Articles | Volume 18, issue 5
https://doi.org/10.5194/gmd-18-1673-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-1673-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantitative sub-ice and marine tracing of Antarctic sediment provenance (TASP v1.0)
James W. Marschalek
CORRESPONDING AUTHOR
Department of Earth Science and Engineering, Imperial College London, Exhibition Road, London, SW7 2BP, UK
Edward Gasson
Department of Earth and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9EZ, UK
Tina van de Flierdt
Department of Earth Science and Engineering, Imperial College London, Exhibition Road, London, SW7 2BP, UK
Claus-Dieter Hillenbrand
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Martin J. Siegert
Department of Earth Science and Engineering, Imperial College London, Exhibition Road, London, SW7 2BP, UK
Department of Earth and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9EZ, UK
Liam Holder
Department of Earth Science and Engineering, Imperial College London, Exhibition Road, London, SW7 2BP, UK
Related authors
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-8, https://doi.org/10.5194/gmd-2023-8, 2023
Revised manuscript not accepted
Short summary
Short summary
Ice sheet models can help predict how Antarctica’s ice sheets respond to environmental change; such models benefit from comparison to geological data. Here, we use ice sheet model results, plus other data, to predict the erosion of Antarctic debris and trace its transport to where it is deposited on the ocean floor. This allows the results of ice sheet modelling to be directly and quantitively compared to real-world data, helping to reduce uncertainty regarding Antarctic sea level contribution.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. MacKie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Vjeran Višnjević, Rodrigo Zamora, and Alexandra Zuhr
The Cryosphere, 19, 4611–4655, https://doi.org/10.5194/tc-19-4611-2025, https://doi.org/10.5194/tc-19-4611-2025, 2025
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative working together on these archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica and how this is being used to reconstruct past and to predict future ice and climate behaviour.
Arianna Olivelli, Rossella Arcucci, Mark Rehkämper, and Tina van de Flierdt
Earth Syst. Sci. Data, 17, 3679–3699, https://doi.org/10.5194/essd-17-3679-2025, https://doi.org/10.5194/essd-17-3679-2025, 2025
Short summary
Short summary
In this study, we use machine learning models to produce the first global maps of Pb concentrations and isotope compositions in the ocean. In line with observations, we find that (i) the surface Indian Ocean has the highest levels of pollution, (ii) pollution from previous decades is sinking in the North Atlantic and Pacific oceans, and (iii) waters carrying Pb pollution are spreading from the Southern Ocean throughout the Southern Hemisphere at intermediate depths.
Asmara A. Lehrmann, Rebecca L. Totten, Julia S. Wellner, Claus-Dieter Hillenbrand, Svetlana Radionovskaya, R. Michael Comas, Robert D. Larter, Alastair G. C. Graham, James D. Kirkham, Kelly A. Hogan, Victoria Fitzgerald, Rachel W. Clark, Becky Hopkins, Allison P. Lepp, Elaine Mawbey, Rosemary V. Smyth, Lauren E. Miller, James A. Smith, and Frank O. Nitsche
J. Micropalaeontol., 44, 79–105, https://doi.org/10.5194/jm-44-79-2025, https://doi.org/10.5194/jm-44-79-2025, 2025
Short summary
Short summary
Thwaites Glacier's retreat is driven by warm ocean water melting its ice shelf. Seafloor-dwelling marine protists, benthic foraminifera, reflect their environment. Here, ice margins, oceanography, and sea ice cover control live foraminiferal populations. Including dead foraminifera in the analyses shows the calcareous test preservation's role in the assemblage make-up. Understanding these modern communities helps interpret past glacial retreat controls through foraminifera in sediment records.
Frida S. Hoem, Karlijn van den Broek, Adrián López-Quirós, Suzanna H. A. van de Lagemaat, Steve M. Bohaty, Claus-Dieter Hillenbrand, Robert D. Larter, Tim E. van Peer, Henk Brinkhuis, Francesca Sangiorgi, and Peter K. Bijl
J. Micropalaeontol., 43, 497–517, https://doi.org/10.5194/jm-43-497-2024, https://doi.org/10.5194/jm-43-497-2024, 2024
Short summary
Short summary
The timing and impact of onset of Antarctic Circumpolar Current (ACC) on climate and Antarctic ice are unclear. We reconstruct late Eocene to Miocene southern Atlantic surface ocean environment using microfossil remains of dinoflagellates (dinocysts). Our dinocyst records shows the breakdown of subpolar gyres in the late Oligocene and the transition into a modern-like oceanographic regime with ACC flow, established frontal systems, Antarctic proximal cooling, and sea ice by the late Miocene.
