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Abstract. This study proposes a fast radiative transfer
model, the Advanced Radiative Transfer Modeling System
– ground-based (ARMS-gb), designed to simulate bright-
ness temperatures observed by ground-based microwave ra-
diometers. ARMS-gb employs a clear-sky radiative transfer
solver to account for atmospheric thermal emissions, while
gaseous absorption is estimated using a statistical regres-
sion scheme. To enhance simulation accuracy, particularly
in moist environments, seven humid profiles from the Uni-
versity of Maryland, Baltimore County 48-profile dataset are
added to the European Centre for Medium-Range Weather
Forecasts 83-profile dataset to train the gaseous absorption
scheme. Additionally, an advanced water vapor vertical in-
terpolation method is incorporated, offering improved accu-
racy compared to the interpolation method used in Radiative
Transfer for TOVS (RTTOV)-gb. The standard deviation is
reduced by 0.15 K in channels with strong water vapor ab-
sorption. The Jacobians calculated by these two interpola-
tion modes are also different. To further validate ARMS-gb’s
performance, simulations using both ARMS-gb and RTTOV-
gb are compared against real observations from two ground-
based microwave radiometers. The observation minus back-
ground analyses demonstrates that ARMS-gb aligns well
with RTTOV-gb and achieves smaller standard deviations un-
der high-humidity conditions. Furthermore, the capability of

ARMS-gb to monitor the observational quality of ground-
based microwave radiometers is demonstrated.

1 Introduction

Ground-based microwave radiometers (GMRs) are consid-
ered vital tools in meteorological research due to their abil-
ity to provide continuous, high-temporal-resolution obser-
vations of atmospheric thermodynamical variables (Cimini
et al., 2006; Wei et al., 2021). These instruments can oper-
ate under all-sky conditions, making them particularly useful
for monitoring rapid changes within the planetary boundary
layer (PBL). The PBL, which may extend from the surface to
a few kilometers above, is a critical region where exchanges
of heat, moisture, and momentum between the ground and
the atmosphere predominantly occur (Wu et al., 2024). Ob-
servations from GMRs offer a unique advantage for un-
derstanding PBL dynamics, providing valuable insights into
processes such as convection, turbulence, and boundary layer
transitions (De Angelis et al., 2017).

The assimilation of GMR observations into numerical
weather prediction (NWP) models holds significant poten-
tial for enhancing forecast accuracy, particularly in the lower
atmosphere. Current NWP models often face substantial un-
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certainties near the ground surface due to both observational
gaps and the complex physical processes within the PBL. By
incorporating GMR observations, temperature and humidity
in the PBL can be characterized more accurately, leading
to improved initial conditions for NWP models (Illingworth
et al., 2019; Leuenberger et al., 2020). Consequently, tem-
perature and humidity profiles retrieved from GMR obser-
vations have been assimilated into NWPs in previous stud-
ies (e.g., Caumont et al., 2016; Martinet et al., 2020). These
studies show that such indirect assimilations enhance the ac-
curacy of forecasts involving temperature inversions and hu-
midity gradients, which are crucial for predicting fog and
the initiation of convection. However, the performance of
these assimilations is often limited by challenges in esti-
mating biases in GMR observations (Lin et al., 2023). This
limitation can be mitigated by directly assimilating the ob-
served brightness temperatures (BTs) from GMRs. It has
been demonstrated that directly assimilating BTs from two
channels has a positive impact on forecasting temperature
and humidity in the PBL (Vural et al., 2024). The advan-
tage of direct assimilation of GMR observations is further
highlighted when compared to indirect assimilation results in
forecasting extreme precipitation events (Cao et al., 2023).
Radiative transfer models (RTMs) are essential in direct
data assimilation, as they map atmospheric parameters from
NWP models onto satellite or GMR observations. Numer-
ous fast RTMs have been developed for the direct assimila-
tion of satellite observations, such as the Radiative Transfer
for TOVS (RTTOV) (Saunders et al., 2018; Hocking et al.,
2021), the Community Radiative Transfer Model (CRTM)
(Weng and Liu, 2003; Stegmann et al., 2022; Karpowicz
et al., 2022), and the Advanced Radiative Transfer Modeling
System (ARMS) (Weng et al., 2020; Yang et al., 2020). For
use with GMRs, few RTMs are specifically designed for this
purpose, with RTTOV-ground based (RTTOV-gb) (De Ange-
lis et al., 2016; Cimini et al., 2019) being a notable excep-
tion. Unlike the traditional RTTOV, RTTOV-gb is optimized
to handle the unique geometries and atmospheric paths as-
sociated with GMRs. While the coefficients for RTTOV are
trained using AMSUTRAN (Turner et al., 2019), the coef-
ficients for RTTOV-gb are trained using an updated version
of the Millimeter-wave Propagation Model, as detailed by
Rosenkranz (1998) (hereafter referred to as R98). A further
updated version of R98 is introduced by Rosenkranz (2017)
(hereafter referred to as R17), and its uncertainties are ana-
lyzed by Cimini et al. (2018). RTTOV-gb v1.0 now supports
coefficients trained using both R98 and R17.

In addition to AMSUTRAN, R98, and R17, the
Monochromatic Radiative Transfer Model (MonoRTM) can
also provide line-by-line (LBL) results of radiance and trans-
mittance, and its accuracy in simulating upwelling radia-
tive transfer (RT) has been evaluated against AMSUTRAN
(Cady-Pereira et al., 2021). On the other hand, for down-
welling RT simulations, BTs produced by different types of
LBL models can vary significantly. A study comparing re-

sults from five different LBL models found discrepancies as
large as 1.5 K in channel 1 of the MP-3000A (Yang and Min,
2018), underscoring the importance of using a reliable and
accurate LBL model to train fast RTMs for optimal perfor-
mance. However, there are few studies that provide inter-
comparisons between fast RTMs trained with different mi-
crowave LBL models in downwelling RT simulations.

Furthermore, due to the use of terrain-following coordi-
nates, the pressure levels in NWP models are not fixed,
necessitating vertical interpolation in both RTTOV and
RTTOV-gb. Hocking (2014) compared five vertical interpo-
lation methods within RTTOV, finding that the choice of in-
terpolation mode affects not only the simulated BTs but also
the Jacobian calculations. Kan et al. (2024) proposed an ad-
vanced water vapor interpolation method, significantly re-
ducing biases caused by vertical interpolation in water vapor
absorption channels of microwave sensors on board satel-
lites. It is important to evaluate the differences in forward
simulations and Jacobians caused by vertical interpolation
modes from the perspective of GMR applications.

In this study, a new RTM (ARMS-gb) capable of simu-
lating BTs observed by GMRs and their Jacobian is pro-
posed. ARMS-gb relies on a clear-sky RT solver and employs
MonoRTM to train the gaseous absorption scheme. The ac-
curacy of ARMS-gb in a moist environment is improved by
enriching the training dataset and incorporating the advanced
interpolation mode proposed by Kan et al. (2024). This de-
velopment also marks the first intercomparison between two
fast RTMs for GMRs. In the following section, each com-
ponent of ARMS-gb is described in detail, including the
clear-sky radiative transfer (RT) solver, the gaseous absorp-
tion scheme, and the Jacobian calculation module. Section
3 investigates the accuracy of ARMS-gb by comparing its
results with those of MonoRTM. The improvements in ac-
curacy achieved by enriching the training dataset are evalu-
ated, and the impact of vertical interpolation on both forward
simulations and Jacobian calculations is analyzed. In Sect. 4,
ARMS-gb and RTTOV-gb are used to simulate real observa-
tions from two GMRs under different climate conditions. Ob-
servation minus background (OMB) analyses from the two
RTMs are compared. Additionally, the capability of ARMS-
gb to monitor the observational quality of GMRs is demon-
strated. A summary of the findings is provided in Sect. 5.

