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Abstract. Ensembles of mitigation pathways, produced by
multiple different models, are becoming increasingly influ-
ential as the world seeks to define climate goals and imple-
ment policy to meet them. In this context, a range of open-
source codes has been developed to standardise and facili-
tate the systematic and robust analysis of mitigation path-
ways. We introduce a new open-source package, pathways-
ensemble-analysis, which provides an object-oriented frame-
work for the key steps in analysis, describing its structure
and providing an illustrative example of its use. By following
the suggested application steps of the tool, a user can conve-
niently perform a systematic and robust analysis of pathway
ensembles. This tool is therefore a further step which can
help the community in conducting best practices in pathway
ensemble analysis.

1 Introduction

Energy and emissions pathways, such as those produced by
integrated assessment models (IAMs), are becoming increas-
ingly influential as the world attempts to address the issue
of global warming and reduce emissions rapidly towards net
zero in line with the Paris Agreement (Keppo et al., 2021;
Krey, 2014; Weyant, 2017).

There are, however, many different future pathways which
could comply with the Paris Agreement. Such pathways may
vary across demographic, socio-economic, and technologi-
cal dimensions, meaning that there is a large solution space
of possible low-carbon futures which merit consideration.
There is therefore a need to understand how to compare and
contrast different pathways (Grant et al., 2020) as well as

how to draw robust insights from a large number of path-
ways (Guivarch et al., 2022b). This requires the analysis not
of single pathways but of a pathway ensemble – a collection
of multiple energy and emission pathways.

The analysis of pathway ensembles has grown rapidly in
recent years, largely due to the rise of scenario databases (By-
ers et al., 2022; Huppmann et al., 2018). These are databases
containing a large number of pathways, often produced by a
wide range of underlying IAMs. Such ensembles were cre-
ated to accompany the Intergovernmental Panel on Climate
Change (IPCC) Special Report on Global Warming of 1.5 °C
and again for the IPCC’s Sixth Assessment Report. They
have become influential sources of information on what the
world needs to do to limit warming to 1.5 °C and have been
used by a wide range of actors. The rise of such databases
has initiated a discussion about how to derive robust insights
from them (Ferrari et al., 2022; Guivarch et al., 2022b).

The development of pathway ensemble analysis has been
supported by standardised open data and open-source code.
In the context of the submission and analysis process of sce-
narios for not only IPCC-related activities but also model
intercomparison projects, a standardised way of managing
data structures with the open-source Python package nomen-
clature has been developed (Huppmann et al., 2024), which
can help standardise the scenario data provided, enabling
easier comparison of different pathways using data tem-
plates (IAMC, 2024). To analyse, validate, and visualise the
scenario data given in this data template, the open-source
Python library pyam has also been developed (Huppmann et
al., 2021, 2023). The library includes a number of plotting
options which enable a side-by-side comparison of models
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and/or scenarios with only small amounts of additional cod-
ing required.

The tools developed so far provide standardised data re-
porting and analytical tools, which can help when analysing
the large number of pathways concurrently. However, there
remains space to further develop tools for pathway ensemble
analysis. In particular, the ability to filter pathways to select
a subset of a broader ensemble, the ability to identify illus-
trative pathways via a systematic approach, and the ability to
visualise and plot key indicators of the ensemble as a whole
remain important tasks for which further tools can be devel-
oped.

Here we present a new Python-based open-source pack-
age, the pathways-ensemble-analysis, or p–e–a, tool (Welder
and Grant, 2023). This package provides these functions, im-
proving the ability of the community to conduct systematic
and robust analysis of pathway ensembles in a convenient
way.

1.1 The use of ensemble analysis in the literature

Different forms of pathway ensemble analysis can be found
in the literature.

1.1.1 Model intercomparison exercises

Model intercomparison projects are designed to investigate
a specific research question with different models that have
harmonised scenario parameter assumptions. In these, the
pathways analysis can be performed in situ, allowing for
adaptations and iterations of model–scenario combinations.
Insights can be obtained from within-ensemble agreement
but should be caveated if “structural differences are not
systematic and models share approaches or components”
(Parker, 2013; Wilson et al., 2021).