Joseph A. Ruggiero, Reed P. Scherer, Joseph Mastro, Cesar G. Lopez, Marcus Angus, Evie Unger-Harquail, Olivia Quartz, Amy Leventer, and Claus-Dieter Hillenbrand
J. Micropalaeontol., 43, 323–336, https://doi.org/10.5194/jm-43-323-2024, https://doi.org/10.5194/jm-43-323-2024, 2024
Short summary
Short summary
We quantify sea surface temperature (SST) in the past Southern Ocean using the diatom Fragilariopsis kerguelensis that displays variable population with SST. We explore the use of this relatively new proxy by applying it to sediment assemblages from the Sabrina Coast and Amundsen Sea. We find that Amundsen Sea and Sabrina Coast F. kerguelensis populations are different from each other. An understanding of F. kerguelensis dynamics may help us generate an SST proxy to apply to ancient sediments.
Allison P. Lepp, Lauren E. Miller, John B. Anderson, Matt O'Regan, Monica C. M. Winsborrow, James A. Smith, Claus-Dieter Hillenbrand, Julia S. Wellner, Lindsay O. Prothro, and Evgeny A. Podolskiy
The Cryosphere, 18, 2297–2319, https://doi.org/10.5194/tc-18-2297-2024, https://doi.org/10.5194/tc-18-2297-2024, 2024
Short summary
Short summary
Shape and surface texture of silt-sized grains are measured to connect marine sediment records with subglacial water flow. We find that grain shape alteration is greatest in glaciers where high-energy drainage events and abundant melting of surface ice are inferred and that the surfaces of silt-sized sediments preserve evidence of glacial transport. Our results suggest grain shape and texture may reveal whether glaciers previously experienced temperate conditions with more abundant meltwater.
Benoit S. Lecavalier, Lev Tarasov, Greg Balco, Perry Spector, Claus-Dieter Hillenbrand, Christo Buizert, Catherine Ritz, Marion Leduc-Leballeur, Robert Mulvaney, Pippa L. Whitehouse, Michael J. Bentley, and Jonathan Bamber
Earth Syst. Sci. Data, 15, 3573–3596, https://doi.org/10.5194/essd-15-3573-2023, https://doi.org/10.5194/essd-15-3573-2023, 2023
Short summary
Short summary
The Antarctic Ice Sheet Evolution constraint database version 2 (AntICE2) consists of a large variety of observations that constrain the evolution of the Antarctic Ice Sheet over the last glacial cycle. This includes observations of past ice sheet extent, past ice thickness, past relative sea level, borehole temperature profiles, and present-day bedrock displacement rates. The database is intended to improve our understanding of past Antarctic changes and for ice sheet model calibrations.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-8, https://doi.org/10.5194/gmd-2023-8, 2023
Revised manuscript not accepted
Short summary
Short summary
Ice sheet models can help predict how Antarctica’s ice sheets respond to environmental change; such models benefit from comparison to geological data. Here, we use ice sheet model results, plus other data, to predict the erosion of Antarctic debris and trace its transport to where it is deposited on the ocean floor. This allows the results of ice sheet modelling to be directly and quantitively compared to real-world data, helping to reduce uncertainty regarding Antarctic sea level contribution.
Suzanne Robinson, Ruza F. Ivanovic, Lauren J. Gregoire, Julia Tindall, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, Kazuyo Tachikawa, and Paul J. Valdes
Geosci. Model Dev., 16, 1231–1264, https://doi.org/10.5194/gmd-16-1231-2023, https://doi.org/10.5194/gmd-16-1231-2023, 2023
Short summary
Short summary
We present the implementation of neodymium (Nd) isotopes into the ocean model of FAMOUS (Nd v1.0). Nd fluxes from seafloor sediment and incorporation of Nd onto sinking particles represent the major global sources and sinks, respectively. However, model–data mismatch in the North Pacific and northern North Atlantic suggest that certain reactive components of the sediment interact the most with seawater. Our results are important for interpreting Nd isotopes in terms of ocean circulation.