2 Model development

The primary objective of this study is to develop ARMS-gb
capable of simulating BTs observed by GMRs. These BTs
are directly linked to downwelling radiances at the surface.
Currently, ARMS-gb is limited to simulations under clear-
sky conditions; however, a particle scattering module will be
integrated in the near future to extend its capabilities and en-
able simulations under all-sky conditions.
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2.1 Clear-sky RT equation

Without considering scattering effects, the RT equation
(Liou, 1992) simplifies to

µ
dI (τ,µ)

dτ
= I (τ,µ)−B(τ), (1)

where I (τ,µ) represents the radiance. τ andµ are the optical
depth in the vertical direction and the cosine of the viewing
zenith angle. A vertical measurement by a GMR corresponds
to a zenith angle of 0°. The vertical distribution of the Planck
functionB(τ) is described by the linear-in-tau approximation
(Toon et al., 1989; Zhang et al., 2016, 2018) in ARMS-gb as

B(τ)= B0(1+βτ), (2)

where β = (B1/B0− 1)/τ0. B0 and B1 are the Planck func-
tions at the upper and lower boundaries of the atmospheric
layer, respectively. τ0 is the vertical optical depth of the at-
mospheric layer. After substituting Eq. (2) into Eq. (1) and
solving Eq. (1), we can get

I (τ0,µ)= I (0,µ)e−d +B1−B0e
−d

−
(1− e−d)

d
(B1−B0), (3)

where d = τ0/µ. I (0,µ) and I (τ0,µ) are the downwelling
radiances at the upper and lower boundaries of the layer,
respectively. In a multi-layer case, I (0,µ) can be obtained
from results of the previous layer, and I (τ0,µ) will serve as
the boundary input for the next layer (Li and Fu, 2000; Zhang
et al., 2017). Therefore, downwelling radiance is calculated
layer by layer from the top of the atmosphere (TOA) to the
ground surface. The boundary input at TOA equals the cos-
mic background radiance.

2.2 Gaseous absorption

The accuracy of d in Eq. (3), which represents the effect of
gaseous absorption at the GMR observed frequency, is criti-
cal for the performance of RT simulations. To address this
issue, we employ optical depth in pressure space (ODPS)
(Saunders et al., 1999; Chen et al., 2010; Hocking et al.,
2021), a statistical regression scheme. ODPS involves two
stages: training and simulation processes. Recent improve-
ments to both stages have been proposed by Kan et al. (2024)
and assessed by comparing their results to satellite observa-
tions. Most of these enhancements have been incorporated
into ARMS-gb.

The ODPS training process primarily uses the European
Centre for Medium-Range Weather Forecasts (ECMWF) 83-
profile dataset. To enhance simulation accuracy, particu-
larly in moist environments, this dataset is augmented with
seven additional profiles (1st, 6th, 14th, 15th, 16th, 18th, and
20th) from the University of Maryland, Baltimore County

Figure 1. Statistical comparisons of the water vapor profiles from
the ECMWF 83-profile dataset and the seven additional profiles
from the UMBC 48-profile dataset. The red, black, and blue
lines represent the maximum, mean, and minimum values of the
ECMWF 83-profile dataset, respectively. The gray-shaded area in-
dicates the range within twice the standard deviation of the ECMWF
83-profile dataset. The green-shaded area represents the range
bounded by the maximum and minimum values of the seven ad-
ditional profiles from the UMBC 48-profile dataset.

(UMBC) 48-profile dataset. Figure 1 presents statistical com-
parisons of the water vapor profiles from the ECMWF 83-
profile dataset and the seven additional profiles from the
UMBC 48-profile dataset. The maximum, mean, minimum
values, and standard deviation of the ECMWF 83-profile
dataset are displayed, along with the humidity range of the
additional profiles. The humidity range of the additional pro-
files exceeds the mean values plus the standard deviation of
the ECMWF 83-profile dataset, particularly in the lower lev-
els of the troposphere. Furthermore, the upper bound for op-
tical depth regression is extended. The impact of this aug-
mentation on simulation accuracy is discussed in Sect. 3.

MonoRTM (Clough et al., 2005) is employed to calculate
LBL transmittance at seven observed zenith angles (0, 36,
48, 55, 60, 63, 70°). Water vapor absorption, oxygen absorp-
tion, ozone line absorption, and nitrogen continuum absorp-
tion are considered. In MonoRTM, line absorption calcula-
tion relies on the HITRAN database (Gordon et al., 2022),
and continuum absorption is handled by the MT_CKD con-
tinuum model (Mlawer et al., 2012; Clough et al., 2005). As
channel-dependent spectral response functions (SRFs) are
not available, the transmittance of GMRs’ channels is calcu-
lated as the mean of the monochromatic transmittance across
the channel bandwidth V :

0ch,j =

∫
V
0j (v)dv∫
V

dv
, (4)

where the subscript j refers to the transmittance from the sur-
face to the j th level. 0ch,j is the transmittance of an observed
channel, and 0j (v) is the monochromatic transmittance. In
practice, the channel bandwidth V is divided into 256 inter-
vals, and the integral in Eq. (4) is approximated by a discrete
sum.
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In ARMS-gb, water vapor is the only variable gas, while
other gases are fixed during the training process. As a result,
the total transmittance can be written as

0total
ch,j =

0total
ch,j

0mixed
ch,j

0mixed
ch,j , (5)

where 0total
ch,j and 0mixed

ch,j are the total transmittance and
the transmittance of all fixed gases, respectively. Following
McMillin et al. (1995), we define the effective transmittance
of water vapor 0H2O,∗

ch,j as

0
H2O,∗
ch,j =

0total
ch,j

0mixed
ch,j

. (6)

Both the water vapor absorption and the overlap absorption
are included in 0H2O,∗

ch,j . A linear regression is applied to fit

layer optical depth related to 0mixed
ch,j and 0H2O,∗

ch,j as follows:

dj =Dj −Dj+1 =

Np∑
i=1

Ci,jXi,j , (7)

where dj is the layer optical depth of the j th layer that
is bounded by the j th level and the (j + 1)th level. Dj =
− ln(0ch,j ) is the optical depth from the surface to the j th
level. Xi,j and Ci,j are predictors and corresponding fitting
coefficients, respectively. To achieve high accuracy, we con-
struct a predictor pool first and then use the backward step-
wise regression to select the optimal combination of pre-
dictors. Detailed information about the predictor pool can
be found in Appendix A. Both the transmittance calculation
and the linear regression are performed at fixed 101 pressure
levels. These pressure levels are identical to those used in
RTTOV-gb (De Angelis et al., 2016), which are denser be-
low 2 km.

Most NWP and reanalysis data have their own vertical co-
ordinates, whereas optical depth calculations are constrained
to the 101 levels. Consequently, in the ODPS simulation pro-
cess, temperatures and water vapors from input pressure lev-
els are remapped onto the 101 levels using the Rochon inter-
polation (Rochon et al., 2007) for the purpose of calculating
predictors. After the optical depth calculations, the resulting
Dj values are interpolated back to the original input pressure
levels via a nearest-neighbor log-linear interpolation.

