1038/s41560-023-01399-1, 2023a.
Dekker, M. M., Hof, A. F., van den Berg, M., Daioglou, V., van Heerden, R., van der Wijst, K.-I., and van Vuuren, D. P.: Spread in climate policy scenarios unravelled, Nature, 624, 309–316, https://doi.org/10.1038/s41586-023-06738-6, 2023b.
Ferrari, L., Carlino, A., Gazzotti, P., Tavoni, M., and Castelletti, A.: From optimal to robust climate strategies: expanding integrated assessment model ensembles to manage economic, social, and environmental objectives, Environ. Res. Lett., 17, 084029, https://doi.org/10.1088/1748-9326/ac843b, 2022.
Frank, S., Gusti, M., Havlík, P., Lauri, P., DiFulvio, F., Forsell, N., Hasegawa, T., Krisztin, T., Palazzo, A., and Valin, H.: Land-based climate change mitigation potentials within the agenda for sustainable development, Environ. Res. Lett., 16, 024006, https://doi.org/10.1088/1748-9326/abc58a, 2021.
Fuss, S., Lamb, W. F., Callaghan, M. W., Hilaire, J., Creutzig, F., Amann, T., Beringer, T., De Oliveira Garcia, W., Hartmann, J., Khanna, T., Luderer, G., Nemet, G. F., Rogelj, J., Smith, P., Vicente, J. V., Wilcox, J., Del Mar Zamora Dominguez, M., and Minx, J. C.: Negative emissions – Part 2: Costs, potentials and side effects, Environ. Res. Lett., 13, 063002, https://doi.org/10.1088/1748-9326/aabf9f, 2018.
GitLab: Pathways Ensemble Analysis, GitLab [data set], https://gitlab.com/climateanalytics/pathways-ensemble-analysis (last access: 18 January 2025), 2025.
Grant, N., Hawkes, A., Napp, T., and Gambhir, A.: The appropriate use of reference scenarios in mitigation analysis, Nat. Clim. Change, 10, 605–610, https://doi.org/10.1038/s41558-020-0826-9, 2020.
Grant, N., Hawkes, A., Mittal, S., and Gambhir, A.: The policy implications of an uncertain carbon dioxide removal potential, Joule, 5, 2593–2605, https://doi.org/10.1016/j.joule.2021.09.004, 2021.
Grant, N., Wilson, R., Majid, A., Welder, L., Hörsch, J., Fyson, C., and Hare, B.: 1.5 °C Pathways for the EU27: accelerating climate action to deliver the Paris Agreement, https://climateanalytics.org/publications/15c-pathways-for-the-eu27-accelerating-climate-action-to (last access: 18 January 2025), 2022a.
Grant, N., Gambhir, A., Mittal, S., Greig, C., and Köberle, A. C.: Enhancing the realism of decarbonisation scenarios with practicable regional constraints on CO2 storage capacity, Int. J. Greenh. Gas Con., 120, 103766, https://doi.org/10.1016/j.ijggc.2022.103766, 2022b.
Guivarch, C., Kriegler, E., Joana Portugal-Pereira, V. B., Edmonds, J., Fischedick, M., Havlík, P., Jaramillo, P., Krey, V., Lecocq, F., Lucena, A. F. P., Meinshausen, M., Mirasgedis, S., O'Neill, B., Peters, G. P., Rogelj, J., Rose, S., Saheb, Y., Strbac, G., Strømman, A. H., van Vuuren, D. P., and Zhou, N.: Annex III: Scenarios and modelling methods, in: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Shukla, P. R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., Belkacemi, M., Hasija, A., Lisboa, G., Luz, S., and Malley, J., Cambridge University Press, Cambridge, UK and New York, NY, USA, 1841–1908, https://doi.org/10.1017/9781009157926.022, 2022a.
Guivarch, C., Le Gallic, T., Bauer, N., Fragkos, P., Huppmann, D., Jaxa-Rozen, M., Keppo, I., Kriegler, E., Krisztin, T., Marangoni, G., Pye, S., Riahi, K., Schaeffer, R., Tavoni, M., Trutnevyte, E., van Vuuren, D., and Wagner, F.: Using large ensembles of climate change mitigation scenarios for robust insights, Nat. Clim. Change, 12, 428–435, https://doi.org/10.1038/s41558-022-01349-x, 2022b.
Huppmann, D., Rogelj, J., Kriegler, E., Krey, V., and Riahi, K.: A new scenario resource for integrated 1.5 °C research, Nat. Clim. Change, 8, 1027–1030, https://doi.org/10.1038/s41558-018-0317-4, 2018.