Suzanne Robinson, Ruza Ivanovic, Lauren Gregoire, Lachlan Astfalck, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, and Kazuyo Tachikawa
EGUsphere, https://doi.org/10.5194/egusphere-2022-937, https://doi.org/10.5194/egusphere-2022-937, 2022
Preprint archived
Short summary
Short summary
The neodymium (Nd) isotope (εNd) scheme in the ocean model of FAMOUS is used to explore a benthic Nd flux to seawater. Our results demonstrate that sluggish modern Pacific waters are sensitive to benthic flux alterations, whereas the well-ventilated North Atlantic displays a much weaker response. In closing, there are distinct regional differences in how seawater acquires its εNd signal, in part relating to the complex interactions of Nd addition and water advection.
Lennert B. Stap, Constantijn J. Berends, Meike D. W. Scherrenberg, Roderik S. W. van de Wal, and Edward G. W. Gasson
The Cryosphere, 16, 1315–1332, https://doi.org/10.5194/tc-16-1315-2022, https://doi.org/10.5194/tc-16-1315-2022, 2022
Short summary
Short summary
To gain understanding of how the Antarctic ice sheet responded to CO2 changes during past warm climate conditions, we simulate its variability during the Miocene. We include feedbacks between the ice sheet and atmosphere in our model and force the model using time-varying climate conditions. We find that these feedbacks reduce the amplitude of ice volume variations. Erosion-induced changes in the bedrock below the ice sheet that manifested during the Miocene also have a damping effect.
Molly O. Patterson, Richard H. Levy, Denise K. Kulhanek, Tina van de Flierdt, Huw Horgan, Gavin B. Dunbar, Timothy R. Naish, Jeanine Ash, Alex Pyne, Darcy Mandeno, Paul Winberry, David M. Harwood, Fabio Florindo, Francisco J. Jimenez-Espejo, Andreas Läufer, Kyu-Cheul Yoo, Osamu Seki, Paolo Stocchi, Johann P. Klages, Jae Il Lee, Florence Colleoni, Yusuke Suganuma, Edward Gasson, Christian Ohneiser, José-Abel Flores, David Try, Rachel Kirkman, Daleen Koch, and the SWAIS 2C Science Team
Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, https://doi.org/10.5194/sd-30-101-2022, 2022
Short summary
Short summary
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average global temperatures exceed 2 °C is currently unknown. Given the far-reaching and international consequences of Antarctica’s future contribution to global sea level rise, the SWAIS 2C Project was developed in order to better forecast the size and timing of future changes.
Matthew Chadwick, Claire S. Allen, Louise C. Sime, Xavier Crosta, and Claus-Dieter Hillenbrand
Clim. Past, 18, 129–146, https://doi.org/10.5194/cp-18-129-2022, https://doi.org/10.5194/cp-18-129-2022, 2022
Short summary
Short summary
Algae preserved in marine sediments have allowed us to reconstruct how much winter sea ice was present around Antarctica during a past time period (130 000 years ago) when the climate was warmer than today. The patterns of sea-ice increase and decrease vary between different parts of the Southern Ocean. The Pacific sector has a largely stable sea-ice extent, whereas the amount of sea ice in the Atlantic sector is much more variable with bigger decreases and increases than other regions.
Nele Lamping, Juliane Müller, Jens Hefter, Gesine Mollenhauer, Christian Haas, Xiaoxu Shi, Maria-Elena Vorrath, Gerrit Lohmann, and Claus-Dieter Hillenbrand
Clim. Past, 17, 2305–2326, https://doi.org/10.5194/cp-17-2305-2021, https://doi.org/10.5194/cp-17-2305-2021, 2021
Short summary
Short summary
We analysed biomarker concentrations on surface sediment samples from the Antarctic continental margin. Highly branched isoprenoids and GDGTs are used for reconstructing recent sea-ice distribution patterns and ocean temperatures respectively. We compared our biomarker-based results with data obtained from satellite observations and estimated from a numerical model and find reasonable agreements. Further, we address caveats and provide recommendations for future investigations.