GMRs are sensitive to atmospheric parameters near the
surface. To improve simulation accuracy, temperatures and
water vapor values at a height of 2 m above ground level are
used to correct the predictor values of the first layer above
the surface. Furthermore, Kan et al. (2024) have shown that
the logarithm of partial pressure is more effective than mass
or volume mixing ratios in describing the vertical distribu-
tion of water vapor. In line with this finding, the unit of water
vapor is converted to partial pressure, followed by a vertical
interpolation of the logarithm of water vapor partial pressure

to the 101 levels. The impact of this vertical interpolation on
both the forward simulation and the Jacobian calculation is
discussed in Sect. 3.

2.3 Jacobian calculation

Jacobian calculation is a crucial component of an RTM. It
is essential for inversion and data assimilation. The aim of
this calculation is to construct a K matrix that quantifies the
sensitivity of radiances or BTs at each channel with respect
to all input parameters. The K matrix can be represented as

K=


∂I1/∂x1 ∂I2/∂x1 . . . ∂IN/∂x1
∂I1/∂x2 ∂I2/∂x2 . . . ∂IN/∂x2
. . . . . . . . . . . .

∂I1/∂xM ∂I2/∂xM . . . ∂IN/∂xM

 , (8)

where N and M denote the number of channels and input
parameters, respectively. For RT simulations, N is generally
much less than M . In four-dimensional variational data as-
similation systems, the K matrix is handled by the tangent
linear module and the adjoint module (Errico, 1997). The
tangent linear module computes how small changes in the
input parameters affect the RTM output. It is developed by
deriving the derivatives for each step in the RTM. For exam-
ple, in RT simulations, an input parameter xj contributes to
the radiance vector I along the path

xj → d→ I , (9)

where d and I represent the vector of optical depth and ra-
diance at each channel. Correspondingly, the tangent linear
module can be expressed as

xTL,j →
∂d

∂xj
· xTL,j →

∂I

∂d
·
∂d

∂xj
· xTL,j . (10)

The adjoint module is the backward counterpart of the tan-
gent linear module. It computes how small changes in the
RTM output affect the input parameters. This process is rep-
resented as

IAD,i→
∂Ii

∂d
· IAD,i→

∂Ii

∂d
·
∂d

∂x
· IAD,i, (11)

where x =
[
x1 x2 . . . xM

]
is a vector containing all in-

put parameters. In practice, the tangent linear module is de-
veloped first, and the adjoint module is subsequently derived
from it.

The tangent linear and the adjoint modules work together
to update the initial state of NWP based on observational
data in four-dimensional variational data assimilation sys-
tems. The tangent linear module is used to evaluate how per-
turbations in the state evolve, while the adjoint model deter-
mines how these perturbations should be adjusted to mini-
mize the difference between the RTM output and the actual
observations.
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3 Accuracy evaluation of ARMS-gb

In this section, we evaluate the accuracy of ARMS-gb by
comparing its results to those of MonoRTM and demon-
strate the improvements achieved by enriching the train-
ing dataset. Additionally, we analyze the impact of ver-
tical interpolation on both forward simulations and Jaco-
bian calculations. These evaluations are performed using two
datasets: the ECMWF 83-profile dataset and the UMBC 48-
profile dataset. Our analysis includes results at seven ob-
served zenith angles: 0, 36, 48, 55, 60, 63, and 70°. ARMS-
gb currently supports two types of GMRs: the Humidity And
Temperature PROfiler (HATPRO) and MP-3000A. The HAT-
PRO, developed by Radiometer Physics GmbH, has seven
K-band channels (channels 1–7) and seven V-band chan-
nels (channels 8–14). The center frequencies for each chan-
nel of the HATPRO are listed in Table 1. The MP-3000A,
designed by Radiometrics, provides observations at 22 dis-
tinct channels. The center frequencies for each channel of the
MP-3000A are presented in Table 2. Regarding bandwidths,
the HATPRO has different values for its channels: 230 MHz
for channels 1–11, 600 MHz for channel 12, 1000 MHz for
channel 13, and 2000 MHz for channel 14. In contrast, all
channels of the MP-3000A have a uniform bandwidth of
300 MHz.

To evaluate the accuracy of ARMS-gb, we use three met-
rics: mean bias (AVG), standard deviation (SD), and root
mean square error (RMSE). These metrics are calculated as
follows:

AVG=
∑NS
i=1[BTben(i)−BTsim(i)]

NS
, (12)

SD=

√∑NS
i=1[BTben(i)−BTsim(i)−AVG]2

NS
, (13)

RMSE=

√∑NS
i=1[BTben(i)−BTsim(i)]

2

NS
, (14)

where NS is the total number of samples. BTben values are
the benchmark values of BTs, and BTsim values are simulated
BTs. The benchmark values are calculated using MonoRTM
through the following steps: (1) calculate the monochromatic
radiance I (v); (2) integrate the monochromatic radiance over
the channel bandwidth V to obtain the channel-averaged ra-
diance

Ich =

∫
V
I (v)dv∫
V

dv
, (15)

where Ich is the channel-averaged radiance. Similar to
Eq. (4), the integral calculation in Eq. (15) is also discretized
as a sum, with the channel bandwidth V divided into 256
intervals prior to summation.

3.1 Effect of enriching the training dataset

To evaluate the impact of enriching the training dataset, we
trained two sets of fitting coefficients: one using the ECMWF
83-profile dataset (hereafter referred to as Coef_EC83) and
the other using the new training dataset (hereafter referred
to as Coef_New90). RT simulations based on these two
coefficients are intercompared using the 101-level (101L)
ECMWF 83-profile and UMBC 48-profile datasets. The 101
pressure levels are specifically chosen to eliminate effects re-
lated to vertical interpolation. The AVG, SD, and RMSE for
each HATPRO channel are presented in Table 3. For the 101L
ECMWF 83-profile dataset, the accuracy of the two fitting
coefficients is comparable, with the maximum RMSE differ-
ence between them being only 0.0078 K. Both coefficients
achieve high accuracy: in channels 1–7 and 10, the RMSE is
approximately 0.03 K, while in channels 11–14, the RMSE is
less than 0.012 K. However, biases are slightly larger in chan-
nels within the 51–54 GHz range, with the maximum RMSE
exceeding 0.1 K in channel 9. This larger bias is attributed
to the combined influence of temperature and water vapor,
which reduces the correlation of layer opacity (De Angelis
et al., 2016). For the 101L UMBC 48-profile dataset, results
using Coef_New90 demonstrate significantly higher accu-
racy compared to those using Coef_EC83. In channels 9 and
10, the RMSE values for Coef_EC83 exceed 6.0 K, whereas
those for Coef_New90 remain below 0.1 K. In other chan-
nels, the RMSE values for Coef_New90 are 1 to 2 orders of
magnitude smaller than those for Coef_EC83. Large biases
for Coef_EC83 in channel 10 may be caused by a strong in-
teraction between water vapor and fixed gas transmittance.
Since similar results are observed for MP-3000A channels,
these results are not presented in the paper.

3.2 Effect of vertical interpolation

To apply ODPS in RT simulations with profiles having differ-
ent kinds of vertical coordinates, two vertical interpolations
are required. Previous studies have investigated the impact
of different vertical interpolation modes on RT simulations
and Jacobian calculations for the satellite perspective. For in-
stance, Hocking (2014) compared five vertical interpolation
modes within RTTOV. They found that using various verti-
cal interpolation modes not only affects the simulated BTs,
but also impacts Jacobian calculations. This study aims to
compare BTs and Jacobians calculated by two different ver-
tical interpolation modes for the GMR perspective. Detailed
setups in these modes are summarized as follows.