Recent model intercomparisons which have produced and
analysed pathway ensembles have explored the cost and at-
tainability of meeting climate goals without overshoot (Riahi
et al., 2021), the potential for good practice policies to close
the emission gap (van Soest et al., 2021), and the temperature
implications of current mitigative efforts (van de Ven et al.,
2023) and help determine the structural differences between
models (Dekker et al., 2023a).

1.1.2 Assessing a pathway ensemble ex situ

As well as in situ pathway ensemble analysis, it is also pos-
sible to conduct ex situ analysis. Ex situ refers to analysis of
ensembles which have already been created either for a spe-
cific research project or by combining pathways from mul-
tiple different research projects. The ensemble is now being
analysed after its creation to answer a given research ques-
tion. The most obvious example is the ex situ analysis of sce-
nario databases collated and assessed by the IPCC.

Two examples of how to derive ex situ insights from a
pathway ensemble are statistically derived, stand-alone indi-

cators and the analysis of illustrative pathways. Such an en-
semble can be “unstructured” in the sense of it not originat-
ing from a single model intercomparison exercise but rather
being a collection of different, individual projects that can
“give an indication of the spread of results in the literature”
(van Diemen et al., 2022).

– Stand-alone indicators. These highlight an individual
aspect of a pathway ensemble based on statistical av-
erages. For example, the median level of greenhouse
gas (GHG) reductions from 2019–2030 in a pathway
ensemble can be calculated as a stand-alone indica-
tor. Such indicators are valuable but represent a sta-
tistical property of the ensemble rather than a single,
self-consistent pathway that has a particular underlying
scenario narrative. Examples of stand-alone indicators
include key benchmarks on global emission reductions
provided by the IPCC (IPCC, 2023) as well as the ex-
pansion rate of global renewable capacities to meet a
climate goal (Climate Analytics, 2023) or emission re-
duction levels needed to keep a country on track with the
Paris Agreement (Climate Action Tracker, 2024; Cli-
mate Analytics, 2024). We note that stand-alone indi-
cators can also be used for in situ analysis, as seen in
Dekker et al. (2023a), and also that scenario ensembles
should not generally be seen as statistical ensembles,
and thus the interpretation of medians or other quantiles
of the distribution requires care (see Sect. 1.1.3 and the
Conclusion section for further discussion of this topic).

– Illustrative pathways. These, on the other hand, are
single pathways extracted from the ensemble because
they demonstrate particular dynamics which are of in-
terest. They can be used to investigate the “implication
of choices on socio-economic development and climate
policies, and the associated transformation of the main
[greenhouse gas]-emitting sectors” that result from a
particular set of assumptions/particular scenario narra-
tive (Riahi et al., 2022). Illustrative pathways have been
used to communicate results in a wide range of settings
(Grant et al., 2022a; Riahi et al., 2022; Smith et al.,
2023).

To determine stand-alone indicators based on statistics or to
select illustrative pathways from a pathway ensemble, analy-
ses often start by applying a filtering process which returns a
subset of pathways of particular interest for the analysis.

A simple example of a filtering process is the application
of filters to ensure that the pathways display correct histor-
ical behaviour, which is also known as a “vetting” process,
(Guivarch et al., 2022a). This filtered ensemble is then further
used to determine stand-alone indicators, such as, for exam-
ple, emission reduction levels and levels of carbon dioxide
removal as well as five illustrative mitigation pathways (Ri-
ahi et al., 2022).
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The filtering process can also be applied more rigorously,
for example by being informed by a political framework,
such as the Paris Agreement, or feasibility; sustainability;
or ethical concerns, such as, for example, about the tech-
nical potential for carbon storage (Grant et al., 2022b), the
availability of sustainable biomass (Fuss et al., 2018), or dis-
tributive justice concerning negative emissions (Minx et al.,
2018). Applying such filters can have a strong impact on the
results, which highlights the importance of applying filters in
a rigorous and systematic way (Achakulwisut et al., 2023).

1.1.3 Challenges, risks, and good practices

In situ model intercomparison projects strive towards clean
comparisons of pathway data for the specific research ques-
tion they investigate. While they enable a focused exploration
of a specific research question, they are, however, labour- and
computational-resource-intensive and require access to input
data, models, and required hardware.