Charlotte L. Spencer-Jones, Erin L. McClymont, Nicole J. Bale, Ellen C. Hopmans, Stefan Schouten, Juliane Müller, E. Povl Abrahamsen, Claire Allen, Torsten Bickert, Claus-Dieter Hillenbrand, Elaine Mawbey, Victoria Peck, Aleksandra Svalova, and James A. Smith
Biogeosciences, 18, 3485–3504, https://doi.org/10.5194/bg-18-3485-2021, https://doi.org/10.5194/bg-18-3485-2021, 2021
Short summary
Short summary
Long-term ocean temperature records are needed to fully understand the impact of West Antarctic Ice Sheet collapse. Glycerol dialkyl glycerol tetraethers (GDGTs) are powerful tools for reconstructing ocean temperature but can be difficult to apply to the Southern Ocean. Our results show active GDGT synthesis in relatively warm depths of the ocean. This research improves the application of GDGT palaeoceanographic proxies in the Southern Ocean.
Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill
Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, https://doi.org/10.5194/essd-12-3341-2020, 2020
Short summary
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
Felipe Napoleoni, Stewart S. R. Jamieson, Neil Ross, Michael J. Bentley, Andrés Rivera, Andrew M. Smith, Martin J. Siegert, Guy J. G. Paxman, Guisella Gacitúa, José A. Uribe, Rodrigo Zamora, Alex M. Brisbourne, and David G. Vaughan
The Cryosphere, 14, 4507–4524, https://doi.org/10.5194/tc-14-4507-2020, https://doi.org/10.5194/tc-14-4507-2020, 2020
Short summary
Short summary
Subglacial water is important for ice sheet dynamics and stability. Despite this, there is a lack of detailed subglacial-water characterisation in West Antarctica (WA). We report 33 new subglacial lakes. Additionally, a new digital elevation model of basal topography was built and used to simulate the subglacial hydrological network in WA. The simulated subglacial hydrological catchments of Pine Island and Thwaites glaciers do not match precisely with their ice surface catchments.
Xiangbin Cui, Hafeez Jeofry, Jamin S. Greenbaum, Jingxue Guo, Lin Li, Laura E. Lindzey, Feras A. Habbal, Wei Wei, Duncan A. Young, Neil Ross, Mathieu Morlighem, Lenneke M. Jong, Jason L. Roberts, Donald D. Blankenship, Sun Bo, and Martin J. Siegert
Earth Syst. Sci. Data, 12, 2765–2774, https://doi.org/10.5194/essd-12-2765-2020, https://doi.org/10.5194/essd-12-2765-2020, 2020
Short summary
Short summary
We present a topographic digital elevation model (DEM) for Princess Elizabeth Land (PEL), East Antarctica. The DEM covers an area of approximately 900 000 km2 and was built from radio-echo sounding data collected in four campaigns since 2015. Previously, to generate the Bedmap2 topographic product, PEL’s bed was characterised from low-resolution satellite gravity data across an otherwise large (>200 km wide) data-free zone.
Cited articles
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.: Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves, Nat. Geosci., 13, 616–620, https://doi.org/10.1038/s41561-020-0616-z, 2020.
Aitken, A. R. A. and Urosevic, L.: A probabilistic and model-based approach to the assessment of glacial detritus from ice sheet change, Palaeogeogr., Palaeocl., 561, 110053, https://doi.org/10.1016/j.palaeo.2020.110053, 2021.
Aitken, A. R. A., Delaney, I., Pirot, G., and Werder, M. A.: Modelling subglacial fluvial sediment transport with a graph-based model, Graphical Subglacial Sediment Transport (GraphSSeT), The Cryosphere, 18, 4111–4136, https://doi.org/10.5194/tc-18-4111-2024, 2024.
Alley, R. B., Blankenship, D. D., Rooney, S. T., and Bentley, C. R.: Sedimentation beneath ice shelves—the view from ice stream B, Mar. Geol., 85, 101–120, https://doi.org/10.1016/0025-3227(89)90150-3, 1989.
Alley, R. B., Cuffey, K. M., and Zoet, L. K.: Glacial erosion: status and outlook, Ann. Glaciol., 60, 1–13, https://doi.org/10.1017/aog.2019.38, 2019.