Mode 1 is the default setting in RTTOV-gb (De Angelis
et al., 2016; Cimini et al., 2019). The RTTOV-gb user guide
also strongly recommends not to change the mode. In mode
1, both atmospheric parameters and optical depth are interpo-
lated using the Rochon interpolation (Rochon et al., 2007).

Mode 2, which is employed by ARMS-gb, has previously
been introduced (see Sect. 2.2). In mode 2, atmospheric pa-
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Table 1. Center frequencies of HATPRO.

Channel 1 2 3 4 5 6 7

Frequency (GHz) 22.24 23.04 23.84 25.44 26.24 27.84 31.04

Channel 8 9 10 11 12 13 14

Frequency (GHz) 51.26 52.28 53.86 54.94 56.66 57.30 58.00

Table 2. Center frequencies of MP-3000A.

Channel 1 2 3 4 5 6 7 8

Frequency (GHz) 22.234 22.500 23.034 23.834 25.000 26.234 28.000 30.000

Channel 9 10 11 12 13 14 15 16

Frequency (GHz) 51.248 51.760 52.280 52.804 53.336 53.848 54.400 54.940

Channel 17 18 19 20 21 22

Frequency (GHz) 55.500 56.020 56.660 57.288 57.964 58.800

rameters are interpolated using the Rochon interpolation,
similar to mode 1. However, for optical depth, the nearest-
neighbor log-linear interpolation is used instead. Addition-
ally, before interpolating water vapor, its unit is converted to
partial pressure, which allows for more accurate calculations.

We implement both interpolation modes within ARMS-
gb first and perform comparisons across HATPRO channels.
Atmospheric parameters are taken from the 54L ECMWF
83-profile and UMBC 48-profile datasets. For the bench-
mark calculations, we directly input 54L temperatures and
water vapor profiles into MonoRTM without any interpola-
tion. Both mode 1 and mode 2 interpolate profiles into 101L
first and then interpolate optical depth back to 54L. To iso-
late the impact of the interpolation modes and exclude differ-
ences related to the training process (e.g., LBL RTMs and the
training dataset), only Coef_New90 is used. Figure 2a and b
illustrate results for the 54L ECMWF 83-profile dataset. In
this case, mode 2 generally outperforms mode 1 in terms of
accuracy. In K-band channels, both AVGs and SDs of mode 2
are significantly lower than those of mode 1. In channel 4, the
AVG and SD of mode 2 are 0.19 and 0.15 K lower, respec-
tively, compared to mode 1. In channels 8 and 9, the AVG
for mode 1 is about 0.45 K, while mode 2 reduces this bias
to less than 0.01 K. SDs in these channels also show slight
reductions when mode 2 replaces mode 1. This modest re-
duction in SD is primarily attributed to the ODPS regression
error, which can reach up to 0.1 K in these channels. Com-
parisons are also performed under the 54L UMBC 48-profile
dataset, which includes profiles with high water vapor con-
tent. In channel 3, both the AVG and the SD for mode 1 are
0.27 K, whereas mode 2 achieves significantly lower values
of 0.04 K and 0.03 K, respectively. In channel 8, the AVG for
mode 1 reaches as high as 0.55 K, while mode 2 reduces this

Figure 2. (a, b) AVGs and SDs of simulated BTs at seven observed
zenith angles in HATPRO channels. RT simulations for interpola-
tion modes 1 and 2 are performed under the 54L ECMWF 83-profile
dataset. MonoRTM serves as a benchmark for providing reference
values for comparison. (c, d) Same as (a) and (b) but with RT sim-
ulations performed under the 54L UMBC 48-profile dataset.

bias to just 0.03 K. Overall, the results indicate that mode 2
is generally more accurate than mode 1, particularly in chan-
nels with strong water vapor absorption.

The Jacobians calculated by the two interpolation modes
are also different. To evaluate this difference, we use the sixth
profile in the 54L UMBC 48-profile dataset. The profile is
selected because it produces significant BT differences be-
tween the two modes. The difference reaches up to 0.59 K
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Table 3. AVG, SD, and RMSE of each channel of HATPRO. RT simulations based on Coef_EC83 and Coef_New90 are performed under
the 101L ECMWF 83-profile and UMBC 48-profile datasets. MonoRTM serves as a benchmark for providing reference values for the
comparison.

101L ECMWF 83-profile dataset

Coef Channel 1 2 3 4 5 6 7

Coef_EC83 AVG (K) 0.0188 0.0139 0.0157 0.0167 0.0185 0.0194 0.0200
Coef_New90 AVG (K) 0.0156 0.0123 0.0115 0.0150 0.0164 0.0186 0.0190

Coef_EC83 SD (K) 0.0341 0.0316 0.0262 0.0251 0.0251 0.0266 0.0322
Coef_New90 SD (K) 0.0366 0.0341 0.0290 0.0263 0.0261 0.0274 0.0334

Coef_EC83 RMSE (K) 0.0389 0.0345 0.0305 0.0301 0.0312 0.0329 0.0379
Coef_New90 RMSE (K) 0.0389 0.0362 0.0312 0.0302 0.0308 0.0332 0.0384

Coef Channel 8 9 10 11 12 13 14

Coef_EC83 AVG (K) 0.0121 0.0176 −0.0001 0.0007 0.0001 0.0007 0.0010
Coef_New90 AVG (K) 0.0118 0.0042 0.0011 0.0006 0.0008 0.0006 0.0011

Coef_EC83 SD (K) 0.1018 0.0937 0.0385 0.0111 0.0037 0.0030 0.0027
Coef_New90 SD (K) 0.1097 0.0989 0.0393 0.0109 0.0039 0.0030 0.0028

Coef_EC83 RMSE (K) 0.1025 0.0954 0.0385 0.0111 0.0037 0.0031 0.0028
Coef_New90 RMSE (K) 0.1103 0.0990 0.0393 0.0109 0.0040 0.0031 0.0031

101L UMBC 48-profile dataset

Coef Channel 1 2 3 4 5 6 7

Coef_EC83 AVG (K) −1.1162 0.0630 −0.0737 −1.0613 −0.4619 0.1545 −0.5697
Coef_New90 AVG (K) 0.0430 0.0378 0.0327 0.0322 0.0298 0.0303 0.0300

Coef_EC83 SD (K) 3.6620 0.1940 0.1666 2.6362 0.5401 0.4241 0.6797
Coef_New90 SD (K) 0.0439 0.0329 0.0234 0.0207 0.0208 0.0230 0.0284

Coef_EC83 RMSE (K) 3.8283 0.2040 0.1822 2.8419 0.7107 0.4514 0.8869
Coef_New90 RMSE (K) 0.0614 0.0501 0.0402 0.0383 0.0364 0.0380 0.0413

Coef Channel 8 9 10 11 12 13 14

Coef_EC83 AVG (K) −1.0710 −1.6026 −9.5989 −2.2629 −0.3528 −0.0325 −0.6618
Coef_New90 AVG (K) 0.0323 0.0196 0.0062 −0.0019 −0.0038 −0.0035 −0.0022

Coef_EC83 SD (K) 1.1384 6.1034 8.3056 2.3030 0.4600 0.0644 0.8740
Coef_New90 SD (K) 0.1066 0.0978 0.0480 0.0240 0.0182 0.0160 0.0144

