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Abstract. The rapid temporal evolution of convective rainfall
poses a challenge for quantitative rainfall nowcasting mod-
els that forecast rainfall on timescales ranging from 5 min
to 6 h. With the growing potential of machine learning mod-
els for precipitation nowcasting to produce realistic-looking
nowcasts for long lead times, it is important to investigate
whether the nowcasts also produce realistic development for
convective rainfall. Common verification metrics tradition-
ally used to validate nowcasting models are often dominated
by large-scale stratiform rainfall, and averaging the metrics
across entire precipitation fields obscures how accurately the
models replicate individual convective cells, which makes it
difficult to distinguish the model skill for the growth and de-
cay of convective rainfall. In this study, we present a frame-
work based on the tracking of convective cells to investigate
how accurately nowcasting models reproduce the develop-
ment of convective rainfall. In the framework, a cell iden-
tification and tracking algorithm is applied first to the in-
put observation rainfall fields and then separately to the tar-
get observation and nowcast rainfall fields where the tracks
identified in the input observations are continued. Features
describing the cells and cell tracks, such as the cell volume
rain rate and area, are then extracted. In addition to the er-
rors in these feature values, the models’ skill in reproduc-
ing the existence of convective cells is estimated by calcu-
lating several contingency table metrics, such as the critical
success index. The results allow the analysis of how accu-
rately the models reproduce the growth and decay of convec-
tive rainfall and quantify the differences between the models,
for example, due to differences in how the models smooth
the nowcasts (i.e. blurring). The framework also allows dif-

ferentiation of the results based on the initial conditions of
the cell tracks, demonstrated here by separating the tracks
into decaying or growing cell tracks based on the cell sta-
tus when the nowcast is created. We demonstrate the frame-
work with four open-source nowcasting models: the advec-
tion nowcast, the S-PROG (Spectral Prognosis; Seed, 2003)
and LINDA (Lagrangian Integro-Difference equation model
with Autoregression; Pulkkinen et al., 2021) models from
the pysteps library, and the L-CNN (Lagrangian Convolu-
tional Neural Network; Ritvanen et al., 2023) model, with
data from the Swiss radar network. The results indicate that
the L-CNN model reproduced the existence of convective
cells best among the models and had smaller errors in the cell
volume rain rate than LINDA and S-PROG. LINDA had the
smallest underestimation in the cell mean rain rate, whereas
S-PROG significantly overestimated the cell volume rain rate
and area because of blurring.

1 Introduction

Short-term forecasting from 5 min to 6 h, i.e. nowcasting, of
convective rainfall is critical for creating accurate and timely
hydrological hazard forecasts and warnings, such as flash
flood forecasts (World Meteorological Organization, 2017).
Weather radar data are often used to produce rainfall now-
casts for such purposes because of their high temporal and
spatial resolution (e.g. 5 min and 1 km; Berne et al., 2004)
and their ability to measure surface rainfall better than other
remote-sensing instruments, e.g. satellite measurements. Ac-
curate quantitative nowcasting of convective rainfall is of
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special interest, for example, for flash flood modelling, as the
highly localised heavy rainfall from convective storms can
cause sudden flash floods, especially in urban environments.
However, the rapid evolution of convective storms makes
nowcasting convective rainfall more difficult than nowcast-
ing low-intensity stratiform rainfall.

Historically, radar-based quantitative rainfall nowcasting
has been performed by extrapolating radar echoes (Browning
and Collier, 1989). However, because pure extrapolation can-
not account for the growth or decay of rainfall, several meth-
ods have been developed that, in addition to extrapolation,
model the evolution of rainfall, for example, with autoregres-
sive models (Seed, 2003; Bowler et al., 2006; Pulkkinen et
al., 2019a, 2020, 2021). In recent years, machine learning
(ML) methods have been utilised for radar-based nowcast-
ing. The first ML methods employed recurrent neural net-
works (RNNs) with convolutional layers or fully convolu-
tional neural networks (e.g. Shi et al., 2015, 2017; Ayzel et
al., 2020; Ritvanen et al., 2023). However, with the evolution
of the ML field, ML nowcasting methods have also evolved,
implementing more complicated model architectures, such
as attention layers (Trebing et al., 2021), multiple input data
sources (Pan et al., 2021; Zhang et al., 2021), and generative
models for creating probabilistic forecasts (e.g. Zheng et al.,
2022; Ravuri et al., 2021; Leinonen et al., 2023; Zhang et al.,
2023).

Convective rainfall poses a challenge for nowcasting
methods because of its rapid, non-linear evolution as well
as the small spatial scale at which it occurs. In statistical
nowcasting methods, such as S-PROG (Spectral Prognosis;
Seed, 2003), small-scale features with poor predictability are
usually filtered out to increase the overall forecast perfor-
mance, which inevitably decreases forecast skill for convec-
tive rainfall. Statistical models specially designed for convec-
tive rainfall, such as LINDA (Lagrangian Integro-Difference
equation model with Autoregression; Pulkkinen et al., 2021),
perform better for convective rainfall because of a specifi-
cally designed model, but they still show blurring in the now-
casts. However, ML methods are expected to predict convec-
tive rainfall better because of their ability to implicitly learn
non-linear relationships from the large number of data used
to train the model. While ML models can also suffer from
blurring, generative ML models, such as DGMR (Ravuri et
al., 2021), NowcastNet (Zhang et al., 2023), and LDCast
(Leinonen et al., 2023) can produce highly realistic-looking
nowcasts without blurring also for convective rainfall.

With nowcasting methods producing increasingly realistic
nowcasts of rainfall fields for lead times longer than 1 or 2 h,
the following question remains: how can we verify that the
evolution of convective rainfall produced by these methods
is also realistic? Thus far, little attention has been paid to this
question in nowcasting studies. Often, the forecast skill of
nowcasting models and its dependence on rainfall intensity
are studied with field-based verification scores calculated us-
ing either a pixel-wise method, such as the critical success

index (CSI) or equitable threat score (ETS; Schaefer, 1990),
or neighbourhood verification methods, such as the fractions
skill score (FSS; Roberts and Lean, 2008). These scores are
calculated using binary forecasts of exceeding a rain rate in-
tensity threshold. When the threshold value is increased, the
number and contiguous areas of pixels that exceed the thresh-
old are reduced. This makes it difficult to discern the source
of the error or success in the models. For example, a model
that produces otherwise accurate forecasts but with some dis-
placement error would obtain smaller metric values than a
model that consistently overestimates the rainfall but is more
accurate with respect to location.

Several previous studies have addressed the issue of de-
composing the forecast errors into different components,
such as errors in location and intensity, by utilising object-
based verification methods. These methods usually apply a
contour-based cell identification method with single or mul-
tiple thresholds to both the forecast and reference observa-
tion fields. Object-based verification methods can be divided
into two categories based on whether they (1) compare the
fields in which any pixels outside the identified objects are
discarded (e.g. Ebert and McBride, 2000; Wernli et al., 2008)
or (2) match and compare the individual identified objects be-
tween forecasts and observations (e.g. Micheas et al., 2007;
Davis et al., 2009; Marzban et al., 2009; Raynaud et al.,
2019). While the methods applying the first approach, such
as the SAL (Structure–Amplitude–Location) method (Wernli
et al., 2008), are useful for determining the different sources
of forecast error, they are not suitable for investigating how
well individual convective cells are forecast, as the error met-
rics are only calculated on a per-field basis.

On the other hand, object-based verification methods ap-
plying the second approach usually calculate the error met-
rics separately for each pair of matched objects and can there-
fore be used to study the forecast error on a per-object basis.
The verification results of these methods are usually visu-
alised by either showing the distributions of the error values
and/or calculating a single representative value of the errors,
such as the mean. These methods have traditionally been ap-
plied to numerical weather prediction (NWP) forecasts. For
example, the MODE (Method for Object-Based Diagnostic
Evolution; Davis et al., 2006a, b) method has been used to
study the performance of convection-permitting NWP mod-
els (Clark et al., 2014; Mittermaier and Bullock, 2013), en-
semble forecasts (Ji et al., 2020), and reanalysis data (Li et
al., 2020). Recently, MODE has also been applied to assess
nowcasting models (Kong et al., 2023; Ji et al., 2023). The
original MODE method identifies the objects of interest only
in the spatial domain; however, it has also been extended to
the temporal domain in the MODE Time Domain (MODE-
TD) method. The extension to the time domain has been
demonstrated to provide useful information on the evolution
of the objects, such as the lifetime, initiation, and dissipation,
in NWP forecasts (Clark et al., 2014; Li et al., 2020; Mit-
termaier and Bullock, 2013). Object-based verification has
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also been applied to verify tropical and extra-tropical cyclone
tracks in NWP and data-driven models (Bi et al., 2023; New-
man et al., 2023).

Compared with NWP forecasts and reanalysis data, now-
casts computed by extrapolation of weather radar measure-
ments pose additional challenges and possibilities for object-
based verification. First, weather radar data often have higher
spatial and temporal resolutions. This allows for the iden-
tification and tracking of the objects at smaller scales, of-
ten resulting in a larger number of identified cells. Second,
for most weather-radar-based nowcasting models, the initial
state of the nowcast is the last observation. This allows for (1)
the comparison of the objects identified in the observations
to their counterparts in the nowcasts and (2) the determina-
tion of the exact initial state of the objects by tracking them
backwards in time. However, in previous nowcasting studies
where object-based verification methods have been utilised
(e.g. Zahraei et al., 2012; Fox et al., 2016; Li et al., 2018;
Wen et al., 2023; Kong et al., 2023; Ji et al., 2023), the meth-
ods have been applied separately to each forecast time step.

In this study, we present a cell-tracking-based framework
for studying how well the nowcasting models forecast the de-
velopment of convective cells. An overview of the framework
is shown in Fig. 1. In the framework, the convective cells
that are identified in the input observations are tracked sep-
arately in the target observations and the nowcast fields, and
the nowcast cells are compared with the observed cells. We
demonstrate the framework using four advection-based mod-
els: the advection nowcast, S-PROG (Seed, 2003), LINDA
(Pulkkinen et al., 2021), and L-CNN (Lagrangian Convolu-
tional Neural Network; Ritvanen et al., 2023). The aim of the
framework presented here is to aid model developers in better
understanding the models’ ability to predict the development
of convective rainfall and to verify whether the development
is predicted realistically.