Anderson, J. B.: Antarctic marine geology, Cambridge University Press, https://doi.org/10.1017/CBO9780511759376, 1999.
Anderson, J., Brake, C. B., Domack, E., Myers, N., and Wright, R.: Development of a Polar Glacial-Marine Sedimentation Model from Antarctic Quaternary Deposits and Glaciological Information, in: Glacial-Marine Sedimentation, 233–264, Springer, US, 1983.
Andrews, J. T. and LeMasurier, W.: Resolving the argument about volcanic bedrock under the West Antarctic Ice Sheet and implications for ice sheet stability and sea level change, Earth Planet. Sc. Lett., 568, 117035, https://doi.org/10.1016/j.epsl.2021.117035, 2021.
Armienti, P., Ghezzo, C., Innocenti, F., Manetti, P., Rocchi, S., and Tonarini, S.: Isotope geochemistry and petrology of granitoid suites from Granite Harbour intrusives of the Wilson Terrane, North Victoria Land, Antarctica, Eur. J. Mineral., 2, 103–124, https://doi.org/10.1127/ejm/2/1/0103, 1990.
Atkins, C. B. and Dunbar, G. B.: Aeolian sediment flux from sea ice into Southern McMurdo Sound, Antarctica, Global Planet. Change, 69, 133–141, 2009.
Aviado, K. B., Rilling-Hall, S., Bryce, J. G., and Mukasa, S. B.: Submarine and subaerial lavas in the West Antarctic Rift System: Temporal record of shifting magma source components from the lithosphere and asthenosphere, Geochem. Geophy. Geosy., 16, 4344–4361, https://doi.org/10.1002/2015GC006076, 2015.
Azetsu-Scott, K. and Syvitski, J. P.: Influence of melting icebergs on distribution, characteristics and transport of marine particles in an East Greenland fjord, J. Geophys. Res.-Oceans, 104, 5321–5328, https://doi.org/10.1029/1998JC900083, 1999.
Batchelor, C. L. and Dowdeswell, J. A.: Ice-sheet grounding-zone wedges (GZWs) on high-latitude continental margins, Mar. Geol., 363, 65–92, https://doi.org/10.1016/j.margeo.2015.02.001, 2015.
Behrendt, J. C.: The aeromagnetic method as a tool to identify Cenozoic magmatism in the West Antarctic Rift System beneath the West Antarctic Ice Sheet – A review; Thiel subglacial volcano as possible source of the ash layer in the WAISCORE, Tectonophysics, 585, 124–136, https://doi.org/10.1016/j.tecto.2012.06.035, 2013.
Bertram, R. A.: Reconstructing the East Antarctic Ice Sheet during the Plio-Pleistocene using Geochemical Provenance Analysis, Ph.D. thesis, Imperial College London, https://doi.org/10.25560/83552, 2018.
Bertram, R. A., Wilson, D. J., van de Flierdt, T., McKay, R. M., Patterson, M. O., Jimenez-Espejo, F. J., Escutia, C., Duke, G. C., Taylor-Silva, B. I., and Riesselman, C. R.: Pliocene deglacial event timelines and the biogeochemical response offshore Wilkes Subglacial Basin, East Antarctica, Earth Planet. Sc. Lett., 494, 109–116, https://doi.org/10.1016/j.epsl.2018.04.054, 2018.
Bigg, G. R., Wadley, M. R., Stevens, D. P., and Johnson, J. A.: Modelling dynamics and thermodynamics of icebergs, Cold Reg. Sci. Technol., 26, 113–135, 1997.
Boger, S. D.: Antarctica – before and after Gondwana, Gondwana Res., 19, 335–371, https://doi.org/10.1016/j.gr.2010.09.003, 2011.
Borg, S. G. and DePaolo, D. J.: Laurentia, Australia, and Antarctica as a Late Proterozoic supercontinent: constraints from isotopic mapping, Geology, 22, 307–310, https://doi.org/10.1130/0091-7613(1994)022<0307:LAAAAA>2.3.CO;2, 1994.
Borg, S. G., Depaolo, D. J., and Smith, B. M.: Isotopic structure and tectonics of the central Transantarctic Mountains, J. Geophys. Res.-Solid Earth, 95, 6647–6667, https://doi.org/10.1029/JB095iB05p06647, 1990.