Performing ex situ analysis on larger pathway ensembles
pulls together a larger set of evidence. The potential benefits
of using large ensembles include that they may better cap-
ture uncertainties; increase the salience, credibility, and le-
gitimacy of the information produced; and be a way of build-
ing a comprehensive or representative picture of the knowl-
edge produced by modellers (Guivarch et al., 2022b). Such
ensembles are nevertheless not a meaningful, random sta-
tistical sample that fully covers a potential solution space.
Bias exists, for example, through model fingerprints and/or
an over-representation of multiple similar scenarios coming
from the same model intercomparison projects (Guivarch et
al., 2022b; Peters et al., 2023). This can introduce confound-
ing effects beyond the mechanism that an ex situ analysis
attempts to study.

Given the challenges and risks, Guivarch et al. propose
a three-step approach for preparing and using ensembles of
mitigation scenarios (Guivarch et al., 2022b), which include

1. pre-processing the ensemble, including quality control
and vetting as well as reporting and potentially correct-
ing bias;

2. either

a. transparently selecting scenarios from the ensem-
ble, for example, based on specific (un)desirable
outcomes, plausibility criteria, or seeking to repre-
sent the diversity of the ensemble, or

b. exploring the full ensemble; and

3. providing users with efficient access to the information,
including decision support and communication tools
and transparent and reproducible meta analysis.

In addition to this, we highlight that when communicating
statistical properties calculated from a pathway ensemble, it
is important to highlight that these describe and parameterise

the existing “ensemble of opportunity” of (generally) nor-
mative scenarios rather than a full statistical ensemble. As
such, interpreting these values as indicative of probabilities,
expected values or statistical ranges should be avoided.

1.2 Aim of the p–e–a package

Both the in situ and the ex situ pathway ensemble analysis
share a number of common steps. These are

– the evaluation of criteria based on model results;

– an optional filtering process to select only a subset of
pathways; and

– a well-laid-out, if desired rated, side-by-side compari-
son of the remaining pathways with their evaluated cri-
teria, which can then be used for further analysis.

These steps should be guided by the abovementioned good
practices (Guivarch et al., 2022b).

This paper introduces a Python-based workflow,
pathways-ensemble-analysis, which standardises and
automates these steps, building on existing work in the
research community, such as the Python library pyam. The
workflow can thus support the analysis of model inter-
comparison projects and pathway ensembles by providing
additional, easily obtained insights which provide a fast and,
when guided by good practices, well-laid-out and compre-
hensible overview of the pathway ensemble of interest. This
can be used in in situ, ex situ, and blended project setups, in
which both elements are present.

The method of this workflow is outlined in the next section
and an application is presented in the section that follows it.

2 Method

In the Method section, we first illustrate the workflow of the
Python package. Second, we provide a description of how
the package is implemented.

2.1 Workflow

This section describes the developed workflow which de-
rives a well-laid-out, comprehensible overview of a path-
way ensemble. The workflow is implemented in an object-
oriented manner in the open-source Python library pathways-
ensemble-analysis.

Figure 1 visualises the following illustrative workflow:

1. The analysis starts with extracting pathway data. Typ-
ically, these are either obtained from local files in the
IAMC data format or downloaded from a pathway
database, such as, for example, the ones hosted by
the International Institute for Applied Systems Anal-
ysis (IIASA) (Huppmann et al., 2018), which can be
conveniently accessed using pyam. Typically, external
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data pre-processing routines are run on such datasets
to address missing or faulty data. An example of miss-
ing but patchable data is if the total use of bioenergy in
the power sector is given along with the use of bioen-
ergy with carbon capture and storage (CCS), but the use
of bioenergy without CCS is not provided. An exam-
ple of faulty data is when the total electricity generation
does not add up to the sum of its components, which
can be remedied by either recalculating the total or
dropping redundant components. Once the data are pre-
processed, they are passed on as a pyam.IamDataFrame
object.

2. The next step is the definition and evaluation of criteria
for each pathway. Examples of criteria are the emission
reductions in 2030 with respect to a base year; the share
of non-biomass renewables in 2050 in the power sector;
the mean carbon sequestration via land use, biomass, or
fossil fuels over a given number of years; the maximum
exceedance probability of a temperature limit; or the
magnitude of regional differentiation in a pathway. In
this step, pyam’s filtering functions and a mixture of al-
gebraic operations with pyam and pandas is being used
to evaluate the criteria before finally returning a pan-
das.DataFrame object.