The rest of this article is structured as follows: Sect. 2 de-
scribes the data and nowcasting methods that are used in the
study; Sect. 3 presents the framework, and Sect. 4 describes
the results obtained by applying the framework to the data;
and, finally, Sect. 5 concludes the study and discusses the
implications of the proposed framework.

2 Data and nowcasting models

2.1 Radar data

The rainfall dataset used in this study is the operational
radar-only quantitative precipitation estimation (QPE) prod-
uct from MeteoSwiss for Switzerland (Germann et al.,
2006, 2022). The study domain covered by the rainfall prod-
uct is shown in Fig. 2. The rainfall product is produced
from radar reflectivity observations using the Z–R relation
Z = 316R1.5; here, the radar reflectivity Z is in linear units
of millimetres to the sixth power per cubic metre, and the

rainfall rate R is in units of millimetres per hour (Germann et
al., 2006; Joss et al., 1998). The data are further processed to
remove ground clutter and non-meteorological echoes, cor-
rect for visibility and vertical profile of rainfall, and correct
for bias compared to rain gauge measurements (Germann et
al., 2006), before being stored in an 8-bit format. Further-
more, the data are saturated at approximately 120 mmh−1

(approximately 56 dBZ).
We used data from May to September from the years 2021

to 2023. From these dates, we applied a selection criterion
similar to that in Ritvanen et al. (2023). First, we ranked the
dates in descending order according to the number of pix-
els exceeding 1.0 mmh−1 during the day. Second, we se-
lected the 150 first ranked days as the study material. Fur-
thermore, we split this study dataset into training, validation,
and test datasets. The training and validation datasets were
used to train the L-CNN model (see Sect. 2.2.4), and the test
dataset was used to perform the analysis. The data were split
by first dividing each day into 6 h blocks. Then, any blocks
containing missing data or images with less than 1 % pixels
larger than 1.0 mmh−1 were removed. The remaining blocks
were then randomly divided into training, validation, and test
datasets at a ratio of 6 : 1 : 5, respectively.

The temporal resolution of the data is 5 min, and the spa-
tial resolution is 1 km. The original size of the rainfall fields
is 710 pixels× 640 pixels. However, to obtain an image size
that is a multiple of 25 in both dimensions, as required by
the U-Net component of the L-CNN model (Ritvanen et
al., 2023; Ayzel et al., 2020), we removed the first 6 pixels
from the left edge, resulting in cropped images of 704 pix-
els× 640 pixels. For the analysis presented in this study, we
generated nowcasts with each model using the cropped im-
ages in the test dataset. The nowcasts were created every
5 min for a maximum lead time of 60 min with 5 min time
steps.

2.2 Nowcasting models

In this study, four nowcasting models were used: advection
nowcast, S-PROG, LINDA, and L-CNN. The models are
advection-based, meaning that the motion of rainfall is pre-
dicted separately from the temporal evolution of the rainfall.
The motion is predicted by extrapolation along a motion field
in all four models, but the models differ by how the temporal
evolution is predicted in a Lagrangian coordinate system.

2.2.1 Advection nowcast

The advection nowcast model, i.e. Lagrangian persistence
nowcast, consists of determining the rainfall motion field
from previous rainfall fields and then extrapolating the lat-
est observed rainfall field forward in time using the deter-
mined motion field. The motion field v is determined using
the Lucas–Kanade optical flow (Lucas and Kanade, 1981;
Bouguet, 2001) method implemented in the pysteps library

https://doi.org/10.5194/gmd-18-1851-2025 Geosci. Model Dev., 18, 1851–1878, 2025



1854 J. Ritvanen et al.: Cell-tracking-based framework for assessing nowcasting model skill

Figure 1. Flowchart of the proposed cell-tracking-based framework for studying nowcasting model skill for convective rainfall. The
schematic on the left depicts the outputs of the different steps. The cells are (1) tracked first in the input observations, after which the
cell tracks are continued in the (2) target observations and (3) in the nowcasts. After that, features describing (4) the cells and (5) the tracks
are extracted from the cells. (6) The cell tracks are then differentiated based on initial conditions of interest, and (7) errors for the feature
values and (8) metrics describing the cell occurrence are determined.

Figure 2. Study domain. The colour indicates the ground altitude in
metres above mean sea level (MSL). The black line shows Switzer-
land’s borders. The bounding box used in training the L-CNN model
is shown in red, and the black crosses indicate radar locations.

(Pulkkinen et al., 2019b; Germann and Zawadzki, 2002). The
motion field is determined using four previous rainfall fields.
We used the default settings for the algorithm (Nerini et al.,
2023).

The advection nowcast produces no evolution in the rain-
fall field. However, there may be small distortions in the
fields due to the extrapolation method, and the motion field
may contain divergence or convergence that warps the rain-
fall field. As the motion fields in this study are calculated
from four input fields, the resulting motion field is expected
to be smooth in areas with rainfall, while convergence or di-
vergence is more likely at the edges or areas with less rain-
fall. Therefore, the impact of distortions due to convergence
or divergence is likely small at short lead times, when the pre-
dicted rainfall is close to its original position, and becomes
larger as the lead time increases.

2.2.2 S-PROG

The S-PROG (Spectral Prognosis; Seed, 2003) nowcast
model is based on the assumption that the predictability of
rainfall depends on the spatial scale of the rainfall. The S-
PROG model is calculated by transforming the input rain-
fall fields to a Lagrangian coordinate system; decomposing
the rainfall field into different spatial scales with cascade de-
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composition; evolving each cascade separately with a lag-2
autoregressive (AR(2)) model; summing the evolved cascade
fields; and, finally, advecting the summed field to the next
time step. In this study, a modified version of S-PROG pro-
posed by Pulkkinen et al. (2019a) is used in which AR(2)
is applied to the cascade fields in the spectral domain. We
used the S-PROG implementation from the pysteps library
(Pulkkinen et al., 2019b; Nerini et al., 2023); for more details
on the model, refer to Seed (2003), Pulkkinen et al. (2019a)
and Pulkkinen et al. (2018).

Owing to the use of AR(2) at multiple spatial scales, the
S-PROG model filters out small-scale variations, thereby cre-
ating progressively smoother nowcasts. While this improves
the skill of the model by filtering out the small-scale variabil-
ity that has poor predictability, it also leads to the blurring of
high reflectivity values, i.e. convective rainfall.

2.2.3 LINDA

The LINDA (Lagrangian Integro-Difference equation model
with Autoregression; Pulkkinen et al., 2021) follows a sim-
ilar approach to the S-PROG model; however, instead of an
AR(2) model applied to cascade levels in the spectral do-
main, the dependence of the predictability of the field on the
spatial scale is modelled with a Gaussian convolution-based
model and the evolution of the rainfall field through an au-
toregressive integrated process (ARI(1, 1)). We used the de-
terministic LINDA model implementation from the pysteps
library (Pulkkinen et al., 2019b; Nerini et al., 2023).

The LINDA model implementation allows one to fit the
parameters of the convolution models and ARI processes
separately either to each detected rain cell or to the full rain-
fall field domain. Although the first approach might perform
slightly better for convective rainfall, the difference in perfor-
mance between the two approaches is not significant (Pulkki-
nen et al., 2021), and the first approach is much more compu-
tationally expensive than the latter. Therefore, in this study,
we used the latter approach, in which the parameters are op-
timised for the full domain. Note that the ARI process is still
applied separately to each cell.

In previous studies, LINDA has been found to perform bet-
ter for heavy rainfall than S-PROG (Pulkkinen et al., 2021)
or RainNet (Ayzel et al., 2020), a U-Net convolutional neural
network (CNN) model (Ritvanen et al., 2023). A visual in-
spection of the nowcasts produced by LINDA (Fig. 3) shows
that, although it is able to maintain higher rain rates better
than S-PROG, LINDA tends to spread the high-intensity ar-
eas, leading to blurring in the nowcasts.

2.2.4 L-CNN

The L-CNN (Lagrangian Convolutional Neural Network;
Ritvanen et al., 2023) applies a U-Net neural network to the
temporal difference in rain rate fields. The approach is simi-
lar to that of LINDA; however, instead of the ARI and con-

volution models, the U-Net component is used to model the
evolution of the temporal difference in rain rate in the La-
grangian coordinates. In a previous study (Ritvanen et al.,
2023), this was found to improve, for example, the equitable
threat score at short lead times and high rain rate thresholds.

The U-Net component of the L-CNN model was trained
using a procedure similar to that in Ritvanen et al. (2023). As
described in Sect. 2.1, the model was trained using the train-
ing dataset split, and the convergence of the training was de-
termined using the validation dataset. To speed up the train-
ing procedure, we chose a subset of 256 pixels× 256 pix-
els from the Swiss rainfall product (see Fig. 2). The L-
CNN model was implemented with the PyTorch (Paszke
et al., 2019) and PyTorch Lightning (Falcon and The Py-
Torch Lightning team, 2019) libraries, and the implemen-
tation is available online (Ritvanen, 2024a). Training was
performed using a compute node with eight NVIDIA V100
GPUs made available by the Swiss National Supercomputing
Centre (CSCS).

3 Cell-tracking-based verification framework

In the following sections, we describe the convective cell-
tracking-based verification framework presented in this
study. For the purposes of this study, we define convective
cells as all cells that are identified with the contour-based
cell identification algorithm where the contours are extracted
with a threshold of 35 dBZ, without any further separation
based on cell type, and the rainfall inside these cells is con-
sidered convective rainfall. The framework (Fig. 1) consists
of the following steps:

1. Identify and track the observed cells in the input obser-
vations at time steps t−4, . . ., t0.

2. Continuing from the cell tracks in the input observa-
tions, track the observed cells in the target observations
at time steps t1, . . ., tn.

3. Continuing from the cell tracks in the input observa-
tions, track the cells in the nowcast fields at time steps
t1, . . ., tn.