Burton-Johnson, A. and Riley, T. R.: Autochthonous v. accreted terrane development of continental margins: a revised in situ tectonic history of the Antarctic Peninsula, J. Geol. Soc. London, 172, 822–835, https://doi.org/10.1144/jgs2014-110, 2015.
Camerlenghi, A., Crise, A., Pudsey, C. J., Accerboni, E., Laterza, R., and Rebesco, M.: Ten-month observation of the bottom current regime across a sediment drift of the Pacific margin of the Antarctic Peninsula, Antarct. Sci., 9, 426–433, https://doi.org/10.1017/S0954102097000552, 1997.
Carlson, A. E., Beard, B. L., Hatfield, R. G., and Laffin, M.: Absence of West Antarctic-sourced silt at ODP Site 1096 in the Bellingshausen Sea during the last interglaciation: Support for West Antarctic ice-sheet deglaciation, Quaternary Sci. Rev., 261, 106939, https://doi.org/10.1016/j.quascirev.2021.106939, 2021.
Chewings, J., Atkins, C, Dunbar, G., and Golledge, N.: Aeolian sediment transport and deposition in a modern high latitude glacial marine environment, Sedimentology, 61, 1485–1882, https://doi.org/10.1111/sed.12108, 2014.
Christoffersen, P., Tulaczyk, S., and Behar, A.: Basal ice sequences in Antarctic ice stream: exposure of past hydrologic conditions and a principal mode of sediment transfer, J. Geophys. Res.-Earth, 115, F03034, https://doi.org/10.1029/2009JF001430, 2010.
Clarke, G. K. and Marshall, S. J.: Isotopic balance of the Greenland Ice Sheet: modelled concentrations of water isotopes from 30,000 BP to present, Quaternary Sci. Rev., 21, 419–430, https://doi.org/10.1016/S0277-3791(01)00111-1, 2002.
Cook, C. P., van de Flierdt, T., Williams, T., Hemming, S. R., Iwai, M., Kobayashi, M., Jimnez-Espejo, F. J., Escutia, C., Gonxalez, J. J., Khim, B.-K., McKay, R.M., Passchier, S., Boharty, S. M., Riesselman, C. R., Tauxe, L., Sugisaki, S., Galindo, A. L., Patterson, M. O., Sangiorgi, F., Pierce, E. L., Brinkhuis, H., Klaus, A., Fehr, A., Bendle, J. A. P., Bilj, P. K., Carr., S. A., Dunbar., R. B., Flores, J. A., Hayden, T. G., Katsuki, K., Kong, G. S., Nakai, M., Olney., M. P., Pekar, S. F., Pross, J., Rohl, U., Sakai, T., Shrivastava, P. K., Stickley, C. E., Tuo, S., Welsh, K., and Yamane, M.: Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth, Nat. Geosci., 6, 765–769, https://doi.org/10.1038/ngeo1889, 2013.
Copernicus Climate Data Store: ORAS5 global ocean reanalysis monthly data from 1958 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.67e8eeb7 (last access: 29 September 2021), 2021.
Corr, H. F. and Vaughan, D. G.: A recent volcanic eruption beneath the West Antarctic ice sheet, Nat. Geosci., 1, 122–125, https://doi.org/10.1038/ngeo106, 2008.
Cox, S. C., Parkinson, D. L., Allibone, A. H., and Cooper, A. F.: Isotopic character of Cambro-Ordovician plutonism, southern Victoria Land, Antarctica, New Zeal. J. Geol. Geop., 43, 501–520, https://doi.org/10.1080/00288306.2000.9514906, 2000.
Cox, S. C., Smith Lyttle, B., Elkind, S., Smith Siddoway, C., Morin, P., Capponi, G., Abu-Alam, T., Ballinger, M., Bamber, L., Kitchener, B., Lelli, L., Mawson, J., Millikin, A., Dal Seno, N., Whitburn, L., White, T., Burton-Johnson, A., Crispini, L., Elliot, D., Elvevold, S., Goodge, J., Halpin, J., Jacobs, J., Martin, A. P., Mikhalsky, E., Morgan, F., Scadden, P., Smellie, J., and Wilson, G.: A continent-wide detailed geological map dataset of Antarctica, Sci. Data, 10, 250, https://doi.org/10.1038/s41597-023-02152-9, 2023.