3. The next step is to filter the pathway ensemble to select a
subset of the initial ensemble. A filtering process drops
pathways with criteria outside a given range from the
ensemble. Examples of filters are to avoid overreliance
on negative emissions from land use or bioenergy with
CCS across a given time period. This optional step is of
specific interest for ex situ analysis of pre-existing path-
way ensembles and might be of lesser importance for
model intercomparison projects, which can partly en-
force these filters a priori in their scenario input param-
eters.

4. Having produced a filtered subset of pathways for anal-
ysis, the pathways can be rated along a range of criteria
defined in step 2. The criteria used to rate pathways can
be those which were used to filter the database and/or
additional used-defined criteria. The usage of the rat-
ing function is twofold. On the one hand, the function
can be used to normalise the criteria, for example, by
mapping them to values from 0 to 1, and in this way
improve the readability of the final output plots. On the
other hand, the function can be used to rate the criteria
of each pathway based on normative preferences. Sim-
ple examples of rating functions are

a. having a high share of non-biomass renewable elec-
tricity generation, x → x;

b. having a low share of fossil electricity generation,
x → 1− x.

5. Criteria rated in such a way are then available for visu-
alisation. Outputs can, for example, be visualised with
a heatmap which displays the rated criteria with the fil-
tered pathways are sorted based on their overall rating.

2.2 Package description

The Python library containing the object-oriented setup of
the workflow is structured as described below.

– In the evaluation module, the core methods
get_values, filter_values, rate, and
filter_rating are located, which process the
pathway data, user-defined criteria, and other user-
defined input data as visualised in Fig. 1.

– In the criteria module, classes for cri-
teria are implemented, which, at a min-
imum, contain a criterion_name,
rating_function, rating_weight, region,
and region_aggregation_weight as class
parameters and get_values and rate methods
as class functions. The criteria module contains two
sub-modules.

– In the base module, the following criteria classes
are currently implemented:

• Criterion, the basic criterion class which
other criteria inherit from;
• SingleVariableCriterion, which eval-

uates the value of a variable for a given year and
region;
• AggregateCriterion, which evaluates

the aggregate of a variable, for example, the av-
erage, minimum, or maximum, for given years
and a given region;
• ChangeOverTimeCriterion, which eval-

uates the change in a variable for a given year
and region with respect to a reference year;
• ShareCriterion, which evaluates the share

of a component on the total for a given year and
a given region;
• CompareRegionCriterion, which takes

a pre-defined criterion (for example, the share
of renewables in the electricity mix) and two
regions and calculates a metric which com-
pares the value of the criterion in each region,
and, currently, the comparison can be either a
subtract or a divide operation.

– In the library module, criteria for specific, reappear-
ing use cases are implemented (pre-set parameters
can be changed by the user), of which examples are
the following:
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Figure 1. Flowchart setup provided for the pathway ensemble analysis. The data pre-processing process in dashed lines is in theory optional
but is advised to be addressed with external programming routines.

• Mean_CarbonSequestration_Fossil,
which evaluates the average amount of global
fossil CCS across the years 2040 to 2060. The
rating function is informed by literature values
on the potential of CCS (Budinis et al., 2018;
Guivarch et al., 2022a).

• Mean_CarbonSequestration_Biomass,
which evaluates the average amount of globally
sequestered carbon via bioenergy with CCS
across the years 2040, 2050, and 2060. The
rating function is informed by estimates of
the global potential of sustainable negative
emissions from bioenergy with CCS (Fuss et
al., 2018).

• Mean_CarbonSequestration_LandUse,
which evaluates the average global carbon
dioxide emissions from afforestation and refor-
estation across the years 2040, 2050, and 2060.
The rating function is informed by estimates
of the global potential of sustainable/feasible
potential of negative emissions coming from

afforestation and reforestation (Fuss et al.,
2018; Grant et al., 2021).
• Mean_Biomass_PrimaryEnergy, which

evaluates the average global amount of biomass
use in primary energy across the years 2040,
2050, and 2060. The rating function is informed
by literature values on the sustainable techni-
cal potential of bioenergy (Creutzig et al., 2015;
Frank et al., 2021).

– The plot module is intended for providing plot-
ting methods to the user. Currently, three main plot-
ting methods are provided here. The first, called
heatmap, enables the visualisation of the pathway en-
semble for the criteria of interest. The second, called
compare_ensemble, allows for multiple different
pathway ensembles to be compared using box plots.
The third one is inspired by recent work (Dekker et
al., 2023a) and displays criteria values in form of a
polar_chart.