4. Extract features of all detected cells.

5. Extract track features separately for the cell tracks in
target observations and nowcasts.

6. Determine cell track classification into decaying or
growing at the nowcast creation time separately for the
target and nowcast cell tracks.

7. Calculate error distributions between the feature values
in the target and nowcast cells.

8. Calculate metrics describing, for example, the models’
ability to reproduce the existence of cells as a function
of lead time.
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Figure 3. Example of cell-tracking results at 19:00 UTC on 28 June 2021. The panels show the rain rate fields for observations, target
observations, and nowcasts. The convective cells identified at that time are plotted in each panel. The cells included in the analysis are shown
using coloured contours, with each colour indicating cells belonging to the same track. For each cell track, the cell centroid locations are
shown using coloured triangles on top of the black tracks. Cells that were not matched to any track existing at the nowcast creation time
step are shown as black contours. The orange crosses indicate the radar locations. Note that panels are zoomed in and do not show the entire
domain demonstrated in Fig. 2.
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The cell identification and tracking algorithms should be
selected to identify and track the cells in a way that is mean-
ingful for the purposes for which the nowcasts are used. Ad-
ditionally, the algorithms should be able to identify and track
the cells in the nowcasts where, depending on the model,
the structure of rainfall can vary significantly from the ob-
servations. In this study, convective cell identification and
tracking were performed using the Thunderstorm Detection
and Tracking (T-DaTing) algorithm (Feldmann et al., 2021)
implemented in the pysteps library (pySTEPS developers,
2023) and inspired by the thunderstorm radar tracking (TRT)
algorithm presented in Hering et al. (2004). The implemen-
tation of the cell identification and tracking algorithms is
available online at https://doi.org/10.5281/zenodo.11242613
(Nerini et al., 2024).

3.1 Convective cell identification

Convective cells are identified from the rainfall fields in log-
arithmic radar reflectivity units (dBZ). Because our data are
otherwise processed as rain rate in units of millimetres per
hour, we first transform the fields into radar reflectivity us-
ing the formula Z = 316R1.5, where R is the rain rate and
Z is the radar reflectivity in linear units of millimetres to the
sixth power per cubic metre (Joss et al., 1998; Germann et
al., 2006).

After that, we employ the cell identification algorithm
(Hering et al., 2004; Feldmann et al., 2021) implemented in
the pysteps library (Pulkkinen et al., 2019b). The algorithm
begins by discarding all pixels in the rainfall fields below
the minimum reflectivity threshold Zmin. From the remain-
ing connected pixel areas, any areas that have peak values
less than the peak reflectivity Zp or smaller than the mini-
mum area threshold Amin are discarded. Subsequently, any
reflectivity value above the maximum reflectivity threshold
Zmax is saturated to that value, and a local maximum detec-
tion algorithm (van der Walt et al., 2014) is used to find the
local maxima inside each connected area. The local maxima
values are then counted as separate cells if (i) the path of least
change between them decreases by at least 1Z and (ii) the
maxima are located at least dmin apart. Cells within the same
connected area are separated using an inverted watershed al-
gorithm (Beucher and Lantuejoul, 1979; van der Walt et al.,
2014).

As we will compare the features of the identified cells, the
selected cell identification method and parameters can poten-
tially impact the results. Table 1 lists the algorithm parame-
ter values used in this study. For the minimum reflectivity
Zmin and the maximum reflectivity Zmax, the pysteps library
default values were used. The peak reflectivity threshold
was lowered to Zp = 35 dBZ, i.e. equal to the cell detection
threshold, as we do not want to discard any cells even if the
peak reflectivity inside them would not exceed 35 dBZ. The
minimum area threshold was set to Amin = 25 km2 to also
detect smaller cells compared with the work presented by

Table 1. Parameters used for identifying convective cells. The no-
tation follows the algorithm description given in Feldmann et al.
(2021).

Variable Unit Threshold

Minimum reflectivity (Zmin) dBZ 35
Maximum reflectivity (Zmax) dBZ 45
Minimum difference in reflectivity (1Z) dB 8
Peak reflectivity (Zp) dBZ 35
Minimum area (Amin) km2 25
Minimum distance (dmin) km 20

Feldmann et al. (2021), who used a threshold of 50 km2, as
smaller cells are of higher interest to this work (see Sect. 4.1).
Note that a lower bound for the cell area is required to remove
clutter, but the selected value is arbitrary. Finally, the mini-
mum difference in reflectivity between maxima to be con-
sidered separate cells was set to 8 dB, while the minimum
distance was set to 20 km. The selection of these parameters
was not as straightforward, as their values cannot be directly
linked to the qualities of the identified cells, and because of
the algorithm implementation in the pysteps package, the pa-
rameter values impact each other and cannot be selected in-
dependently. Instead, the values were selected based on an it-
erative manual process of comparing the identified cells and
cell tracks with different parameter combinations. From the
tested parameter combinations, the selected values produced
cell tracks with the least “spurious” splits or merges, i.e.
situations where large cells with multiple close-by maxima
would be split to multiple cells in a way that is inconsistent
between consecutive time steps. Furthermore, a comparison
of the analysis results showed few differences between dif-
ferent parameter combinations.

3.2 Convective cell tracking

After the convective cells have been identified, cell tracks
are established using the tracking algorithm (Hering et al.,
2004; Feldmann et al., 2021) by matching them with the cells
observed at the next time step. First, the motion of the cells is
determined from the current and two previous input rainfall
fields using the Lucas–Kanade optical flow algorithm (Lucas
and Kanade, 1981; Bouguet, 2001; Pulkkinen et al., 2019b).
The cells are then propagated to the next time step along the
resulting motion field and compared to the cells observed in
the current time step. Any two cells with an overlap greater
than 40 % are considered the same cell and are assigned the
same identifier. If multiple cells from the previous time step
overlap by more than 10 % with the same cell, the cell is
considered merged; in this case, the identifier of the cell with
the largest overlap from the previous time step is assigned
to the new cell, and all other cells are considered decayed
if they were not matched with any other cell in the current
time step. If one cell overlaps more than 10 % with multiple
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cells at the next time step, the cell track is considered split,
in which case the new cell with the largest overlap inherits
the identifier of the previous cell, and the cells with smaller
overlaps obtain new identifiers.

The result of the tracking algorithm is a list of cell tracks.
Because we used two previous rainfall fields to determine
the motion of the cells, we only obtain cell tracks for time
steps t−2, t−1, and t0 when using input observations from
time steps t−4, . . . , t0. For the target observations and now-
casts, we continue the tracking from the cells tracked in the
input observations and discard any tracks and cells that are
not a continuation of these input observation tracks.

In the analysis presented in Sect. 4, we use the cell tracks
where we consider only the “most representative” cell track;
thus, splits and merges in the cell tracks are ignored and the
cells with the largest overlap are considered the continua-
tion of the track, as described above. However, because the
splits and merges in the cell tracks influence the observed
life cycle of the cells and can therefore potentially impact
the analysis, it is important to investigate the extent to which
the results are impacted. To this end, we also repeated the
analysis using a dataset in which all cell tracks with splits
or merges in the input or output observations were removed.
In this dataset, all tracks with cells that were the result of a
merge of multiple cells, cells that split into multiple cells, or
cells that merge with some other cell at the next time step,
during either the input or target observations, were excluded.
Additionally, all corresponding nowcast cell tracks, i.e. now-
cast tracks starting from the input cell track of any excluded
observed cell track, were also excluded. The relevant results
from this dataset are provided in the Supplement, and we dis-
cuss the differences in Sect. 4.5.

While the proposed approach for considering the splits and
merges, along with how the most representative cell track
is defined, is elementary and other possible approaches and
definitions exist, we also note that the nowcasting models
used in this study are not expected to reproduce the splits
and merges correctly, and the blurring occurring in the now-
casts will impact how and at what time step the splits and
merges are identified in the nowcasts. Additionally, the num-
ber of splits and merges in the dataset is small (see Sect. 4.5).
Therefore, even though this approach might not suffice for
statistical analysis of, for example, convective cell life cy-
cles, for the purposes of this study, i.e. a comparative analy-
sis of the selected nowcasting models, the proposed approach
is sufficient. A more detailed analysis with more complicated
definitions for the most representative cell track, for example,
by also including the decayed branches of merged cell tracks
in the analysis and analysing how accurately the models re-
produce the splits and merges, would be necessary and of
interest for models that are expected to reproduce such devel-
opment in convective cells. Such analysis would most likely
also require using a cell-tracking algorithm with a more ad-
vanced processing of splits and merges. For now, we consider
a more detailed analysis to be outside the scope of this study.

3.3 Convective cell and track features

For each cell in the observations and nowcasts, we determine
the following features to describe the cell:

– Volume rain rate (RVR). RVR represents the integrated
rain rate over the cell area at a given time step (in
m3 h−1). The definition follows what was used, for ex-
ample, by Rosenfeld (1987), Hu et al. (2019), and Feng
et al. (2018).

– Cell area (A). A denotes the area (in m2) of the cell at a
given time step as identified from the rainfall field.

– Mean rain rate (Ravg). Ravg is the mean rain rate inside
the cell at a given time step (in mmh−1).

In addition to the features that describe each cell, we de-
termine the following features describing the cell tracks:

– Lifetime (L). L denotes the observed lifetime (in min-
utes) of the cell track, i.e. the number of time steps that
the track exists in the input and target observations mul-
tiplied by the time step (5 min). Note that, as we only
obtain cell tracks at 3 time steps before the nowcast is
created and 12 time steps after, the lifetime is saturated
to 75 min.

– Maximum observed cell area (Amax). Amax is the max-
imum observed cell area (in m2) for a cell track during
the time steps where the track exists in the input and
target observations.