Huppmann, D., Gidden, M., Nicholls, Z., Hörsch, J., Lamboll, R., Kishimoto, P., Burandt, T., Fricko, O., Byers, E., Kikstra, J., Brinkerink, M., Budzinski, M., Maczek, F., Zwickl-Bernhard, S., Welder, L., Alvarez Quispe, E., and Smith, C.: pyam: Analysis and visualisation of integrated assessment and macro-energy scenarios, version 2; peer review: 3 approved, Open Research Europe, 1, 74, https://doi.org/10.12688/openreseurope.13633.2, 2021.
Huppmann, D., Gidden, M. J., Nicholls, Z., Hörsch, J., Lamboll, R. D., Kishimoto, P. N., Burandt, T., Fricko, O., Byers, E., Kikstra, J. S., Brinkerink, M., Budzinski, M., Maczek, F., Zwickl-Bernhard, S., Welder, L., Alvarez Quispe, E. F., and Smith, C. J.: pyam: analysis and visualization of integrated- assessment and macro-energy scenarios, Zenodo [code], https://doi.org/10.5281/zenodo.10391054, 2023.
Huppmann, D., Wienpahl, L., Hackstock, P., and Castella, L.: nomenclature, Zenodo [data set], https://doi.org/10.5281/zenodo.10462491, 2024.
IAMC: IAMC time-series data template: https://www.iamconsortium.org/scientific-working-groups/data-protocols-and-management/iamc-time-series-data-template/ (last access: 19 January 2024), 2024.
IPCC: Climate Change: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Lee, H., and Romero, J., IPCC, Geneva, Switzerland, Intergovernmental Panel on Climate Change (IPCC), https://doi.org/10.59327/IPCC/AR6-9789291691647, 2023.
Keppo, I., Butnar, I., Bauer, N., Caspani, M., Edelenbosch, O., Emmerling, J., Fragkos, P., Guivarch, C., Harmsen, M., Lefevre, J., Le Gallic, T., Leimbach, M., Mcdowall, W., Mercure, J. F., Schaeffer, R., Trutnevyte, E., and Wagner, F.: Exploring the possibility space: taking stock of the diverse capabilities and gaps in integrated assessment models, Environ. Res. Lett., 16, 053006, https://doi.org/10.1088/1748-9326/abe5d8, 2021.
Krey, V.: Global energy-climate scenarios and models: A review, WIREs Energy Environ., 3, 363–383, https://doi.org/10.1002/wene.98, 2014.
Minx, J. C., Lamb, W. F., Callaghan, M. W., Fuss, S., Hilaire, J., Creutzig, F., Amann, T., Beringer, T., De Oliveira Garcia, W., Hartmann, J., Khanna, T., Lenzi, D., Luderer, G., Nemet, G. F., Rogelj, J., Smith, P., Vicente Vicente, J. L., Wilcox, J., and Del Mar Zamora Dominguez, M.: Negative emissions - Part 1: Research landscape and synthesis, Environ. Res. Lett., 13, 063001, https://doi.org/10.1088/1748-9326/aabf9b, 2018.
Parker, W. S.: Ensemble modeling, uncertainty and robust predictions, WIREs Clim. Change, 4, 213–223, https://doi.org/10.1002/wcc.220, 2013.
Peters, G. P., Al Khourdajie, A., Sognnaes, I., and Sanderson, B. M.: AR6 scenarios database: an assessment of current practices and future recommendations, npj Climate Action, 2, 31, https://doi.org/10.1038/s44168-023-00050-9, 2023.
Riahi, K., Bertram, C., Huppmann, D., Rogelj, J., Bosetti, V., Cabardos, A., Deppermann, A., Drouet, L., Frank, S., Fricko, O., Fujimori, S., Harmsen, M., Hasegawa, T., Krey, V., Zwaan, B. V. D., Vrontisi, Z., Longa, F. D., Després, J., Keramidas, K., Kishimoto, P., Kriegler, E., Meinshausen, M., Nogueira, L. P., Oshiro, K., Popp, A., Rochedo, P. R. R., Ünlü, G., Ruijven, B. V., Takakura, J., Tavoni, M., and Vuuren, D. V.: Cost and attainability of meeting stringent climate targets without overshoot, Nat. Clim. Change, 11, 1063–1069, https://doi.org/10.1038/s41558-021-01215-2, 2021.