– The utils module contains a number of utility meth-
ods used in other modules.

https://doi.org/10.5194/gmd-18-239-2025 Geosci. Model Dev., 18, 239–252, 2025



244 L. Welder et al.: pathways-ensemble-analysis v1.1.0

– A tests module is provided to ensure the quality of
the code and support the continuous integration and de-
velopment of new code.

3 Application

In this article, we demonstrate with one example how the
pathways-ensemble-analysis repository can be used in the
analysis of pathway ensembles. In this example, we use the
package to identify a filtered subset of pathways from the
IPCC AR6 scenario database (Byers et al., 2022); highlight
the impact of filtering on ensemble statistics, for example, on
stand-alone indicators; and identify an illustrative pathway
for further investigation. Additional examples are briefly de-
scribed in the last subsection, such as, for example, a recre-
ation of the IPCC AR6 vetting process (Guivarch et al.,
2022a) and a model fingerprint analysis in the style of re-
cently published work (Dekker et al., 2023a). The code to
reproduce the entire presented analysis can be found in note-
books folder in the Git repository of the package.

3.1 Input data to the workflow

The raw data which serve as input to this ensemble are the
AR6 scenario database (Byers et al., 2022). This provides
97 pathways compatible with 1.5 °C , which are the starting
point for our analysis. This selection is in itself already a
filtering step, but one that can easily be achieved with the
pyam library.

We conduct an analysis using eight user-defined criteria.
We distinguish between primary criteria and secondary cri-
teria. Primary criteria are used to filter the database, directly
excluding pathways which have particular behaviour in order
to select a subset of pathways for analysis. Secondary crite-
ria are not used directly in the filtering process but are still
used for rating and visualising the ensemble and supporting
the selection of an illustrative pathway of interest. Generally,
it is up to the user to decide which criteria to use for a filter-
ing step and which to use for a rating step. The criteria are
described in Table 1.

The filters of the primary criteria have been used (along-
side others) to identify a Paris Agreement-compatible set of
pathways in a recent analysis (Climate Analytics, 2023).

The secondary criteria are not used for filtering but are
used to obtain further insights into the pathway ensemble. In
this example, the aim is to focus on pathways which rapidly
reduce fossil fuel demand based on the deployment of re-
newables and limited reliance on biomass or fossil CCS.
Such a focus could be justified by the precautionary prin-
ciple (which would suggest faster emissions cuts) or with
reference to the potential sustainability/feasibility concerns
relating to biomass (Creutzig et al., 2015) and CCS (Grant et
al., 2022b).

3.2 Filtering of the ensemble and its impact on
stand-alone indicators

Applying this filtering process to the IPCC’s AR6 scenario
database (Byers et al., 2022) reduces the number of pathways
compatible with 1.5 °C from 97 to 30 pathways.

Figure 2 shows the impact that the filtering has on the
secondary criteria using the compare_ensemble plotting
function.

In this example, filtering the pathway ensemble to reduce
reliance on future CDR leads to greater reductions in fos-
sil fuel production/use by 2030 (a 35 % reduction from 2020
levels rather than a 29 % reduction seen in the unfiltered en-
semble). This greater action is driven in part by accelerated
deployment of renewables, with renewables making up 71 %
of the global electricity mix in 2030, which is up from 67 %
in the unfiltered ensemble. Reduced reliance on future carbon
dioxide removal (CDR) also corresponds to reduced reliance
on biomass as an energy carrier.

The changes in the median of these stand-alone indica-
tors are sometimes minor, but there are nevertheless large
changes in the overall ensemble range. This is particularly
evident in the share of renewables, biomass demand, and fos-
sil CCS deployment indicators, where the filtering process
excludes those pathways with the lowest deployment of re-
newables and highest reliance on biomass/fossil CCS. As in-
terquartile or total ensemble ranges are often provided along-
side the median as influential key statistics (Riahi et al., 2022;
Rogelj et al., 2018), this highlights the potential influence of
filtering on the results of pathway analysis. Given the key
focus at the moment on the role of fossil fuels in mitigation
pathways (Achakulwisut et al., 2023), the influence of the fil-
tering on a key benchmark such as fossil fuel reductions also
shows the critical importance of considering filtering as part
of a pathway ensemble analysis.