Only the cell and track features used in the analysis pre-
sented in Sect. 4 are described here. However, depending on
the investigated nowcasting models, other features may also
be of interest. For example, we do not consider the location
of the cells. For advection-based nowcasting models, the er-
ror in cell location predicted by the models, defined, for ex-
ample, through the error in cell centroid location between
observed and corresponding nowcast cells, would consist of
error in the predicted motion of the cell, i.e. the error in the
motion field, and error in the centroid location inside the cell
caused by the cell shape. As the models used in this study
use the same motion field and extrapolation method, the first
component of the errors would be the same; therefore, any
differences between the cell location errors would be small
and depend mainly on the cell shape, which would make
the location errors difficult to interpret. However, for mod-
els in which the cell motion is affected by different factors,
the location error can be of interest. Another potentially in-
teresting feature is the maximum rain rate inside a cell; how-
ever, for our data, this value is saturated at approximately
120 mmh−1 because of the saturation in the original rain-
fall product, which causes bias in the errors in the maximum
rainfall rate.
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The aim of the proposed framework is to investigate the
ability of the models to predict the development of convec-
tive rainfall and the impact of the initial stage of the con-
vective cell. The development of the cell during the nowcast
period depends on the stage of the cell when the nowcast is
created, i.e. whether the cell is growing or decaying. To quan-
tify this, we define a status for each cell track at the nowcast
creation time. The status is determined using the derivative
of the cell volume rain rate at the nowcast creation time t0,
i.e. dRVRobs(t0). The derivative is estimated using at most
the values at t−2, . . ., t2, of which three values are required to
exist for the derivative to be defined. The track status is clas-
sified as growing if dRVRobs(t0) > 0. Conversely, the track
status is classified as decaying if dRVRobs(t0) < 0 or if the
track exists at t0 but not at t1. In addition to the observa-
tions, we determine the status of the cell tracks similarly in
the nowcast rainfall fields using dRVRncst(t0), which is cal-
culated by replacing the RVR values from target observations
with the predicted RVR values in the derivative estimation.

3.4 Evaluation of model skill in reproducing convective
cell development

The aim of the proposed framework is to study how accu-
rately the nowcasting models reproduce convective cell de-
velopment. To study this question, we consider the cell tracks
(Sect. 3.2) that exist when the nowcast is created at t0 and
compare the cells in these tracks in the nowcasts to the cells
in the corresponding tracks in the target observations. In the
results presented later, only the most representative cell track
was considered, as described in Sect. 3.2. While this ap-
proach discards all cells in tracks newly initiated after t0 and,
therefore, does not allow the study of new cell formation, it
permits us to study the impact of input observations on how
well the model reproduces convective cell development. As
a model should be able to predict the evolution of cells that it
has seen in the input observations better than that of cells that
develop later, the results of this analysis can be considered to
be the upper limit for model skill in reproducing the devel-
opment of cells that do not yet exist at the time of nowcast
creation.

Using this approach, we define the contingency table (Ta-
ble 2) elements as follows.

– Hits (H ). H represents cells that exist in both target ob-
servations and the nowcast.

– Misses (M). M represents cells that exist in target ob-
servations but not in the nowcast.

– False alarms (F ). F represents cells that exist in the
nowcast but not in target observations.

– Correct negatives (C). C represents cell tracks that ex-
isted in the input observations at t0 and do not exist in
target observations or the nowcast.

Table 2. Contingency table for binary forecasts.

Observed Not observed Total

Predicted Hits (H ) False alarms (F ) H +F

Not predicted Misses (M) Correct negatives (C) M +C

Total H +M F +C N

Metrics calculated using these definitions for the contingency
table elements describe the skill of the model in reproducing
the cell occurrence given that the corresponding cell track
existed in the input observations. From these values, we cal-
culate (as a function of the lead time) the critical success
index (CSI), probability of detection (POD), false alarm ra-
tio (FAR), and frequency bias (BIAS) metrics, which are de-
fined as follows:

CSI=
H

H +M +F
, (1)

POD=
H

H +M
, (2)

FAR=
F

H +F
, (3)

BIAS=
H +F

H +M
. (4)

The BIAS values range from 0 to ∞, with 1 indicating a
perfect score. The other metric values are between 0 and 1;
for CSI and POD, the optimal value is 1, whereas the optimal
value is 0 for FAR.

This approach allows us to define the concept of correct
negatives. However, because the dataset only includes cell
tracks that exist at the nowcast creation time, the number of
correct negatives will be very small compared with the other
categories, especially at short lead times. This can lead to
unintuitive score values for metrics that utilise correct nega-
tives, such as the equitable threat score, compared with more
balanced datasets. Therefore, we selected to use only metrics
that are defined without correct negatives.

Another point of interest is how well the models reproduce
the cell track classification into a growing or decaying track
that describes the initial predicted development of the cell.
In the nowcasts, the cell track classification is affected, in
addition to the input observations, by the volume rain rate of
the nowcast cell in the first two lead time steps; therefore,
correct classification would indicate that the model predicts
the initial cell development similar to what was observed for
that cell.

To study this, we define the cell track classification as
a two-category classification problem. For example, in this
case a hit (H ) for the class decay (growth) would be a cell
track whose status is classified as decaying (growing) in both
observations and the nowcast. The definitions of misses (M),
false alarms (F ), and correct negatives (C) follow similarly.
Using these, we can estimate the goodness of the classifica-
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tion with different metrics. In addition to the CSI (Eq. 1),
POD (Eq. 2), FAR (Eq. 3), and BIAS (Eq. 4), which are cal-
culated separately for both classes, we also use the equitable
threat score (ETS; Schaefer, 1990) and the Gerrity score (GS;
Gerrity, 1992). The ETS measures the fraction of correctly
predicted events accounting for hits due to random chance
and is defined as follows:

ETS=
H −Hr

H +M +F −Hr
, (5)

where

Hr =
(H +M)(H +F)

N
(6)

and N is the total number of observation–forecast pairs. ETS
obtains values from −1/3 to 1, with negative values indi-
cating worse forecast skill than random chance, 0 indicating
similar forecast skill as random chance, and 1 indicating a
perfect forecast. Note that, in this two-category definition,
the ETS value is symmetric between the classes. The Gerrity
score is defined as follows:

GS=
1
N

K∑
i=1

K∑
j=1

n(Fj ,Oi)sij, (7)

Here, N is the total number of observation–forecast pairs, K

is the number of classes (i.e. here K = 2), n(Fj ,Oi) is the
number of forecasts in class j that had observations in class
i, and the elements of the scoring matrix sij are defined as
follows:

sii =
1

K − 1

(
i−1∑
r=1

a−1
r +

K−1∑
r=1

ar

)
,

sij = sji =
1

K − 1

(
i−1∑
r=1

a−1
r − (j − i)+

K−1∑
r=1

ar

)
,

ai =

(
1−

i∑
r=1

pr

)/ i∑
r=1

pr , (8)

where pi is the observed frequency of class i. The Gerrity
score describes the accuracy of the forecast for predicting
the correct class considering random chance, and it obtains
values from −1 to 1, with 1 indicating a perfect score.

In addition to the occurrence of convective cells, we are
also interested in how accurately different cell and track fea-
tures are reproduced in the nowcast. To study this, for each
pair i of cells in the nowcast and target observations for each
lead time t , we calculate the difference in the feature values
as follows:

1xi(t)= xi,ncst(t)− xi,target(t), (9)

where xi,ncst(t) is the feature value obtained from the cell
from the nowcast and xi,target(t) is the feature value obtained

for the corresponding cell in the target observations. If one
of the cells does not exist, i.e. the track has died either in
the target observations or the nowcast (or both), the cell pair
is discarded. From the values 1xi(t), we estimate the mean
and median values, i.e. the mean and median errors in feature
values, and plot the distributions per lead time and model.

Additionally, we measure the overall predictive capability
of the models using the root-mean-square error (RMSE) of
the cell volume rain rate, calculated by also considering the
cases in which either the target observation cell no longer ex-
ists but the nowcast cell exists (false alarm) or the target cell
exists but the nowcast cell does not (miss). In these cases, the
volume rain rate of the non-existent cell is taken as 0. Calcu-
lated in this way, the error reflects both the model skill in
reproducing the cell feature values and penalises the models’
inability to reproduce the life cycle of the cells. The volume
rain rate is selected for this error over the other features, as
this feature describes the total rainfall produced by the cell,
combining the impact of the cell area and the distribution of
rainfall inside the cell. The RMSE is defined as follows:

RMSE=

√√√√1
n

n∑
i=1

(RVRi,target−RVRi,ncst)
2, (10)

where RVRi,target and RVRi,ncst are the volume rain rate val-
ues of the ith pair of corresponding target and nowcast cells,
respectively.

3.5 Evaluation of model skill in reproducing convective
cell occurrence

The approach described above does not include information
on the formation of new cells or the death of existing cells
that are not part of the cell tracks included in the dataset.
Rather, this needs to be studied separately. To study the oc-
currence of the convective cells in the nowcasts, we define
it as a binary classification problem: can the convective cell
identified in the nowcast be matched to an identified cell in
the target observations? A similar approach has been used
to verify cell-tracking algorithms (e.g. Dixon and Wiener,
1993; Zan et al., 2019; Zhang et al., 2021) and recently for
nowcast model evaluation (Wen et al., 2023). Compared with
Wen et al. (2023), we evaluate the metrics separately at each
lead time, not averaged over all lead times, as it is expected
that the model skill for reproducing cell occurrence should
decrease as the lead time increases.

To study how well the models reproduce cell occurrence,
we consider the cells that have been identified in the target
observations and nowcasts, as described in Sect. 3.1, sepa-
rately at each lead time step. Note that the cell-tracking re-
sults are not used here; therefore, all identified cells are con-
sidered. Following Wen et al. (2023), the cells in the target
observations are matched to the cells in the nowcasts using
the Hungarian algorithm (Kuhn, 1955; Crouse, 2016; Virta-
nen et al., 2020) based on the distance between the cell cen-
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troid locations. The result is the combination of matches be-
tween the cells that minimises the total sum of the distances
between the matched cell centroids. If any match has a dis-
tance greater than 20 km, it is considered invalid and the cells
unmatched.

The results of this analysis are a set of matched and
unmatched cells between the target observations and now-
casts. Next, we define the contingency table elements for
this problem. Note that, as the problem setting is different
from Sect. 3.4, the contingency table (Table 2) elements also
have different definitions; here, for the cell matching without
tracking, the elements are defined at each time step after t0
as follows:

– Hits (H ). H represents cells that are matched between
target observations and nowcast at that time step.