Riahi, K., Schaeffer, R., Arango, J., Calvin, K., Guivarch, C., Hasegawa, T., Jiang, K., Kriegler, E., Matthews, R., Peters, G. P., Rao, A., Robertson, S., Sebbit, A. M., Steinberger, J., Tavoni, M., and Van Vuuren, D. P.: Mitigation pathways compatible with long-term goals., in: IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Shukla, P. R., Skea, J., Slade, R., Khourdajie, A. A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., Belkacemi, M., Hasija, A., Lisboa, G., Luz, S., and Malley, J., Cambridge University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.1017/9781009157926.005, 2022.
Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V., Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., Mundaca, L., Gomis, M. I., Lonnoy, E., Maycock, T., and Tignor, M.: Mitigation Pathways Compatible with 1.5 °C in the Context of Sustainable Development, Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, IPCC, https://www.ipcc.ch/sr15/chapter/chapter-2/ (last access: 18 January 2025), 2018.
Smith, C. J.: A framework for downweighting similar scenarios in integrated assessment model ensembles, Scenarios Forum, Laxenburg, Austria, https://scenariosforum.org/wp-content/uploads/sites/3/2022/06/SF22_Agenda.pdf (last access: 18 January 2025), 2022.
Smith, S. M., Geden, O., Nemet, G. F., Gidden, M. J., Lamb, W. F., Powis, C., Bellamy, R., Callaghan, M. W., Cowie, A., Cox, E., Fuss, S., Gasser, T., Grassi, G., Greene, J., Lück, S., Mohan, A., Müller-Hansen, F., Peters, G. P., Pratama, Y., Repke, T., Riahi, K., Schenuit, F., Steinhauser, J., Strefler, J., Valenzuela, J. M., and Minx, J. C.: The State of Carbon Dioxide Removal – 1st Edition, The State of Carbon Dioxide Removal, https://doi.org/10.17605/OSF.IO/W3B4Z, 2023.
van Soest, H. L., Aleluia Reis, L., Baptista, L. B., Bertram, C., Després, J., Drouet, L., den Elzen, M., Fragkos, P., Fricko, O., Fujimori, S., Grant, N., Harmsen, M., Iyer, G., Keramidas, K., Köberle, A. C., Kriegler, E., Malik, A., Mittal, S., Oshiro, K., Riahi, K., Roelfsema, M., van Ruijven, B., Schaeffer, R., Silva Herran, D., Tavoni, M., Unlu, G., Vandyck, T., and van Vuuren, D. P.: Global roll-out of comprehensive policy measures may aid in bridging emissions gap, Nat. Commun., 12, 6419, https://doi.org/10.1038/s41467-021-26595-z, 2021.
van de Ven, D. J., Mittal, S., Gambhir, A., Lamboll, R. D., Doukas, H., Giarola, S., Hawkes, A., Koasidis, K., Köberle, A. C., McJeon, H., Perdana, S., Peters, G. P., Rogelj, J., Sognnaes, I., Vielle, M., and Nikas, A.: A multimodel analysis of post-Glasgow climate targets and feasibility challenges, Nat. Clim. Change, 13.6, 570–578 https://doi.org/10.1038/s41558-023-01661-0, 2023.
van Diemen, R., Matthews, J. B. R., Möller, V., Fuglestvedt, J. S., Masson-Delmotte, V., Méndez, C., Reisinger, A., and Semenov, S.: Annex I: Glossary, in: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Shukla, P. R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., Belkacemi, M., Hasija, A., Lisboa, G., Luz, S., and Malley, J., Cambridge University Press, Cambridge, UK and New York, NY, USA, 1793–1820, https://doi.org/10.1017/9781009157926.020, 2022.
Welder, L. and Grant, N.: pathways-ensemble-analysis, Zenodo [code], https://doi.org/10.5281/zenodo.10197980, 2023.
Welder, L. and Grant, N.: pathways-ensemble-analysis, Zenodo [code], https://doi.org/10.5281/zenodo.11057268, 2024.
Weyant, J.: Some Contributions of Integrated Assessment Models of Global Climate Change, Rev. Env. Econ. Policy, 11, 115–137, https://doi.org/10.1093/reep/rew018, 2017.
Wilson, C., Guivarch, C., Kriegler, E., van Ruijven, B., van Vuuren, D. P., Krey, V., Schwanitz, V. J., and Thompson, E. L.: Evaluating process-based integrated assessment models of climate change mitigation, Climatic Change, 166, 3, https://doi.org/10.1007/s10584-021-03099-9, 2021.
Short summary
Pathways investigating the link between emissions and global warming have been continuously used to inform climate policy. We have developed a tool that can facilitate the systematic and robust analysis of ensembles of such pathways. We describe the structure of this tool and then show an illustrative application of it. The application indicates the usefulness of the tool to the research community and shows how it can be used to establish best practices.
Pathways investigating the link between emissions and global warming have been continuously used...