Coef_EC83 RMSE (K) 1.5630 6.3103 12.6934 3.2287 0.5797 0.0721 1.0963
Coef_New90 RMSE (K) 0.1114 0.0998 0.0484 0.0240 0.0186 0.0164 0.0145

at an observed zenith angle of 0° in channel 1. Figure 3a,
b, and c show water vapor Jacobian at channels 3, 6, and
10, respectively. Jacobian differences between mode 1 and
mode 2 are also shown. The results indicate that simulated
BTs at channel 3 are very sensitive to water vapor located
between 800 and 1000 hPa. The values of the water vapor Ja-
cobian in this height range can exceed 5 K (log(g kg−1))−1.
The maximum value of the water vapor Jacobian can
reach 7.06 K (log(g kg−1))−1 in channel 3, while it is only
1.32 K (log(g kg−1))−1 in channel 10. The maximum value
of the difference between the two modes occurs at the
first level above the ground surface and reaches up to

0.61 K (log(g kg−1))−1 in channel 3, 0.55 K (log(g kg−1))−1

in channel 6, and 0.14 K (log(g kg−1))−1 in channel 10. Sit-
uations of temperature Jacobian in channel 11, channel 12,
and channel 14 are shown in Fig. 3d, e, and f, respectively.
The simulated BTs at these channels are sensitive to near-
surface temperatures below 900 hPa. The maximum values
of the temperature Jacobian occur at 1033 hPa and can reach
up to 0.14 K K−1 in channel 11, 0.24 K K−1 in channel 12,
and 0.28 K K−1 in channel 14. Comparing mode 1 with mode
2, we find that mode 2 reduces the temperature Jacobian of
channel 14 by 0.007 K K−1 at 1013 hPa but gives an increase

https://doi.org/10.5194/gmd-18-1947-2025 Geosci. Model Dev., 18, 1947–1964, 2025



1954 Y.-N. Shi et al.: Development of ARMS-gb v1.0 for ground-based microwave radiometers

Figure 3. (a, b, c) Water vapor Jacobian analysis for channels 3,
6, and 10 of HATPRO. The water vapor Jacobian based on mode
2 is presented as black lines, and Jacobian differences between the
two interpolation modes (mode 2 minus mode 1) are presented as
red lines. (d, e, f) Same as (a), (b), and (c) but for temperature Ja-
cobian analysis in different channels. The focus is on channel 11,
channel 12, and channel 14 of HATPRO. RT simulations are per-
formed under the sixth profile in the 54L UMBC 48-profile dataset.
The observed zenith angle is set to 0°.

of 0.01 K K−1 at 1050 hPa. Similar results are also found in
channels 11 and 12 but with smaller amplitudes.

Due to its similarity to that for the HATPRO channels,
analysis for the MP-3000A channels is not presented in the
paper.

4 Applications in simulating real observations

In this section, we employ ARMS-gb to simulate real ob-
servations from GMRs in China. Three GMRs are selected:
two are used to provide benchmark values for comparing the
accuracy of ARMS-gb and RTTOV-gb, while the third is uti-
lized to demonstrate the ability of ARMS-gb to monitor ob-
servational quality. The temperature and water vapor profiles,
required as input for RT simulations, are derived from the
137L ERA5 reanalysis dataset. Additionally, direct observa-
tions of pressure, temperature, and humidity near the surface,
provided by the meteorological sensor on board GMRs, are
also utilized in the RT simulations in this study.

The ERA5 reanalysis dataset (Hersbach et al., 2020) pro-
vides an exceptionally detailed representation of the atmo-
sphere, with its 137 vertical levels extending from the surface
up to 0.01 hPa. These levels are not uniformly spaced and are

more densely packed near the Earth’s surface, allowing for a
high vertical resolution that accurately captures atmospheric
conditions in this height range. This configuration is partic-
ularly well-suited for simulating GMRs’ observations, as it
enables accurate modeling of the PBL. In this study, ERA5
is used with a temporal resolution of 1 h and a horizontal res-
olution of 0.25°× 0.25°.

Prior to analyzing OMB based on RT simulations, two es-
sential steps are performed: strict collocation and cloud de-
tection. Collocation involves ensuring that the time and spa-
tial matches between ERA5 reanalysis data and GMR ob-
servations are precise. To mitigate biases caused by tempo-
ral differences, only observations from GMRs on the hour
are selected for analysis. A bilinear interpolation technique
is applied to convert atmospheric profiles from the four near-
est ERA5 grid points to the specific location of a GMR, us-
ing Euclidean-distance-based interpolation weights. Cloud
detection involves rejecting observations that meet certain
criteria: (1) observations during rain, which are flagged by
rain sensors (Cimini et al., 2019); (2) observations with a
high sky infrared temperature (>−30°C) (Martinet et al.,
2015; De Angelis et al., 2016); and (3) observations with
a standard deviation of BTs in the window channel (near
31 GHz) exceeding 0.2 K over a 10 min period (Turner et al.,
2007; Cimini et al., 2019). In addition, total column cloud
liquid water content and ice water content from the ERA5
reanalysis dataset are used as another index for cloud clear-
ing. The threshold is set to 100 g m−2 according to Moradi
et al. (2020). We also evaluated OMB statistics under dif-
ferent thresholds (e.g., 10 g m−2, 1 g m−2) and results do not
noticeably change.

4.1 Comparison to RTTOV-gb

RTTOV-gb is a fast RTM developed at the Center of Excel-
lence in Telesensing of Environment and Model Prediction
of Severe Events (CETEMPS). It accounts for gaseous ab-
sorption by ODPS, which is trained by R98 (Rosenkranz,
1998) or R17 (Rosenkranz, 2017). Additionally, the effects
of clouds on observed microwave BTs are also included in
RTTOV-gb. A detailed description of the model can be found
in De Angelis et al. (2016) and Cimini et al. (2019). For a
comprehensive comparison between ARMS-gb and RTTOV-
gb, refer to Table 4, which summarizes their similarities and
differences. In this study, coefficients trained by R98 is used
for running RTTOV-gb. It is worth comparing the results
of ARMS-gb with those of RTTOV-gb using coefficients
trained by R17, a comparison we plan to conduct soon.

The intercomparison period spans 1 November 2023 to
30 April 2024, covering both winter and spring seasons. Two
GMR stations are selected for this study: Karamay, Xin-
jiang (45.61° N, 84.85° E) and Tanggu, Tianjin (35.16° N,
117.79° E). The altitudes above sea level are 451.6 m for
Karamay and 27 m for Tanggu. The SD of surface pressures
from the four nearest ERA5 grid points is approximately
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15 hPa for Karamay and 5 hPa for Tanggu, which reflects the
situation of surrounding orography. The climate at these two
locations is distinct. Karamay has a dry continental climate
with low humidity. In contrast, Tanggu experiences a tem-
perate semi-humid monsoon climate with higher humidity.
These two stations serve as representative examples of dry
and relatively moist environments. The GMRs at both sta-
tions provide vertical measurements with an observed zenith
angle of 0°. The selection of both time period and station
makes it suitable for comparing the performance of ARMS-
gb and RTTOV-gb in different atmospheric conditions. Due
to the stability of the OMB trend during this period, it is as-
sumed that the quality of the calibration may be stable.

The GMR at Karamay is Airda-HTG4. It operates with
center frequencies and bandwidths identical to those of HAT-
PRO. Following the collocation and cloud detection steps,
a total of 1922 samples remain for analysis. Figure 4a–c
present the OMB results obtained from both RTTOV-gb and
ARMS-gb. Additionally, we calculate the daily SD using
OMB over each individual day. The mean relative differences
in daily SD between RTTOV-gb and ARMS-gb are depicted
in Fig. 4d–f. To assess the statistical significance of these dif-
ferences, Student’s t test is performed, and the corresponding
95 % confidence interval is indicated. This allows for a more
rigorous evaluation between the two RTMs.