– Misses (M). M represents cells that exist in target ob-
servations at that time step but are not matched to any
cell in the nowcast.

– False alarms (F ). F represents cells that exist in now-
cast at that time step but are not matched to any cell in
the target observation.

Note that when defining the problem in this way, the cat-
egory of correct negatives has no definition, as we cannot
count cells that do not exist in the target observations or the
nowcasts.

The metrics calculated from the contingency table ele-
ments are defined in the same manner as in Sect. 3.4 (Eqs. 1–
3). However, as the definitions of the contingency table el-
ements differ, the metrics have different interpretations that
should not be confused. Here, the metrics describe how well
the models reproduce the convective cells that were identi-
fied in the observations, without including any information
about the cell track history. For a contingency table defined
as above, we would expect that a model’s increased ability
to create new convective rain would result in an increased
CSI and POD, especially at longer lead times. However, if
the model creates too many cells compared with observa-
tions, the FAR should increase, indicating decreased skill.
Similarly, if the model suppresses cells similar to the obser-
vations, the FAR should decrease.

4 Results

4.1 Cell track dataset statistics and example case

Figure 4 shows (separately for all cell tracks, decaying cell
tracks, and growing cell tracks) the distributions of cell vol-
ume rain rate (Fig. 4a–c) and area (Fig. 4d–f) at the nowcast
creation time t0, the maximum observed cell area (Fig. 4g–i),
and the observed track lifetime (Fig. 4j–l). The distributions
of the observed cell track lifetime indicate that the division of
the cell tracks into decaying or growing tracks is successful:

most decaying tracks have an observed lifetime of less than
30 min (note that the lifetime only accounts for the observed
time steps), whereas the lifetime distribution of the growing
tracks has fewer values at short lifetimes and a high peak at
75 min, which contains lifetimes of 75 min or longer. The dis-
tribution of the RVR(t0) for the decaying cell tracks (Fig. 4b)
shows more cells with small volume rain rates than the grow-
ing cell tracks (Fig. 4c). A similar behaviour is observed for
cell area A(t0) (Fig. 4h and i). This is mostly explained by
the fact that the decaying category includes cells that exist
at t0 but not at t1, which also explains the larger number of
cells in the decaying category than that in the growing tracks
category.

Figure 3 shows an example of the nowcasts and convec-
tive cell tracking at 19:00 UTC on 28 June 2021 . The panels
show the input observations in the first row, the target ob-
servations in the second row, and the nowcast rainfall fields
in the consecutive rows. Each panel shows the cells identi-
fied from the fields, with coloured contours indicating cells
that are part of the tracks existing at t0, and black contours
indicating cells that are not part of such tracks.

The nowcasts in Fig. 3 demonstrate the features of the dif-
ferent models. For example, the blurring occurring in LINDA
and S-PROG as the lead time increases is visible in both the
smoothing of the rainfall field and the subsequent smooth-
ing of the cell contours. Additionally, S-PROG shows a clear
loss of small cells compared with the other models. While L-
CNN does not smooth the nowcast fields as much, it creates
much more local decay, which results in uneven cell contour
shapes that are visible, for example, in the cells in the bottom
right of the panels.

The case has several small cells that are tracked visually
consistently in the input and target observations, for exam-
ple, in the bottom half of the panels. However, the large cells
in the top-right quadrant are split into several cells at certain
time steps. Such large cells pose an issue to the identification
algorithm because they tend to split “spuriously” into multi-
ple cells if they contain multiple local maxima, as discussed
in Sect. 3.1. The selected cell identification algorithm param-
eters aim to reduce the number of these spurious splits and
merges; however, some will still remain in the dataset.

While larger cells are important for nowcasting applica-
tions owing to their large hazard potential, we aim (for sev-
eral reasons) to focus on the smaller cells in the results pre-
sented here. First, a majority of the cells in the dataset are
small; approximately 88 % of the cells at the nowcast cre-
ation time t0 have an area smaller than 500 km2 (Fig. 4d).
Second, large convective cells are usually formed of several
smaller convective cores, and accurate nowcasting of large
cells requires accurate nowcasting of the smaller convective
cores. For the models used in this study, the nowcast skill for
these convective cores can reasonably be assumed to be sim-
ilar to that of the individual smaller convective cells. Finally,
for large cells, the impact of dislocation error in the pixel-
by-pixel verification metrics is smaller than that for small
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Figure 4. Histograms of cell and track feature values. The panels show (a–c) the volume rain rate at the last observed time step t0; (d–f) the
cell area at t0; (h, i) the maximum observed cell area; and (j–l) the observed cell track lifetime. Histograms are shown for all cells (a, d, g),
decaying cells (b, e, h), and growing cells (c, f, i). The value in each panel indicates the number of cells in the histogram. In the cell area
histograms (d–i), the vertical dashed line indicates the minimum cell area threshold of 25 km2.

cells; therefore, the large cells would be better represented
in these verification metrics. As a result, large cells are a less
intriguing research focus for the proposed framework com-
pared with small cells.

Note that the statistics and results presented here describe
convective cells, as they were defined to include radar reflec-
tivities above 35 dBZ, detected from the rainfall product used
in the study. Using a different cell identification and tracking
methodology or another data product would most likely af-
fect the statistics. Because the data used here are from the
Swiss radar network, the climatology of convective rainfall

and the convective cells is impacted by orography, for exam-
ple, the Alps; as such, the statistics of the convective cells
might be different compared with other locations. However,
because our aim is to investigate the performance of the now-
casting models, the statistics of the cell features are mainly
used in interpreting the results, and a detailed investigation
of the cell statistics themselves is outside the scope of this
study.
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Figure 5. (a) Critical success index (CSI) and (b) root-mean-square error (RMSE) calculated from the nowcasts in a pixel-by-pixel manner.
The metrics are conditioned on a threshold of 4.6 mmh−1.

4.2 Model skill shown by pixel-by-pixel metrics

The common approach to verifying radar-based rainfall now-
casting models is using metrics calculated in a pixel-by-pixel
manner, either contingency-based metrics, such as the criti-
cal success index (CSI), or distance-based error metrics, such
as the root-mean-square error (RMSE). Figure 5 shows the
CSI and RMSE calculated for the models in this study. Both
metrics are conditioned on a threshold of 4.6 mmh−1 (corre-
sponding to 35 dBZ, i.e. the cell identification threshold used
in the study). For the CSI, this means that pixel values below
the threshold are considered “no” events, whereas pixel val-
ues at and above the threshold are “yes” events for the con-
tingency table calculation. For the RMSE, the conditioning
means that pixels for which both the predicted and observed
value are below the threshold are excluded from the error
calculation.

The metrics calculated in a pixel-by-pixel manner provide
an overview of the model skill. In our data, the L-CNN,
LINDA, and S-PROG models have almost exactly the same
performance with respect to the CSI, whereas the advec-
tion nowcast performs significantly worse. For the RMSE,
the models have more differences, with L-CNN having the
smallest error and S-PROG and the advection nowcast hav-
ing similar error. Note that LINDA and L-CNN aim to min-
imise the RMSE between the observations and nowcasts
leading to smaller RMSE values than for the advection now-
cast and S-PROG. Thus, a large part of the RMSE differences
can be explained by the varying efficacy of the loss functions
in the models, which makes the comparison of the RMSE (or
any error metric based on the L2-norm) unfair. Especially in
ML models, using a loss function that aims to minimise the
prediction error using some loss that does not aim to min-
imise the L2-norm of the dataset can lead to different trends

in L2 errors, while maintaining similar skill with respect to
the CSI.

Based on these metrics, one might conclude that the L-
CNN model has the best performance and the smallest er-
ror in rainfall at the 4.6 mmh−1 (35 dBZ) threshold, with
LINDA and S-PROG having similar skill in predicting the
exceedance of rainfall at this threshold but with larger errors.
Note that any arbitrary threshold gives only a snapshot of
the models performance. In this case, for CSI, increasing the
threshold decreases the metric values overall (see Fig. S9);
relatively, the performance of S-PROG decreases gradually
to a level similar to the advection nowcast, while L-CNN and
LINDA perform similarly to each other at every threshold.
For the RMSE (Fig. S10), increasing the threshold reduces
the relative difference between L-CNN and LINDA; the ad-
vection nowcast and S-PROG remain similar. However, these
metrics, even calculated at multiple thresholds, do not dif-
ferentiate between various aspects of the models’ skill, e.g.
whether the models predict the intensity, location, or distri-
bution of heavy rainfall well. Furthermore, the metrics are
unable to describe if the model skill depends on the type of
rainfall, e.g. if the model is better at predicting decaying than
growing rainfall.

4.3 Model skill in reproducing cell development

The main aim of the proposed cell-tracking-based framework
is to study how accurately the nowcasting models reproduce
the development of the identified cells. We measure the com-
prehensive model skill with the RMSE of the cell volume rain
rate, shown in Fig. 6. In the RMSE calculation, cells that do
not exist in the target observations but exist in the nowcast,
or vice versa, are considered zero values. That is, in addition
to incorrectly predicted cell volume rain rates, the model is
also penalised for cell tracks that decay too fast or slow.
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Figure 6. Root-mean-square error (RMSE) of the cell volume rain rate for (a) all cell tracks, (b) decaying cell tracks, and (c) growing cell
tracks. The error has been calculated so that the volume rain rate of non-existing cells in either the target observations or the nowcasts is
considered to be 0. Cell pairs where neither exists were excluded.

The RMSE is shown separately for all cell tracks, decaying
cell tracks, and growing cell tracks. Overall, L-CNN and the
advection nowcast have the smallest errors, S-PROG has the
largest error, and LINDA falls between the other models. All
models show slightly smaller errors for decaying cell tracks,
indicating better predictive skill for decaying cell tracks com-
pared with growing tracks. The difference is the largest for
LINDA. The impact of various factors to the model skill is
studied further in the following sections by separately exam-
ining the model skill for predicting the occurrence of the cells
and the feature values of the cells.