The such filtered pathway ensemble can now be used to
determine stand-alone indicators, such as the median and
ranges visualised in Fig. 2. If more insights into the ensem-
ble are desired, a side-by-side visualisation, coupled with an
optional rating step, can be performed.

3.3 Rating and visualising the pathway ensemble

A side-by-side comparison with normalised criteria values
ranging from 0 to 1, for example, can support the analysis
of how the different pathways achieve a transformation path-
way compatible with 1.5 °C. The p–e–a’s rate and heatmap
plotting function can be used to facilitate this. If it is of ad-
ditional interest to identify illustrative pathways for further
analysis, these can be selected based on the ratings of each
criterion.

We rank four main criteria to illustrate the differences be-
tween pathways. These criteria, first introduced as secondary
criteria in Table 1, are shown in Table 2 with their rating func-
tions. Rating functions have two main dimensions. First is
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Table 1. Primary and secondary criteria used in the example. A/R stands for afforestation/reforestation.

Criteria Filter threshold Source Module/class

Primary A/R deployment
(2040–2060 average)

<3.6 GtCO2 yr−1 Grant et al. (2021) library

A/R deployment
(2050–2100 average)

<4.4 GtCO2 yr−1 Grant et al. (2021) library

BECCS deployment
(2040–2060 average)

<5 GtCO2 yr−1 Fuss et al. (2018) library

Regional differentiation on
GHG mitigation
(in 2030)

Mitigation (developed regions)
> mitigation (developing re-
gions)

Author judgement ChangeOverTimeCriterion
and
CompareRegionCriterion

Secondary Reduction in fossil fuel pro-
duction/use by 2030 (relative to
2020)

– – ChangeOverTimeCriterion

Share of renewables in the
power sector (in 2030)

– – ShareCriterion

Fossil CCS deployment (2040–
2060 average)

– – library

Primary biomass demand
(2040–2060 average)

– Creutzig et al. (2015) library

Figure 2. The impact of filtering on a selection of variables of interest.
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whether the function is selecting for low or high values of the
criterion. In this example, we select for low levels of biomass,
fossil CCS, and total emissions (negative rating functions),
with high levels of renewables (positive rating function). The
second is the sensitivity of the rating function to the crite-
rion values. By weighting the value of x more highly (e.g.
lambda x: np.clip(2*x - 1, 0, 1)) and apply-
ing threshold values, the rating function can increase the se-
lectivity of the analysis to this variable. In the above example,
values under 0.5 would score zero, and then every increase of
0.01 above this would increase the score by 0.02. In this way,
very tailored filters can be developed that select and highlight
particular behaviours.

The developing of rating functions is an inherently nor-
mative process, but one which gives a high degree of control
over which criteria to rate and the relative importance of each
criterion. If this is transparently communicated, this flexibil-
ity and control is a key strength of the p–e–a.

Having rated the pathways across the criterion of interest,
we can visualise the pathways using the heatmap function.
This function produces a heatmap in which each column rep-
resents an individual pathway and each row represents a user-
defined criterion of interest. The function then calculates the
aggregated rating for each pathway across the criteria and as-
signs the pathway a total rating. The highest-rated pathways
are plotted on the left, with the pathway rating declining from
left to right. The heatmap function gives the option to also
plot criteria which are of interest but are not used in the over-
all rating itself.

Figure 3 shows such a heatmap for the filtered set iden-
tified using the criteria in Table 1 (the 15 highest-scoring
pathways out of the 30 pathways which pass the filters are
shown). The pathways are rated and ordered according to the
four secondary criteria of interest. Therefore, we are identi-
fying pathways which both

a. pass the filters which are used as strict exclusion crite-
ria;

b. have rapid reductions in fossil fuels in the near term
driven primarily by the deployment of renewables, with
limited reliance on biomass and fossil CCS deployment.

The heatmap also provides further insights into the model
dynamics. For example, we can see that a few REMIND-
MAgPIE pathways have relatively low fossil CCS deploy-
ment and low average biomass demand, pointing at high
wind and solar electricity shares in power generation without
the need for fossil CCS. The shown COFFEE pathway has
the highest share of renewable electricity generation, which
is, however, linked to a strong reliance on biomass demand.
We can further observe that the displayed WITCH pathways
have agriculture, forestry, and other land uses (AFOLU)
emissions within the sustainability limits while being more
reliant on biomass both in terms of general demand and av-

erage bioenergy with carbon capture and storage (BECCS)
deployment.