Craddock, J. P., Schmitz, M. D., Crowley, J. L., Larocque, J., Pankhurst, R. J., Juda, N., Konstantinou, A., and Storey, B.: Precise U-Pb zircon ages and geochemistry of Jurassic granites, Ellsworth-Whitmore terrane, central Antarctica, Geol. Soc. Am. Bull., 129, 118–136, https://doi.org/10.1130/B31485.1, 2017.
Curtis, M. L., Leat, P. T., Riley, T. R., Storey, B. C., Millar, I. L., and Randall, D. E.: Middle Cambrian rift-related volcanism in the Ellsworth Mountains, Antarctica: tectonic implications for the palaeo-Pacific margin of Gondwana, Tectonophysics, 304, 275–299, https://doi.org/10.1016/S0040-1951(99)00033-5, 1999.
Dallai, L., Ghezzo, C., and Sharp, Z. D.: Oxygen isotope evidence for crustal assimilation and magma mixing in the Granite Harbour Intrusives, Northern Victoria Land, Antarctica, Lithos, 67, 135–151, https://doi.org/10.1016/S0024-4937(02)00267-0, 2003.
DeConto, R. M., Pollard, D., Alley, R. B., Velicogna, I., Gasson, E., Gomez, N., Sadai, S., Condron, A., Gilford, D. M., Ashe, E. L., Kopp, R. E., Li, D., and Dutton, A.: The Paris Climate Agreement and future sea-level rise from Antarctica, Nature, 593, 83–89, https://doi.org/10.1038/s41586-021-03427-0, 2021.
Delaney, I., Werder, M. A., and Farinotti, D.: A Numerical Model for Fluvial Transport of Subglacial Sediment, J. Geophys. Res.-Earth, 124, 2197–2223, https://doi.org/10.1029/2019JF005004, 2019.
Delmonte, B., Petit, J. R., Andersen, K. K., Basile-Doelsch, I., Maggi, V., and Ya Lipenkov, V.: Dust size evidence for opposite regional atmospheric circulation changes over east Antarctica during the last climatic transition, Clim. Dynam., 23, 427–438, https://doi.org/10.1007/s00382-004-0450-9, 2004.
Dowdeswell, J. A.: Processes of glacimarine sedimentation, Prog. Phys. Geog., 11, 52–90, https://doi.org/10.1177/030913338701100103, 1987.
Dowdeswell, J. A. and Murray, T.: Modelling rates of sedimentation from icebergs, Geo. Soc. S. P., 53, 121–137, https://doi.org/10.1144/GSL.SP.1990.053.01.07, 1990.
Dowdeswell, J. A., Maslin, M. A., Andrews, J. T., and McCave, I. N.: Iceberg production, debris rafting, and the extent and thickness of Heinrich layers (H-1, H-2) in North Atlantic sediments, Geology, 23, 301–304, https://doi.org/10.1130/0091-7613(1995)023<0297:IPDRAT>2.3.CO;2, 1995.
Drewry, D. J. and Cooper, A. P. R.: Processes and models of Antarctic glaciomarine sedimentation, Ann. Glaciol., 2, 117–122, https://doi.org/10.3189/172756481794352478, 1981.
Dunbar, N. W., Iverson, N. A., Smellie, J. L., McIntosh, W. C., Zimmerer, M. J., and Kyle, P. R.: Active volcanoes in Marie Byrd Land, Geol. Soc. Mem., 55, 759–783, https://doi.org/10.1144/M55-2019-29, 2021.
Ehrmann, W., Hillenbrand, C. D., Smith, J. A., Graham, A. G., Kuhn, G., and Larter, R. D.: Provenance changes between recent and glacial-time sediments in the Amundsen Sea embayment, West Antarctica: clay mineral assemblage evidence, Antarct. Sci., 23, 471–486, https://doi.org/10.1017/S0954102011000320, 2011
Einstein, H. A. and Krone, R. B.: Experiments to determine modes of cohesive sediment transport in salt water, J. Geophys. Res., 67, 1451–1461, https://doi.org/10.1029/JZ067i004p01451, 1962.