Compared to the RMSE calculated in a pixel-by-pixel
manner (Fig. 5), the major difference in relative errors be-
tween the models is the advection nowcast that has signif-
icantly smaller error in the cell-based RMSE. As this error
metric does not penalise location errors and the lead times are
relatively short, the advection nowcast has small errors, but
when the RMSE is calculated in a pixel-by-pixel manner and,
thus, location error is penalised, the errors are larger. Another
difference between the RMSE values is that the error values
in the pixel-by-pixel RMSE (Fig. 5) increase sharply at short
lead times and plateau as the lead time increases, whereas the
cell-based RMSE (Fig. 6) increases linearly. In the pixel-by-
pixel RMSE, the sharp increase at short lead times is mostly
caused by location error. Contrarily, in the cell-based RMSE,
the impact of incorrectly predicted cell existence increases as
the lead time increases.

4.3.1 Cell existence in tracks

We examine the models’ ability to reproduce convective cell
development by first focusing on how well the models are
able to reproduce the existence of cell tracks. Figure 7 shows
the number of cells tracked per lead time and model. The
track counts are shown for the entire dataset (Fig. 7a) and are

divided into decaying (Fig. 7b) and growing tracks (Fig. 7c),
as described in Sect. 3.4. Figure 8 shows the CSI, POD, and
FAR metrics calculated from the track counts.

As Figs. 7 and 8 only contain cell tracks that existed when
the nowcast was created, the advection nowcast shows a very
high POD (Fig. 8d and e), as can be expected. Although the
advection nowcast obtains a high POD for both decaying
and growing tracks, the behaviour of CSI values in the two
groups is different compared with the other models. For de-
caying tracks, the advection nowcast obtains the lowest CSI
(Fig. 8b), whereas it obtains the highest CSI for the grow-
ing tracks (Fig. 8c). Because the advection nowcast does not
produce decay in rainfall, it will overestimate the existence
of decaying cell tracks; however, for growing cell tracks, this
becomes beneficial. Note also that the advection nowcast ob-
tains the worst FAR in all groups (Fig. 8g–i), but the differ-
ence from the other models is larger for decaying cell tracks.

S-PROG obtains a lower POD than the other models for
these metrics. In CSI, S-PROG performs rather well: similar
to LINDA and only slightly worse than L-CNN for decaying
cell tracks. However, S-PROG has significantly worse perfor-
mance for growing tracks. The high number of misses, low
POD, and best FAR, with values similar to those of L-CNN,
indicate that S-PROG loses the cells fastest among all the
models, most likely due to blurring.

L-CNN shows the second-largest loss of cells, indicated
by the second-worst POD (Fig. 8d–f), FAR values similar to
S-PROG (Fig. 8g–i), and a high number of misses (Fig. 7).
Compared with S-PROG, L-CNN has more false alarms, in-
dicating that the cell tracks do not die as much as in S-PROG,
and more hits, leading to higher CSI for both decaying and
growing tracks. L-CNN also has the best CSI for all tracks
(Fig. 8a), indicating the best overall skill with respect to re-
producing the cell track existence, even though the difference
from LINDA is small.
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Figure 7. Number of convective cells used in the analysis by nowcast lead time for (a) all cells, (b) decaying cells, and (c) growing cells.
Only the cells that are part of the tracks that existed at t0 are considered. The coloured bars indicate the number of hits, i.e. cells that exist
in both target observations and nowcast; the grey bars indicate misses, i.e. cells that exist in target observations but not in nowcast; the white
bars indicate false alarms, i.e. cells that exist in nowcast but not in target observations; and the black bars indicate correct negatives, i.e. the
number of cell tracks that existed in the input observations at t0 and do not exist in target observations or nowcast at the given lead time.

For growing tracks, LINDA has a slightly higher CSI than
L-CNN at lead times shorter than 30 min and a slightly lower
CSI afterwards. LINDA also has the highest POD after the
advection nowcast for both decaying and growing cell tracks.
This indicates that LINDA is the best model with respect to
reproducing the existence of growing cells and that it pro-
duces less decay than the other models, at the expense of a
high number of false alarms and an increased FAR (Fig. 8i).
For decaying tracks, LINDA has a lower CSI and higher
BIAS and FAR than L-CNN, indicating a worse skill in re-
producing decay.

Compared to the CSI calculated in a pixel-by-pixel man-
ner (Fig. 5a), the CSI values presented in Fig. 8a–c show
different relative behaviour between the models. The pixel-
by-pixel CSI measures the skill in predicting exceedance of
rainfall at the 4.6 mmh−1 (35 dBZ) threshold and thus pe-
nalises, for example, location error and error in the predicted
rainfall values. However, the CSI of cell track existence mea-
sures only how accurately the existence of the cell track is
predicted at each lead time, without considering the area or
rainfall distribution inside the cells. While in the pixel-by-
pixel CSI (Fig. 5a), L-CNN, LINDA, and S-PROG perform
similarly, in the cell track CSI, we see more differences be-
tween the models, as described above, especially when dif-
ferentiating between decaying and growing cells. As such,
the cell track CSI provides more detailed insight into how the
models predict convective cells, whereas the pixel-by-pixel
CSI describes overall forecast skill.

4.3.2 Classification into growing and decaying tracks

In addition to the models’ ability to reproduce the cell exis-
tence, we also study the goodness of the classification into
decaying or growing cell tracks in the nowcasts. The classi-
fication is affected by the cell volume rain rate at the input
time steps and the first two lead time steps, so the goodness
of this classification indicates how well the models reproduce
the initial cell development.

Figure 9 shows the number of hits, misses, false alarms,
and correct negatives for the classification (Fig. 9a and b) and
classification metric values (Fig. 9c). The ETS and GS met-
rics indicate the overall goodness of the classification, while
the other metrics, calculated separately for growth and decay,
show the differences in how well the two stages are predicted
at the initial lead time steps. Overall, all models show better
values for decay in all separately calculated metrics than for
growth. This indicates that all models nowcast the initial de-
cay of convective cells better than initial growth.

Overall, based on the ETS and GS scores, the L-CNN
model shows the best skill with respect to reproducing the
classification and, thus, the initial cell development, with
LINDA performing only slightly worse. Comparing the met-
rics calculated separately for growth and decay, the values
are similar, with L-CNN obtaining slightly better values than
LINDA for all metrics, except for the CSI for growth and
FAR for decay.

The advection nowcast obtains the best POD value for the
growing tracks. However, because the cell RVR values do not
change significantly in the nowcast in the advection model,
the RVR derivative and, subsequently, the classification are
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Figure 8. Contingency-based metrics of cell existence as a function of lead time, i.e. whether a cell identified in the target observations was
also identified in the nowcast. The panels show the critical success index (CSI) for (a) all cell tracks, (b) decaying cell tracks, and (c) growing
cell tracks; the frequency bias (BIAS) for (d) all cell tracks, (e) decaying cell tracks, and (f) growing cell tracks; the probability of detection
(POD) for (g) all cell tracks, (h) decaying cell tracks, and (i) growing cell tracks; and the false alarm ratio (FAR) for (j) all cell tracks,
(k) decaying cell tracks, and (l) growing cell tracks.
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Figure 9. Number of hits (coloured bars), misses (grey bars), false alarms (white bars), and correct negatives (black bars) for the cell track
classification into (a) decaying or (b) growing. (c) Contingency-table-based metrics of the track classification into decaying or growing
for the models. For the critical success index (CSI), probability of detection (POD), false alarm ratio (FAR), and frequency bias (BIAS),
the scores are calculated separately for growing and decaying cell tracks by changing the class that is considered the “true” class. For the
equitable threat score (ETS) the score is symmetric, and for the Gerrity score (GS), the multi-category version of the score is used; therefore,
only one value is provided for both. The best model for each score is marked in bold. For BIAS and FAR, the value closest to 1 and the
lowest value are considered best, respectively, whereas the highest value is the best for other scores.

controlled largely by the observations at and before t0, and
the high POD is most likely explained by this.

S-PROG performs the worst among the models for all met-
rics except for the BIAS and POD for the decaying cells.
BIAS values close to one indicate a similar number of misses
and false alarms but, on their own, do not necessarily indicate
actual skill. Even though S-PROG has a higher POD for de-
caying tracks than the advection nowcast, overall S-PROG
shows worse skill in reproducing the initial cell development
than the advection, i.e. persistence, nowcast.

4.3.3 Cell features

Figure 10 shows the error distribution of the cell volume rain
rate. The errors in the volume rain rate can be roughly de-
composed into the errors in the cell area, shown in Fig. 11,
and the mean rain rate, shown in Fig. 12. The error distri-
butions are shown separately for all cell tracks and for the
decaying and growing cell tracks.

For the advection nowcast, the volume rain rate error dis-
tributions for all tracks are highly symmetric, and the median
and mean errors are close to zero. However, when decom-
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Figure 10. Box plots of differences between predicted and observed cell volume rain rates by nowcast lead time for (a) all cells, (b) decaying
cells, and (c) growing cells. The boxes show the 25th to 75th percentile range, while the whiskers represent the 5th to 95th percentile
range. The solid line indicates the median, the dotted line is the mean, and outliers are indicated by dots. A positive difference indicates
overestimation of the volume rain rate by the model, whereas a negative difference denotes underestimation.

Figure 11. Box plots of differences between predicted and observed cell areas by nowcast lead time for (a) all cells, (b) decaying cells, and
(c) growing cells. The boxes show the 25th to 75th percentile range, while the whiskers represent the 5th to 95th percentile range. The solid
line indicates the median, the dotted line is the mean, and outliers are indicated by dots. A positive difference indicates overestimation of the
cell area by the model, whereas a negative difference denotes underestimation.
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Figure 12. Box plots of differences between predicted and observed mean rain rate inside the cells by nowcast lead time for (a) all cells,
(b) decaying cells, and (c) growing cells. The boxes show the 25th to 75th percentile range, while the whiskers represent the 5th to 95th
percentile range. The solid line indicates the median, the dotted line is the mean, and outliers are indicated by dots. A positive difference
indicates overestimation of the mean rain rate by the model, whereas a negative difference denotes underestimation.

posed into decaying and growing tracks, the fact that the ad-
vection nowcast produces no growth or decay results in an
overestimation for decaying tracks and an underestimation
for growing tracks. In the cell area error distributions, there
is some underestimation of the cell area for all cell tracks as
the lead time increases, which largely arises from the grow-
ing tracks, as the advection nowcast produces no growth. In
the decaying tracks, the advection nowcast has some overes-
timation of the cell area at short lead times, but the overesti-
mation recedes at lead times longer than 30 min. This could
be due to distortions in cell shapes caused by convergence in
the motion field. In the mean rain rate, the advection nowcast
shows a clear overestimation in both the decaying and grow-
ing cell tracks. The tendency for overestimation of the mean
rain rate could be caused by (1) a large number of small cells
in the dataset where the rain rate decreases as the lead time
increases or (2) an irregular rain rate distribution inside cells
caused by optical flow interpolation without any smoothing.
Nevertheless, the high overestimation of the mean rain rate is
compensated for by the underestimation of the area, leading
to a narrower error distribution in the volume rain rate.