3.4 Selecting an illustrative pathway from the ensemble

As mentioned in the Introduction section of this work, il-
lustrative pathways can be extracted from the ensemble to
demonstrate particular dynamics of interest. They can be
used to investigate the “implication of choices on socio-
economic development and climate policies, and the asso-
ciated transformation of the main [greenhouse gas]-emitting
sectors” that result from a particular set of assumptions/par-
ticular scenario narrative (Riahi et al., 2022).

The process we have applied so far has identified pathways
which pass the defined exclusion criteria and promote rapid
emission reductions in the near term driven primarily by the
deployment of renewables, with limited reliance on biomass
and fossil CCS deployment. The first two pathways on the
left side of the heatmap comply with these criteria particu-
larly well – with having the highest rating across the ensem-
ble – and are therefore candidates for further analysis. It is of
interest to note that these are in fact two of the three illustra-
tive mitigation pathways compatible with 1.5 °C selected by
the IPCC AR6 for further analysis (Riahi et al., 2022).

The identification of illustrative pathways with differently
chosen socio-economic developments and climate policies
can be identified in a similar manner using differently speci-
fied criteria.

3.5 Additional examples

The tool can be flexibly applied to investigate different char-
acteristics of pathway ensembles. In the following, we briefly
show two such examples. A detailed derivation and descrip-
tion of these examples can be found in the repository of the
tool.

3.5.1 Vetting process

The IPCC AR6 vetting process (Guivarch et al., 2022a) can
be recreated in a straightforward manner with the tool. In
this process, pathways that have historical energy and emis-
sion values outside of an acceptable range are being dropped
from further analyses. Figure 4 displays the vetted historical
criteria, where the legend indicates how many pathways have
information on the vetted criteria and how many of these re-
main in the ensemble after the filtering process.

3.5.2 Fingerprint analysis

Inspired by recently published work on energy model fin-
gerprints in mitigation scenarios (Dekker et al., 2023a),
the polar_chart plotting function can display statistical
characteristics of the chosen criteria/indicators; see Fig. 5.
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Table 2. Rating criteria for the analysis.

Criteria Rating function Rationale

Rated criteria Reduction in fossil fuel pro-
duction/use by 2030 (relative to
2020)

-x We want to select pathways with the
deepest reductions (so, the lowest value
of x).

Share of renewables in the
power sector (in 2030)

np.clip(
2*x - 1,
0, 1
)

Pathways with the highest renewables
share are selected. Clipping the func-
tion to have it range from 0 to 1 over
the 50 %–100 % share of renewables in-
creases the selective power of this crite-
rion.

Fossil CCS deployment (2040–
2060 average)

np.clip(
1 -
((x-3.8)/(8.8-3.8)),
0, 1
)

Pathways with under 3.8 GtCO2 yr−1r
of fossil CCS score 1. Pathways with
>8.8 GtCO2 yr−1r of fossil CCS score
0. Thresholds are taken from the IPCC’s
feasibility assessment (Guivarch et al.,
2022a).

Primary biomass demand
(2040–2060 average)

np.clip(
1 - ((x-50)/(150-50)),
0, 1
)

Pathways with under 50 EJ yr−1 of
biomass demand (∼ current levels)
score 1. Pathways with > 150 EJ yr−1

of biomass demand score 0. Thresholds
are taken from IPCC’s feasibility as-
sessment (Guivarch et al., 2022a).

4 Conclusion

The open-source library presented in this work provides the
research community with a tool to perform analyses of path-
way ensembles. The library utilises and expands the existing
work of the community, specifically the pyam library, guar-
anteeing compatibility with current data standards and cod-
ing practices as well as ease of use.

The open-source availability on GitLab provides trans-
parency to the implemented method and aims to encourage
the community to contribute and further expand the library.
A testing module is integrated to support the continuous in-
tegration and development of new code.

The object-oriented implementation of the core code of the
library provides the user of the code with the ability to design
the analysis in a flexible manner, for example, by setting the
parameters of predefined criteria freely or by having the op-
tion to easily define new criteria as needed. It furthermore
significantly shortens otherwise implemented code, resulting
in concise and easy-to-write code blocks, which provides a
good overview over the analysis and therefore convenience
to the user.