The results shown in Fig. 4 highlight significant differ-
ences in the behavior of ARMS-gb and RTTOV-gb across
various channels of Airda-HTG4 at Karamay. In channels
1–8, ARMS-gb tends to overestimate BTs. In contrast, the
OMB median values of RTTOV-gb are much closer to 0 K
in these channels. For instance, in channel 1, the OMB me-
dian value of ARMS-gb is −0.98 K, while for RTTOV-gb
it is only −0.05 K. In channels 9 and 10, the absolute AVG
values for ARMS-gb exceed 2 K. RTTOV-gb also overesti-
mates BTs in these two channels, with AVGs of −1.93 K
in channel 9 and −1.34 K in channel 10. Both ARMS-gb
and RTTOV-gb demonstrate high accuracy in channels 11–
14, where the OMB median values for both RTMs are less
than 0.3 K. In terms of daily SD, significant differences be-
tween the two RTMs are observed in four K-band channels
(channels 4–7) and three V-band channels (channels 11, 13,
14). Specifically, compared to RTTOV-gb, the daily SD of
ARMS-gb is reduced by 0.75 % in channels 5 and 6. How-
ever, RTTOV-gb shows more stable OMBs than ARMS-gb
in three V-band channels, with a mean relative difference in
daily SD of 1.52 % in channel 14.

Additionally, radiosonde data are also used as input for RT
simulations, and the results from RTTOV-gb and ARMS-gb
are compared. Scatterplots of simulated versus observed BTs
are presented in Fig. 5, focusing on five K-band channels and
four V-band channels. After collocation and cloud detection,
163 samples are evaluated. In the K-band channels, RTTOV-
gb simulations align more closely with observations com-
pared to ARMS-gb, exhibiting smaller OMB median values
and SDs. ARMS-gb tends to overestimate observations, con-

Figure 4. (a–c) OMB of RTTOV-gb and ARMS-gb during the pe-
riod from 1 November 2023 to 30 April 2024. Observations are
from Airda-HTG4 at Karamay. RT simulations are performed un-
der the 137L ERA5 reanalysis dataset. White markers indicate the
median values of each distribution. (d–f) Mean relative differences
in daily SD between RTTOV-gb and ARMS-gb. Daily SD values
are calculated using OMB within each single day. The black bars
represent the 95 % confidence range, indicating the statistical sig-
nificance of these differences.

sistent with the results in Fig. 4. In the V-band channels, RT
simulation accuracy is generally higher than in the K-band
channels, with correlation coefficients approaching 1.0. The
OMB median values and SDs from ARMS-gb are slightly
lower than those from RTTOV-gb.

The GMR at Tanggu, YKW3, shares the same center fre-
quencies and bandwidths as MP-3000A. Figure 6a–c present
the OMB results of the two RTMs based on 1845 statistical
data. Notably, BTs simulated by ARMS-gb are more closely
aligned with observations than those of RTTOV-gb in chan-
nels 1–8. In particular, the OMB median values of RTTOV-
gb show significant deviations from 0 K, with values reach-
ing 3.28 K in channel 1 and 0.69 K in channel 8. In con-
trast, ARMS-gb exhibits more accurate results, with OMB
median values of 2.44 K in channel 1 and 0.26 K in channel
8. In channels 12, 13, and 14, the AVGs of RTTOV-gb are
more closely aligned with 0 K than those of ARMS-gb. Both
ARMS-gb and RTTOV-gb demonstrate similar accuracy in
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Table 4. The similarities and differences between ARMS-gb and RTTOV-gb.

ARMS-gb RTTOV-gb

Training dataset 101L ECMWF 83-profile dataset plus seven profiles from 101L UMBC 48-profile dataset 101L ECMWF 83-profile dataset

LBL model MonoRTM R98 or R17

Overlap absorption Effective transmittance

Channel transmittance Taking the mean of LBL transmittance within channel bandwidth

Input atmospheric parameters Temperatures and humidity at each input pressure level

Input near-surface parameters Temperature, humidity, and pressure at 2 m Temperature and pressure at 2 m

Interpolation mode Mode 2 in Sect. 3.2 Mode 1 in Sect. 3.2

Predictors 19 for 0mixed
ch ; 15 for 0H2O,∗

ch 10 for 0mixed
ch ; 15 for 0H2O,∗

ch

Vertical distribution of Planck function Linear-in-tau approximation

Figure 5. Scatter of simulated vs. observed BTs for 9 out of the 14 channels of Airda-HTG4 at Karamay from 1 November 2023 to
30 April 2024. RT simulations are performed using radiosonde data. Orange represents results of RTTOV-gb; green represents results of
ARMS-gb. After collocation and cloud detection, a total of 163 samples are analyzed in this case. The panel reports the correlation coefficients
(cor), as well as the median (med) values and standard deviations (SDs) of OMB.
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Figure 6. Same as Fig. 4 but showing the situation of YKW3 at
Tanggu.

channels 16–22, with differences in OMB median values be-
tween the two RTMs being less than 0.1 K. Figure 6d–f show
the mean relative differences in daily SD between ARMS-
gb and RTTOV-gb. In channel 2, the daily SD of RTTOV-gb
is 0.98 % lower than that of ARMS-gb. Conversely, in chan-
nels 9–16, the daily SD of ARMS-gb is significantly lower
than that of RTTOV-gb, with the largest relative difference
occurring in channel 12 at 2.59 %. The smallest relative dif-
ference occurs in channel 16, at 0.22 %. OMB results from
ARMS-gb also show slightly greater stability than those of
RTTOV-gb in channels 17–22.

Similar to the Karamay case, RT simulations for the
Tanggu case are also conducted using radiosonde data. Sim-
ulated BTs from both ARMS-gb and RTTOV-gb are com-
pared with observations, as shown in Fig. 7. After colloca-
tion and cloud detection, 148 samples are included in the
comparison, with 12 out of the 22 channels selected for anal-
ysis. In channels 1 and 2, both RTTOV-gb and ARMS-gb
underestimate BTs. However, ARMS-gb provides more ac-
curate results than RTTOV-gb, with higher correlation coef-
ficients and smaller OMB median values and SDs. In chan-
nels 4, 6, 7, and 8, the OMB median values from ARMS-gb
are closer to 0 K, while RTTOV-gb shows smaller SDs of
OMB. For channels with central frequencies ranging from

54.5 to 58.8 GHz, both RTTOV-gb and ARMS-gb accurately
simulate observed BTs, with correlation coefficients for both
RTMs reaching up to 0.98. The OMB median values and SD
from ARMS-gb are slightly lower than those from RTTOV-
gb. We would like to highlight that the calibration quality of
YKW3 at Tanggu is not as sufficient as that of Airda-HTG4
at Karamay. Significant biases and considerable scatter are
observed between YKW3 measurements and RT simulations
based on radiosonde data. Improving the calibration quality
remains a key challenge for the quantitative application of
GMR observations.