The L-CNN model has volume rain rate error distributions
that are slightly skewed towards underestimation at longer
lead times. This is especially visible in the growing cell
tracks. The behaviour of the volume rain rate errors is ex-
plained by the opposite behaviours of the cell area and mean
rain rate error distributions. The L-CNN produces an overes-

timation in the cell area that increases linearly until 45 min;
after this point, the overestimation decreases slightly. How-
ever, the mean rain rate shows the opposite behaviour, with
an increasing underestimation up to 45 min, after which the
mean and median errors plateau. In the mean rain rate, there
is little difference between the distributions in the decaying
and growing tracks. L-CNN has also smaller median errors
in area and volume rain rate than LINDA. This indicates that
the localised growth and decay generated by the convolu-
tional neural network in L-CNN can produce more irregular
rain rate distributions inside the cells compared with LINDA,
which is able to produce only homogeneous development in-
side the cells due to the Gaussian convolutions in the model.
This leads to better estimation of the volume rain rate in L-
CNN compared with LINDA.

For S-PROG, the volume rain rate is highly overestimated,
mostly because of the large overestimation of the cell areas.
This is caused by blurring in the nowcasts, which increases
the detected cell size. The wide error distributions are also
influenced by the spurious splits and merges that occur in
large cells (see Sect. 3.1). In S-PROG, the blurring causes
the multiple maxima inside large cells to disappear, leading
to more stable cell identification compared with observations
that have no blurring, or LINDA and L-CNN, where the blur-
ring is more localised. This leads to an increased number of
large errors in the cell area owing to cells that are identi-
fied inconsistently in nowcasts and observations. Similar to
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L-CNN and LINDA, the blurring in S-PROG causes an un-
derestimation of the mean rain rate, although the error distri-
butions also have a larger fraction of values with an overesti-
mation.

Finally, for LINDA, the volume rain rate is largely overes-
timated, even though the error distributions are less skewed
towards overestimation than for S-PROG. For LINDA, the
median error in the volume rain rate is always positive also
for growing tracks, indicating that LINDA can produce ex-
cessive growth in the cells. In the cell area, LINDA shows
overestimation, with very similar distributions for both the
decaying and growing tracks. LINDA shows the smallest un-
derestimation of mean rain rate. Most likely, the increased
growth in LINDA compensates for the blurring, which leads
to slightly a more accurate estimation of the mean rain rate.

4.4 Model skill in reproducing cell occurrence

As described in Sect. 3.5, we also study the skill of the mod-
els in reproducing convective cell occurrence by identifying
the cells at each lead time and matching the cells between
target observations and nowcasts. Note that while the metrics
presented here are the same as in Sect. 4.3.1, they have differ-
ent purposes; here, we are investigating how well the models
reproduce the overall cell occurrence, without knowledge of
the cell tracks. In this definition, the metrics include also skill
for the formation of new cells and the decay of all existing
cells.

Figure 13a shows the number of cells identified at each
lead time from the nowcasts compared with the target ob-
servations, separated into hits, misses, and false alarms,
and Fig. 13b–e show the metrics calculated from these
cell counts. For all models, the number of cells that are
matched between the target observations and nowcasts, i.e.
hits (coloured bars), decreases as the lead time increases. For
S-PROG, the decrease as the lead time increases is steeper
than for the other models, which indicates that S-PROG
is worse at reproducing the cell occurrence than the other
models. This is also supported by the clearly lower BIAS
(Fig. 13c), POD (Fig. 13d), and CSI values (Fig. 13b) com-
pared with the other models. On the other hand, S-PROG
has the smallest number of false alarms, i.e. cells that are
identified in the nowcast but not matched to any cell in tar-
get observations, which is also demonstrated by the low FAR
(Fig. 13e).

The other models show a very similar distribution of hits
and, therefore, a similar CSI. However, the large number of
false alarms in the advection nowcast improves the POD and
worsens the FAR. Because the number of identified cells
changes very little in the advection nowcast, i.e. the num-
bers of misses and false alarms are similar, the BIAS for the
advection nowcast is close to one at all lead times.

Surprisingly, L-CNN does not show a monotonous trend in
the number of false alarms, as is seen for the other models;
rather, the minimum number of false alarms is seen at a lead

time of 30–35 min. This can indicate that the model is gener-
ating growth at the later lead times. Compared with LINDA,
the decrease in false alarms improves the FAR but lowers the
BIAS and POD, whereas the two models perform similarly
for the CSI. Notably, L-CNN and LINDA differ very little
with respect to the FAR at lead times of 10 min or less. How-
ever, for BIAS, L-CNN obtains a value of 1 at the 5 min lead
time and decreases quickly after that, whereas LINDA has a
lower bias value at the 5 min lead time and a more constant
decrease after that. This can indicate that the L-CNN pro-
duces little decay at the beginning; however, after the now-
casts begin to decay, it occurs faster than in LINDA, where
the decay occurs at a more constant rate.

Comparing the CSI values in Fig. 13b to the CSI values
calculated in a pixel-by-pixel manner (Fig. 5a) shows some
differences. When the CSI is calculated in a pixel-by-pixel
manner (Fig. 5), the advection nowcast has the worst per-
formance and S-PROG performs similarly to L-CNN and
LINDA. However, when the CSI is calculated using the iden-
tified cells, the advection nowcast shows similar performance
to L-CNN and LINDA, whereas S-PROG performs worst.
This follows from the different interpretations of the metric.
In this cell-based approach, the CSI measures how well the
model reproduces the cell existence without considering its
exact location (as long as it is close enough to be connected to
the cell identified in target observations), shape, or size. From
this aspect, the advection nowcast performs well. However,
in the pixel-by-pixel framework, CSI describes how well the
pixels exceeding the threshold in the nowcast correspond to
pixels exceeding the threshold in the observations, and from
this aspect, S-PROG performs better due to the blurring in-
creasing the predicted rainfall area.

4.5 Impact of splits and merges in cell tracks

As described previously, the analysis presented in the pre-
vious sections used the cell track dataset that included cell
tracks with splits and merges. Next, we discuss the impact of
splits and merges on the results.

Figure 14 shows (as a function of lead time) the fraction
of cells at each lead time that resulted from a cell splitting
into multiple cells (split), from multiple cells merging into
one (merge), or from both events (see Sect. 3.2). The frac-
tions are shown separately for the target observations and
each nowcasting model. In the target observations, at all
lead time steps, there is approximately the same fractions of
splits, merges, or both. The fractions increase as lead time in-
creases. This is explained by the increasing fraction of long-
living cell tracks in the dataset as the lead time increases, as
the dataset includes only tracks that existed at t0. Long-living
cell tracks are more likely to consist of large cells and have
splits or merges; as their fraction of the dataset increases, the
fraction of splits or merges also increases.

All the nowcasting models clearly reproduce smaller frac-
tions of cells impacted by splits or merges than in the ob-
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Figure 13. (a) Counts of convective cells by nowcast lead time. (b) Critical success index (CSI), (c) frequency bias (BIAS), (d) probability of
detection (POD), and (e) false alarm ratio (FAR) of cell occurrence as a function of lead time, i.e. whether a cell that was identified in target
observations was matched to a cell identified in the nowcast. Here, cells are detected and matched in the target observations and nowcasts at
each lead time separately, i.e. without considering the cell tracks. In panel (a), the coloured bars indicate the number of hits, i.e. cells that
exist in both target observations and nowcast; the grey bars indicate misses, i.e. cells that exist in the target observations but are not matched
to any existing cell in the nowcast; and white bars indicate false alarms, i.e. cells that exist in the nowcast but are not matched to any cell
in the target observation. Note that, using this definition, the category of “correct negatives” is not defined. The cells are matched with a
Hungarian algorithm based on the distance between cell centroids; any matches that are more than 20 km from each other are discarded.
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Figure 14. Fractions of splits and merges in the cells as a function of lead time. The coloured bars indicate the fraction of cells that have no
splits or merges; grey bars indicate the fraction of cells that are a result of a split; white bars indicate the fraction on cells that have merged
from multiple cells; and blacks bars indicate the fraction of cells that result from both a split and a merge. Note that the total number of cells
varies for the target observations and each model.

servations, indicating that none of the models could repro-
duce the splits or merges correctly. The advection nowcast
shows approximately constant rates of splits and merges. Be-
cause the advection nowcast has no evolution beyond what is
caused by convergence or divergence in the motion field, the
fraction of splits and merges can be assumed to represent the
rate of the spurious splits or merges, i.e. splits and merges
caused by the cell identification algorithm that are inconsis-
tent in time (see Sect. 3.1). For the other models, the splits
and merges are also caused by the evolution of rainfall fields,
mainly blurring in the nowcast fields. Because the impact of
the blurring on the smoothness of nowcast fields is larger at
the beginning, the models produce more splits and merges
at short lead times. The blurring evens the differences be-
tween the cells, which results in a larger number of merges
than splits. As S-PROG produces the most blurring, it also
produces the largest fraction of merges. Notably, compared
with S-PROG or LINDA, L-CNN produces approximately
the same number of cells impacted by splits, merges, or both,
indicating that it reproduces the splits and merges slightly
better than the other models.

