Articles | Volume 18, issue 6
https://doi.org/10.5194/gmd-18-1947-2025
https://doi.org/10.5194/gmd-18-1947-2025
Development and technical paper
 | 
25 Mar 2025
Development and technical paper |  | 25 Mar 2025

Development of a fast radiative transfer model for ground-based microwave radiometers (ARMS-gb v1.0): validation and comparison to RTTOV-gb

Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng

Related authors

Impact of Cloud Vertical Structure Perturbations on the Retrieval of Cloud Optical Thickness and Effective Radius from FY4A/AGRI
Jing Sun, Yunying Li, Hao Hu, Qian Li, Chengzhi Ye, Yi-Ning Shi, and Zitong Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2939,https://doi.org/10.5194/egusphere-2025-2939, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary

Cited articles

Cady-Pereira, K. E., Turner, E., and Saunders, R.: Inter-comparison of line-by-line radiative transfer models MonoRTM and AMSUTRAN for microwave frequencies from the Top-Of-Atmosphere, Tech. Rep. NWPSAF-MO-VS-057, NWP SAF, https://nwp-saf.eumetsat.int/publications/vs_reports/nwpsaf-mo-vs-057.pdf (lsat access: 30 January 2024), 2021. a
Cao, Y., Shi, B., Zhao, X., Yang, T., and Min, J.: Direct Assimilation of Ground-Based Microwave Radiometer Clear-Sky Radiance Data and Its Impact on the Forecast of Heavy Rainfall, Remote Sens., 15, 4314, https://doi.org/10.3390/rs15174314, 2023. a
Caumont, O., Cimini, D., Löhnert, U., Alados-Arboledas, L., Bleisch, R., Buffa, F., Ferrario, M. E., Haefele, A., Huet, T., Madonna, F., and Pace, G.: Assimilation of humidity and temperature observations retrieved from ground-based microwave radiometers into a convective-scale NWP model, Q. J. Roy. Meteor. Soc., 142, 2692–2704, https://doi.org/10.1002/qj.2860, 2016. a
Chen, H., Han, W., Wang, H., Pan, C., An, D., Gu, S., and Zhang, P.: Why and How Does the Actual Spectral Response Matter for Microwave Radiance Assimilation?, Geophys. Res. Lett., 48, e2020GL092306, https://doi.org/10.1029/2020GL092306, 2021. a
Chen, Y., Han, Y., Van Delst, P., and Weng, F.: On water vapor Jacobian in fast radiative transfer model, J. Geophys. Res.-Atmos., 115, D12303, https://doi.org/10.1029/2009JD013379, 2010. a
Download
Short summary
Direct assimilation of observations from ground-based microwave radiometers (GMRs) holds significant potential for improving forecast accuracy. Radiative transfer models (RTMs) play a crucial role in direct data assimilation. In this study, we introduce a new RTM, the Advanced Radiative Transfer Modeling System – Ground-Based (ARMS-gb), designed to simulate brightness temperatures observed by GMRs along with their Jacobians. Several enhancements have been incorporated to achieve higher accuracy.
Share