The performance of fast RTMs is influenced by several
factors. A detailed description of channel characteristics and
accuracy of the LBL model used for training are crucial in
achieving accurate RT simulations. Moreover, the quality
of the input profiles themselves can be a significant limita-
tion. For instance, temperatures from ERA5 reanalysis data
have been shown to have large systematic errors at altitudes
between 2000–3000 m and relative humidity errors ranging
from 40 % to 100 % over the range of 500–2500 m (Wei et al.,
2024). This highlights the challenge in relying on current re-
analysis data for accurate thermal variables, particularly in
the PBL. Furthermore, channel characteristics play a signifi-
cant role in RT simulations, especially when considering the
SRF information. Studies have demonstrated that incorporat-
ing SRF information can lead to substantial improvements in
RT simulations from a satellite perspective (Moradi et al.,
2020; Chen et al., 2021; Kan et al., 2024). We believe that
incorporating SRF information could also enhance the accu-
racy of both RTTOV-gb and ARMS-gb.

4.2 Monitoring observational qualities

ARMS-gb offers real-time OMB information, which pro-
vides valuable guidance for evaluating observational qual-
ities. This is particularly important in assimilating GMR
data in NWP. In this study, ARMS-gb is applied to moni-
tor the quality of observations from Airda-HTG4 located at
Minfeng, Xinjiang (37.07° N, 82.69° E). The station’s alti-
tude above sea level is 1410 m, and the SD of surface pres-
sures from the four nearest ERA5 grid points is about 6 hPa.
The time period examined spans 1 September to 30 Novem-
ber 2023. After collocation and cloud detection, 1922 sam-
ples are retained for analysis.

The observational BTs and the OMB of ARMS-gb in
channels 1, 8, and 14 are presented in Fig. 8. Channels 1 and
14 serve as representatives of water vapor and temperature
channels, respectively, while channel 8 is influenced by both
water vapor and temperature. Insights from the OMB results
for channel 1 indicate that SD can be significantly reduced
through calibration, decreasing from 2.03 to 0.98 K. The cal-
ibration time can also be clearly identified in the OMB se-
ries of channel 8. Both AVG and SD values change notice-
ably before and after the calibration time. Specifically, AVG
and SD reach 4.60 and 0.61 K in September, respectively, but
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Figure 7. Same as Fig. 5 but showing results for 12 out of the 22 channels of YKW3 at Tanggu from 1 November 2023 to 30 April 2024.
After collocation and cloud detection, a total of 148 samples are analyzed in this case.

are reduced to −0.52 and 0.33 K after calibration. In con-
trast, observational BTs of channel 14 show little sensitiv-
ity to calibration. Both AVG and SD values for this channel
remain largely unchanged, with only some negative OMB
values occurring during a short time period around the cali-
bration time. The observation series of these three channels
highlights that it is challenging to evaluate the quality of ob-
servations without access to OMB information. The results
from ARMS-gb provide valuable insights into observational
qualities.

5 Summary and conclusions

GMRs can provide continuous observations with high tem-
poral resolution. These observations are particularly useful
for monitoring rapid changes in temperature and humidity
within the PBL. As a result, direct assimilation of GMR ob-
servations has great potential in improving the performance
of NWP, especially for the lowest few kilometers of the at-
mosphere. In this study, we propose an RTM, ARMS-gb, ca-
pable of simulating BTs observed by GMRs. ARMS-gb can
be used as an observation operator to map atmospheric pa-
rameters onto observations in a data assimilation system.
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Figure 8. (a, b) Observations for channel 1 from Airda-HTG4 at Minfeng during 1 September to 30 November 2023 along with the corre-
sponding OMB series of ARMS-gb. (c, d) Same as (a) and (b) but showing situations of channel 8. (e, f) Same as (a) and (b) but showing
situations of channel 14. The dashed green line indicates the calibration time.

ARMS-gb is developed based on a clear-sky RT solver that
accounts for atmospheric thermal emissions from TOA to the
ground surface, as well as the effects of gaseous absorption.
An accurate description of gaseous absorption is critical for
the performance of RT simulations. To address this issue,
ARMS-gb employs ODPS, which utilizes the 101L ECMWF
83-profile dataset as its primary training dataset. This dataset
is augmented with seven additional profiles from the 101L
UMBC 48-profile dataset. The humidity range of these addi-
tional profiles exceeds the mean values plus the standard de-
viation of the ECMWF 83-profile dataset, particularly in the
low levels of the troposphere. This augmentation enhances
the simulation accuracy of ARMS-gb, particularly in moist
environments. In ODPS, MonoRTM is employed to calculate
the LBL transmittance at seven observed zenith angles. To
apply ODPS in RT simulations with profiles having different
types of vertical coordinates, two vertical interpolations are
required. In ARMS-gb, temperatures and water vapors from
input pressure levels are remapped onto the 101L using the
Rochon interpolation for calculating predictors. The result-
ing optical depth values are interpolated back to the original
input pressure levels via a nearest-neighbor log-linear inter-
polation. Additionally, before interpolating water vapor, its
unit is converted to partial pressure, which allows for more
accurate calculations. To satisfy the requirements of its ap-
plications in remote sensing and data assimilation, we also

develop the tangent linear and adjoint module of ARMS-gb
and derive the analytical K matrix.

ARMS-gb currently supports two types of GMRs: HAT-
PRO and MP-3000A. To evaluate the impact of enriching the
training dataset, two sets of fitting coefficients are trained:
one using the ECMWF 83-profile dataset (Coef_EC83) and
the other using the new training dataset (Coef_New90).
Profiles from the 101L ECMWF 83-profile and UMBC
48-profile datasets are used as input for RT simulations.
MonoRTM serves as the benchmark for providing refer-
ence values for comparison. For the 101L ECMWF 83-
profile dataset, the accuracy of the two fitting coefficients is
comparable, with the maximum RMSE difference between
them being only 0.0078 K. However, for the 101L UMBC
48-profile dataset, Coef_New90 demonstrates significantly
higher accuracy compared to Coef_EC83. The RMSE val-
ues of Coef_New90 are 1 to 2 orders of magnitude smaller
than those of Coef_EC83. Additionally, the effects of verti-
cal interpolation modes on forward and Jacobian calculations
are evaluated from the perspective of HATPRO channels.
Two different vertical interpolation modes are considered:
mode 1, the default setting in RTTOV-gb, and mode 2, em-
ployed by ARMS-gb. To isolate the impact of the interpola-
tion modes, only Coef_New90 is used to exclude differences
related to the training process. Under the 54L ECMWF 83-
profile dataset, mode 2 generally outperforms mode 1, partic-
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ularly in channels with strong water vapor absorption. For ex-
ample, in channel 4, the AVG and SD using mode 2 are 0.19
and 0.15 K lower, respectively, compared to mode 1. In chan-
nels 8 and 9, the AVG for mode 1 is approximately 0.45 K,
while for mode 2 it is less than 0.01 K. SDs in these channels
also show slight reductions when mode 1 is replaced with
mode 2. The Jacobian values calculated by the two interpola-
tion modes are also different. Comparing mode 1 with mode
2, it is observed that mode 2 reduces the temperature Jaco-
bian of channel 14 by 0.007 K K−1 at 1013 hPa but increases
it by 0.01 K K−1 at 1050 hPa. In terms of the water vapor
Jacobian, the maximum difference between the two modes
occurs at the first level above the ground surface. In channel
3, this difference reaches up to 0.61 K (log(g kg−1))−1, while
in channel 10, it is only 0.14 K (log(g kg−1))−1.