As described in Sect. 3.2, we provide (in the Supplement)
the results repeated for a dataset where the cell tracks con-
taining splits or merges were excluded. Comparing Fig. 4 to
Fig. S1 in the Supplement shows that approximately 31 %
(for decaying 25 % and for growing 39 %) of cell tracks
were excluded. The reason for the larger exclusion rate
in the growing tracks is that the majority of the excluded
cell tracks have a long lifetime and consist of large cells.
From the tracks with RVR(t0) > 10× 106 mm3 h−1, 80 %–
90 % were excluded, and from tracks with A(t0) > 400 km2,
60 %–100 % were excluded, while from tracks with a smaller
volume rain rate or area at t0, the percentages of excluded

cells were smaller. For the maximum area (Fig. 4g–l), the
difference between the datasets is similar to that of A(t0). In
the observed track lifetime, the percentage of excluded cells
increases from 13 % at a 10 min lifetime to 57 % at lifetimes
of 75 min or longer.

This exclusion of long-living tracks with large cells owing
to the splits and merges leads to an overall decrease in the
skill with respect to predicting the existence of the cells for
all models. When comparing the metrics shown in Fig. 8 to
those in Fig. S4, clear decreases in CSI values and increases
in the BIAS and FAR are visible for all models. For the ad-
vection nowcast, L-CNN, and LINDA, the relative skill re-
mains similar; however, for S-PROG, an additional decrease
in skill is observed compared with the other models. This is
particularly visible in the CSI values for all cell tracks and de-
caying tracks as well as in the FAR values for all categories.
However, for the BIAS values, the other models show higher
increases than S-PROG, likely because the large loss of cells
due to decay in S-PROG compensates for the increase.

When the cell tracks with splits or merges are excluded,
the error distributions of cell feature values (Figs. 10–12 and
S6–S8) become narrower and the median and mean errors de-
crease. This can be attributed to the exclusion of large cells
that cause large errors. The narrower distributions are espe-
cially visible in the volume rain rate and area; the impact is
less visible for the mean rain rate. However, the overall trends
in median errors remain similar. Additionally, there are only
small differences in the model skill with respect to reproduc-
ing the cell track classification at t0 (Figs. 9 and S5).

Overall, the comparison of the results shows that includ-
ing tracks with splits and merges improves the model skill
in reproducing cell track existence but increases the error in
predicted cell features. That is, the models can predict the ex-
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istence of the most representative cell track but not its feature
values for cell tracks with splits or merges.

5 Discussion and conclusions

The aim of this study was to develop a framework to inves-
tigate how accurately nowcasting models reproduce the de-
velopment of convective rainfall. The framework consists of
identifying and tracking the convective cells in the observa-
tions and nowcasts and comparing different cell features be-
tween equivalent cell tracks in observations and nowcasts.
This approach allows the study of how well the existence
of cells is predicted as well as how accurately the different
features of the cells are reproduced by the models. By ex-
amining various cell features, such as the cell volume rain
rate and area, we can quantify the differences between how
the models produce growth and decay in convective rainfall.
Furthermore, by tracking cells from the initial observational
inputs used in the models, the framework enables an inves-
tigation into how the initial state of convective cells impacts
nowcast quality. Compared with standard verification meth-
ods, the framework enables separate analysis of various as-
pects of the nowcasting models’ skill for convective rainfall,
offering more detailed information to support model devel-
opment.

The framework was demonstrated using four advection-
based, openly available models: advection nowcast, S-
PROG, LINDA, and L-CNN. The models were compared
using data from the Swiss radar network and a dataset that
largely consisted of small convective cells. To investigate the
impact of the initial conditions, the cell tracks were classi-
fied into tracks that were decaying or growing at the time
when the nowcast was created. The results indicate that the
advection nowcast can predict the volume rain rate of the
cells relatively well, even though it does not create growth
or decay in the nowcasts. The L-CNN model was found
to best reproduce the existence of convective cells, with a
small improvement over LINDA. Even though L-CNN had a
slightly smaller error in the cell volume rain rate and area
than LINDA owing to the more localised decay predicted
by the convolutional neural network in L-CNN, LINDA pre-
dicted the cell mean rain rate more accurately. The S-PROG
model adequately reproduced the existence of decaying cells,
but it also produced the largest overestimations of cell area
and volume rain rate.

The proposed framework allowed us to quantify several
qualities in the models, such as differences in how L-CNN,
LINDA, and S-PROG produce smoothing, which are not eas-
ily distinguishable in the pixel-by-pixel verification metrics
usually used for nowcasting model validation. Quantifying
these aspects of the models aids in model development and
in selecting the most suitable nowcasting model for each ap-
plication. For example, for an application where predicting
the volume rain rate correctly is important, such as predicting

rainfall accumulation, the L-CNN might be the best among
the four models. However, if the correct areal extent of con-
vective rainfall is important, advection nowcast will perform
better. Because the models are studied using only the cells
identified in the observations and nowcasts, the cell identifi-
cation and tracking algorithms can be adjusted to specifically
describe the convective cells that are significant to the appli-
cation in question.

However, compared with pixel-by-pixel verification, this
framework has certain limitations. Because the dataset is
composed of the identified convective cells, the results are
sensitive to the selected cell identification and tracking meth-
ods as well as to how, for example, splits and merges are
processed. Furthermore, the impact of the identification and
tracking algorithms can vary between the models, for exam-
ple, if the blurring in the models is different and impacts the
cell identification. Additionally, interpreting the results re-
quires expertise in the models studied and knowledge of the
underlying dataset, which might make the framework less
suitable for use by inexperienced end-users. The complexity
of the framework and the sensitivity to selected cell identifi-
cation and tracking algorithms also make possible compari-
son between different studies difficult. However, the variety
of the results and the possibility of adjusting the framework
provide extensive tools for model developers.

The sensitivity to the selected cell identification and track-
ing methods and their parameters is also the largest source of
uncertainty in the results. Because the methods used here are
deterministic, we do not obtain estimates of the uncertainty
in identified cells or their tracks. This could be addressed in
future research, for example, by estimating the sensitivity of
the cells to the identification threshold or other parameters
set in the methods. Other sources of uncertainty include the
splits and merges occurring in the cell tracks, which can be
addressed by estimating the impact of the cell tracks with
splits or merges to the results, as was done in this study. Fur-
ther uncertainty in the framework is caused by uncertainty
and errors in the weather radar observations that can impact
the results, for example, through errors in cell identification.
This should be addressed foremost through data quality con-
trol, as such artefacts in the observations would most likely
also reduce the nowcast quality.

Because the results are sensitive to the identified cells, ad-
justing the cell identification and tracking algorithms also
provides opportunities for more complex analysis of the
models or weather phenomena. These analyses would be
especially interesting for models that are able to produce
non-smoothed nowcasts, such as generative ML models. For
example, the models’ ability to reproduce the splitting and
merging in the cell tracks could be evaluated by applying a
cell-tracking algorithm that processes the splits and merges
using a more sophisticated procedure (e.g. Limpert et al.,
2015; Zan et al., 2019). On the other hand, applying a cell de-
tection algorithm capable of identifying cells hierarchically
(e.g. Hou and Wang, 2017) would allow for the evaluation
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of how accurately the models reproduce complex weather
phenomena, such as longer-living, multi-cell convective sys-
tems.

The presented framework also allows for the study of the
impact of the initial conditions of the convective cell on how
well its development is predicted. In addition to the initial
stage of the cells, which were divided into decaying and
growing stages here, another interesting application of the
framework would be to study the impact of additional in-
put data sources on the forecast skill. Several studies have
shown that additional input data sources, such as numerical
weather prediction model data or polarimetric radar measure-
ments, can improve the performance of ML nowcasting mod-
els (Sønderby et al., 2020; Pan et al., 2021; Zhu et al., 2022;
Lu et al., 2023). The presented framework can be utilised to
quantify the impact of data sources on the forecast convec-
tive cell development by differentiating the cell tracks based
on the data observed in the cells in the input time steps.

The proposed framework is analogous to tropical cyclone
tracking used as a verification method, for example, for
global ML weather forecasting models (Bi et al., 2023; New-
man et al., 2023), applied to high-resolution rainfall forecasts
in smaller domains. Although we presented the framework
using deterministic models, it can be applied similarly to
probabilistic models by applying the cell identification and
tracking to each ensemble member separately. In probabilis-
tic models, the ensemble members should be diverse to better
capture a wide range of events, and, for example, predicting
the correct location of rainfall is not as important as for de-
terministic forecasts. Because the presented framework con-
siders several aspects of convective cell evolution and is not
dependent on the correct location, it can be used to study how
well cell evolution is reproduced in ensemble members.

Other possible future developments and applications of
the proposed framework would be to extend the cell track-
ing to cover the entire life cycle of the convective cells, not
only the first hour, as was done here. This would be espe-
cially interesting when investigating generative ML models
that can create nowcasts without blurring for long lead times
(Ravuri et al., 2021; Zhang et al., 2023). Because the now-
casts do not have blurring and, therefore, appear realistic to
the user, the framework could be used to quantify how real-
istically the models reproduce convective cell development
and, thus, contribute to a greater understanding of the useful-
ness of such methods when predicting extreme high-intensity
rainfall.

Code and data availability. The source code used to produce
the pysteps model nowcasts and the analysis in this paper
is available online at https://doi.org/10.5281/zenodo.14227567
(Ritvanen, 2024b). The source code for training and pro-
ducing nowcasts with the L-CNN model is available at
https://doi.org/10.5281/zenodo.11242483 (Ritvanen, 2024a). The
pysteps package version with the updated T-DaTing algo-

rithm, including handling of splits and merges, is available at
https://doi.org/10.5281/zenodo.11242613 (Nerini et al., 2024).

The nowcasts and corresponding observations used to run
the analysis are available at https://doi.org/10.57707/fmi-
b2share.627e6133c2594dc3945d14fe0ef9c922 (Ritvanen et
al., 2024a). The analysis results and numerical versions of
the result figures are available at https://doi.org/10.57707/fmi-
b2share.e1897cfb9a9d4466bb9d7235882bc511 (Ritvanen et al.,
2024b). The original MeteoSwiss radar-only product (RZC) data
used to create the nowcasts and train the L-CNN model are not
provided openly due to the MeteoSwiss data policy.
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