The library has a wide range of applications, including
pathway ensemble analysis in model intercomparison exer-
cises or deriving ex situ insights from (unstructured) pathway
ensembles, for example, to determine stand-alone statistical
indicators or illustrative pathways. For this purpose, the li-
brary provides key functionalities commonly used in ensem-

ble analysis. These include the definition of criteria of inter-
est and the evaluation, filtering, and rating of these criteria,
as well as visualisation functions which can help demonstrate
the impact of filtering and rating.

The impact of the filtering and rating operations are rele-
vant to be cognisant of at almost all steps of such analyses.
One example to highlight is the calculation of stand-alone
statistical indicators, such as the level of fossil fuel reduction
that complies with the Paris Agreement. The simple appli-
cation provided in this work, which reduces the reliance on
future CDR and therefore implies greater levels of ambition
in the near term, is already an example of this.

Limitations exist to both the dataset and the method for
processing these datasets in such analyses. The scenario data
themselves can have missing or faulty data, the solution
space is not statistically representative, and therefore the cal-
culation, and interpretation of statistical indicators are chal-
lenging. While working with illustrative pathways is not af-
fected by the latter, the selection process of getting to these
pathways is always influenced by the user-defined criteria
with their filtering and rating functions.

Nevertheless, literature also points out the benefits of us-
ing large ensembles ex situ, for example, so that they may
better capture uncertainties (Guivarch et al., 2022b). Un-
der the premise that the underlying scenario dataset, with
its bias and the choice of criteria, filters, and rating func-
tions, is processed with good practices, for example, that are
clearly communicated, the functionalities of the pathways-
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Figure 3. Heatmap that enables identification illustrative pathways.

Figure 4. Filtering based on historical data vetting as done in the IPCC AR6 vetting process (Guivarch et al., 2022a).
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Figure 5. Example of a polar chart plot created with the pathway ensemble analysis tool (inspired by recently published work on energy
model fingerprints in mitigation scenarios; Dekker et al., 2023a).

ensemble-analysis tool provide a foundation for performing
a transparent, robust, and systematic analysis of a pathway
ensemble. This library could be used in future community
endeavours, such as the construction and evaluation of new
IPCC scenario databases, model intercomparison projects,
and ex situ analysis of IPCC databases to provide key met-
rics such as CDR and emission reduction requirements. Cri-
teria with predefined rating functions and filters could be dis-
cussed and standardised across the community.

Future work can be identified when reviewing recent work
on pathway ensemble analysis in literature (Dekker et al.,
2023a, b; Guivarch et al., 2022b; Smith, 2022).

While filtering is a key step in determining robust in-
sights into a pathway ensemble, the structure of the ensemble
should also be reflected upon critically. Here, one example is
whether the calculation of stand-alone indicators should be
weighted by the frequency with which a particular model fea-
tures in the pathway ensemble. This could help avoid mod-
els with a specific fingerprint and a high (or low) occurrence
from being over-represented (or under-represented) in the in-
sights derived from the ensemble. The pathways-ensemble-
analysis library could be extended so that the calculation of
stand-alone indicators accounts for their relative representa-
tion in the overall ensemble. At the same time, models with
a high level of occurrence in the pathway ensemble could
still provide a statistically relevant distribution of pathways,
in which case weighting by model frequency may be less ap-
propriate.

Literature also provides inspiration for new analysis and
plotting routines, such as for identifying model fingerprints
by analysing criteria for individual models or by determining
cluster of pathways with distinct characteristics (i.e. criteria).
The pathways-ensemble-analysis library could be used fur-

ther in this endeavour, with an illustrative example provided
on the repository.

Code and data availability. The general pathways-ensemble-
analysis GitLab repository is available under the MIT License at
https://gitlab.com/climateanalytics/pathways-ensemble-analysis
(GitLab, 2025). Version 1.0.0 of the pathways-ensemble-analysis
repository, which is presented in this paper, is available on GitLab
and archived on Zenodo (https://doi.org/10.5281/zenodo.10197980,
Welder and Grant, 2023). Version 1.1.0, which includes an
updated version of the input data and scripts to run the
model and produce the plots for all the simulations presented
in this paper, is available on GitLab and Zenodo as well
(https://doi.org/10.5281/zenodo.11057268, Welder and Grant,
2024).
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