To further validate the performance of ARMS-gb, we
apply it in simulating real observations from GMRs and
compare its results to those of RTTOV-gb. Input atmo-
spheric parameters, such as temperature and water vapor pro-
files, are derived from the 137L ERA5 reanalysis dataset.
The intercomparison period spans 1 November 2023 to
30 April 2024. Airda-HTG4, located at Karamay, Xinjiang
(45.61° N, 84.85° E), and YKW3, located at Tanggu, Tian-
jin (35.16° N, 117.79° E), provide actual observations. Sig-
nificant differences are observed in the behavior of ARMS-
gb and RTTOV-gb across various channels of Airda-HTG4
at Karamay. In channels 1–8, ARMS-gb tends to overes-
timate BTs, whereas the OMB median values of RTTOV-
gb are much closer to 0 K in these channels. Both RTMs
demonstrate high accuracy in channels 11–14. In terms of
daily SD, ARMS-gb outperforms RTTOV-gb in channels 5
and 6, reducing the daily SD by 0.75 %. However, in chan-
nel 14, the daily SD for ARMS-gb increased by 1.52 %
compared to RTTOV-gb. Furthermore, radiosonde data are
also used as input for RT simulations, and the results from
RTTOV-gb and ARMS-gb are compared. In the K-band
channels, ARMS-gb tends to overestimate observations, con-
sistent with the results derived from the 137L ERA5 reanaly-
sis dataset. RTTOV-gb simulations exhibit smaller OMB me-
dian values and SDs. In the V-band channels, simulations
of both RTTOV-gb and ARMS-gb show high accuracy, with
correlation coefficients approaching 1.0.

Under the 137L ERA5 reanalysis dataset, BTs simulated
by ARMS-gb are more closely aligned with observations
from YKW3 at Tanggu than those of RTTOV-gb in chan-
nels 1–8. The daily SD of ARMS-gb is lower than that of
RTTOV-gb in channels 9–22, with the maximum relative dif-
ference observed in channel 12, reaching 2.59 %. Similar to
the Karamay case, RT simulations are also conducted us-
ing radiosonde data for the Tanggu case. The results show
that the OMB median values from ARMS-gb are closer to
0 K in most YKW3 channels. Notably, in channels 1 and 2,
ARMS-gb provides more accurate results than RTTOV-gb,
with higher correlation coefficients and smaller OMB me-
dian values and SDs. For channels with central frequencies

ranging from 54.5 GHz to 58.8 GHz, both RTTOV-gb and
ARMS-gb accurately simulate observed BTs, with correla-
tion coefficients for both RTMs reaching up to 0.98.

To demonstrate the ability of ARMS-gb to monitor obser-
vational quality, we utilize observations from Airda-HTG4
located at Minfeng, Xinjiang (37.07° N, 82.69° E). The cali-
bration time can be clearly identified in the OMB series of
channels 1 and 8. In contrast, observational BTs of chan-
nel 14 show little sensitivity to calibration. Compared to ob-
servation series, OMB information from ARMS-gb provides
more valuable insights into observational qualities of GMRs.

We believe that the performance of ARMS-gb can be fur-
ther enhanced by incorporating SRF information into ODPS.
Selecting a reliable and accurate LBL model for training is
also essential for improving the accuracy of RT simulations.
For example, Larosa et al. (2024) incorporate the latest ad-
vancements in absorption spectroscopy to improve RT simu-
lation accuracy in the 50–54 GHz frequency range. An inter-
comparison among different microwave LBL RTMs is nec-
essary to construct a reliable transmittance dataset for the
ODPS training process. In addition, we plan to integrate a
particle scattering module into ARMS-gb in the near future,
which will extend its capabilities to enable simulations un-
der all-sky conditions. With the development of ARMS-gb,
research on the direct assimilation of GMR observations into
NWP will be carried out soon.

Appendix A: Predictors for optical depth regression

In this section, predictors for optical depth regression are
specified. These predictors also refer to Matricardi et al.
(2004) and De Angelis et al. (2016).

In Table A1, θ is the local zenith angle. In the optical depth
calculation, θ varies with height, and the Earth curvature ef-
fect is then taken into account (Chen et al., 2012).

As mentioned in Sect. 2, the predictor calculation is per-
formed on the fixed 101 levels. Correspondingly, in Ta-
ble A2, j varies from 1 to 100 and refers to the j th atmo-
spheric layer. T prof (unit: K) and Qprof (unit: g kg−1) are the
input temperature and water vapor mass mixing ratio. Both of
them have been interpolated into the fixed 101 levels before
the predictor calculation. T ref and Qref are the same as T prof

and Qprof but from the reference profile. The reference pro-
file is usually obtained by taking the mean over the training
dataset. We note that Tw(100) is set to 0 (De Angelis et al.,
2016).
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Table A1. The predictor pool used for optical depth regression.

Predictor Mixed gas Water vapor

1 sec(θ) [sec(θ)Qr]
2

2 sec(θ)Tr [sec(θ)Qzp]
2

3 sec(θ)[Tr]
2

[sec(θ)Qzp]
4

4 Tr sec(θ)QrdT
5 sec2(θ)

√
sec(θ)Qr

6 [Tr]
2

[sec(θ)Qr]
0.25

7 sec(θ)Tzp sec(θ)Qr
8 sec(θ)[Tr]

3
[sec(θ)Qr]

3

9 sec(θ)
√

sec(θ)Tr [sec(θ)Qr]
4

10 sec(θ)Tw sec(θ)QrdT2
11 sec(θ)Tw/Tr

√
sec(θ)QrdT

12
√

sec(θ) [sec(θ)Qr ]2/Qzp
13

√
sec(θ)[Tw]

0.25 √
sec(θ)QrQr/Qzp

14 sec(θ)dT/[Tr]
2 sec(θ)[Qr]

2/Tr
15 sec(θ)dT2/[Tr]

2 sec(θ)[Qr]
2/[Tr]

4

16 sec(θ)dT/Tr
17 sec(θ)dT2/Tr
18 sec(θ)dT
19 sec(θ)dT2

Table A2. Variables used in the predictor calculation.

PδP (j)= P(j + 1)[P(j + 1)−P(j)]

T (j)= (T prof(j)+ T prof(j + 1))/2 T ∗(j)= (T ref(j)+ T ref(j + 1))/2

Q(j)= (Qprof(j)+Qprof(j + 1))/2 Q∗(j)= (Qref(j)+Qref(j + 1))/2

Tr(j)= T (j)/T
∗(j) Tw(j)= PδP (j)Tr(j)

Tzp(j)=
∑j
k=N

PδP (k)T (k)/
∑j
k=1PδP (k)T

∗(k)

dT (j)= T (j)− T ∗(j) dT2(j)= dT (j) |dT (j)|

Qr(j)=Q(j)/Q
∗(j)

Qzp(j)=
∑j
k=N

PδP (k)Q(k)/
∑j
k=N

PδP (k)Q
∗(k)

Code and data availability. RTTOV-gb can be downloaded from
the EUMETSAT NWP SAF website https://nwp-saf.eumetsat.int/
site/software/rttov-gb/ (last access: 18 March 2024, De Ange-
lis et al., 2016; Cimini et al., 2019), and MonoRTM is avail-
able at https://github.com/AER-RC/monoRTM/ (last access: 20 De-
cember 2024, Clough et al., 2005). The 137-level ERA5 re-
analysis data are available from the Copernicus Climate Data
Store at https://doi.org/10.24381/cds.143582c (Hersbach et al.,
2017). Observations from GMRs at Karamay, Tanggu, and Min-
feng used in this study can be obtained from China Meteoro-
logical Administration Data As A Service (CMADaaS) under
an available license (https://data.cma.cn/en, China Meteorologi-
cal Administration, 2024). Codes of ARMS-gb are available at
https://doi.org/10.5281/zenodo.14032776 (Shi et al., 2024).
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