Articles | Volume 18, issue 5
https://doi.org/10.5194/gmd-18-1851-2025
https://doi.org/10.5194/gmd-18-1851-2025
Methods for assessment of models
 | 
18 Mar 2025
Methods for assessment of models |  | 18 Mar 2025

Cell-tracking-based framework for assessing nowcasting model skill in reproducing growth and decay of convective rainfall

Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini

Related authors

Complementarity of wind measurements from co-located X-band weather radar and Doppler lidar
Jenna Ritvanen, Ewan O'Connor, Dmitri Moisseev, Raisa Lehtinen, Jani Tyynelä, and Ludovic Thobois
Atmos. Meas. Tech., 15, 6507–6519, https://doi.org/10.5194/amt-15-6507-2022,https://doi.org/10.5194/amt-15-6507-2022, 2022
Short summary
Boundary-layer height and surface stability at Hyytiälä, Finland, in ERA5 and observations
Victoria Anne Sinclair, Jenna Ritvanen, Gabin Urbancic, Irene Erner, Yurii Batrak, Dmitri Moisseev, and Mona Kurppa
Atmos. Meas. Tech., 15, 3075–3103, https://doi.org/10.5194/amt-15-3075-2022,https://doi.org/10.5194/amt-15-3075-2022, 2022
Short summary

Related subject area

Atmospheric sciences
A Bayesian method for predicting background radiation at environmental monitoring stations in local-scale networks
Jens Peter Karolus Wenceslaus Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers
Geosci. Model Dev., 18, 1989–2003, https://doi.org/10.5194/gmd-18-1989-2025,https://doi.org/10.5194/gmd-18-1989-2025, 2025
Short summary
Inclusion of the ECMWF ecRad radiation scheme (v1.5.0) in the MAR (v3.14), regional evaluation for Belgium, and assessment of surface shortwave spectral fluxes at Uccle
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025,https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Development of a fast radiative transfer model for ground-based microwave radiometers (ARMS-gb v1.0): validation and comparison to RTTOV-gb
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
Geosci. Model Dev., 18, 1947–1964, https://doi.org/10.5194/gmd-18-1947-2025,https://doi.org/10.5194/gmd-18-1947-2025, 2025
Short summary
Indian Institute of Tropical Meteorology (IITM) High-Resolution Global Forecast Model version 1: an attempt to resolve monsoon prediction deadlock
R. Phani Murali Krishna, Siddharth Kumar, A. Gopinathan Prajeesh, Peter Bechtold, Nils Wedi, Kumar Roy, Malay Ganai, B. Revanth Reddy, Snehlata Tirkey, Tanmoy Goswami, Radhika Kanase, Sahadat Sarkar, Medha Deshpande, and Parthasarathi Mukhopadhyay
Geosci. Model Dev., 18, 1879–1894, https://doi.org/10.5194/gmd-18-1879-2025,https://doi.org/10.5194/gmd-18-1879-2025, 2025
Short summary
NeuralMie (v1.0): an aerosol optics emulator
Andrew Geiss and Po-Lun Ma
Geosci. Model Dev., 18, 1809–1827, https://doi.org/10.5194/gmd-18-1809-2025,https://doi.org/10.5194/gmd-18-1809-2025, 2025
Short summary

Cited articles

Ayzel, G., Scheffer, T., and Heistermann, M.: RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting, Geosci. Model Dev., 13, 2631–2644, https://doi.org/10.5194/gmd-13-2631-2020, 2020. a, b, c
Berne, A., Delrieu, G., Creutin, J.-D., and Obled, C.: Temporal and Spatial Resolution of Rainfall Measurements Required for Urban Hydrology, J. Hydrol., 299, 166–179, https://doi.org/10.1016/j.jhydrol.2004.08.002, 2004. a
Beucher, S. and Lantuejoul, C.: Use of Watersheds in Contour Detection, in: International Workshop on Image Processing: Real-time Edge and Motion Detection/Estimation, Rennes, France, https://people.cmm.minesparis.psl.eu/users/beucher/publi/watershed.pdf (last access: 12 March 2025), 1979. a
Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Accurate Medium-Range Global Weather Forecasting with 3D Neural Networks, Nature, 619, 533–538, https://doi.org/10.1038/s41586-023-06185-3, 2023. a, b
Bouguet, J.-Y.: Pyramidal Implementation of the Affine Lucas Kanade Feature Tracker Description of the Algorithm, Intel corporation, https://robots.stanford.edu/cs223b04/algo_affine_tracking.pdf (last access: 12 March 2025), 2001. a, b
Download
Short summary
Nowcasting models struggle with the rapid evolution of heavy rain, and common verification methods are unable to describe how accurately the models predict the growth and decay of heavy rain. We propose a framework to assess model performance. In the framework, convective cells are identified and tracked in the forecasts and observations, and the model skill is then evaluated by comparing differences between forecast and observed cells. We demonstrate the framework with four open-source models.
Share