Elliot, D. H., Fleming, T. H., Kyle, P. R., and Foland, K. A.: Long-distance transport of magmas in the Jurassic Ferrar large igneous province, Antarctica, Earth Planet. Sc. Lett., 167, 89–104, https://doi.org/10.1016/S0012-821X(99)00023-0, 1999.
Elliot, D. H., Larsen, D., Fanning, C. M., Fleming, T. H., and Vervoort, J. D.: The Lower Jurassic Hanson Formation of the Transantarctic Mountains: implications for the Antarctic sector of the Gondwana plate margin, Geol. Mag., 154, 777–803, https://doi.org/10.1017/S0016756816000388, 2017.
Estrada, S., Läufer, A., Eckelmann, K., Hofmann, M., Gärtner, A., and Linnemann, U.: Continuous Neoproterozoic to Ordovician sedimentation at the East Gondwana margin – Implications from detrital zircons of the Ross Orogen in northern Victoria Land, Antarctica, Gondwana Res., 37, 426–448, https://doi.org/10.1016/j.gr.2015.10.006, 2016.
Evans, J. and Cofaigh, C. Ó.: Supraglacial debris along the front of the Larsen-A Ice Shelf, Antarctic Peninsula, Antarct. Sci., 15, 503–506, https://doi.org/10.1111/j.1502-3885.2003.tb01443.x, 2003.
Farmer, G. L., Licht, K., Swope, R. J., and Andrews, J.: Isotopic constraints on the provenance of fine-grained sediment in LGM tills from the Ross Embayment, Antarctica, Earth Planet. Sci. Lett. 249, 90–107, https://doi.org/10.1016/j.epsl.2006.06.044, 2006.
Ferraccioli, F., Armadillo, E., Jordan, T., Bozzo, E., and Corr, H.: Aeromagnetic exploration over the East Antarctic Ice Sheet: a new view of the Wilkes Subglacial Basin, Tectonophysics, 478, 62–77, https://doi.org/10.1016/j.tecto.2009.03.013, 2009.
Ferris, J., Johnson, A., and Storey, B.: Form and extent of the Dufek intrusion, Antarctica, from newly compiled aeromagnetic data, Earth Planet. Sc. Lett., 154, 185–202, https://doi.org/10.1016/S0012-821X(97)00165-9, 1998.
Fleming, T. H.: Isotopic and chemical evolution of the Ferrar Group. Beardmore Glacier region, Antarctica. Ph.D. thesis, Ohio State University, http://rave.ohiolink.edu/etdc/view?acc_num=osu1487929745335032 (last access: 10 June 2020), 1995.
Frederick, B. C., Young, D. A., Blankenship, D. D., Richter, T. G., Kempf, S. D., Ferraccioli, F., and Siegert, M. J.: Distribution of subglacial sediments across the Wilkes Subglacial Basin, East Antarctica, J. Geophys. Res.-Earth, 121, 790–813, https://doi.org/10.1002/2015JF003760, 2016.
Futa, K. and LeMasurier, W. E.: Nd and Sr isotopic studies on Cenozoic mafic lavas from West Antarctica – another source for continental alkali basalts, Contrib. Mineral. Petr., 83, 38–44, https://doi.org/10.1007/BF00373077, 1983.
Garcia, M. and Parker, G.: Experiments on the entrainment of sediment into suspension by a dense bottom current, J. Geophys. Res.-Oceans, 98, 4793–4807, https://doi.org/10.1029/92JC02404, 1993.
Garçon, M., Chauvel, C., France-Lanord, C., Huyghe, P., and Lavé, J.: Continental sedimentary processes decouple Nd and Hf isotopes, Geochim. Cosmochim. Ac., 121, 177–195, https://doi.org/10.1016/j.gca.2013.07.027, 2013.
Gardner, W. D., Richardson, M. J., and Mishonov, A. V.: Global assessment of benthic nepheloid layers and linkage with upper ocean dynamics, Earth Planet. Sc. Lett., 482, 126–134, https://doi.org/10.1016/j.epsl.2017.11.008, 2018.
Gardner, W. D., Mishonov, A. V., and Richardson, M. J.: Global Transmissometer Database V3, Ocean Data View, https://odv.awi.de/data/ocean/global-transmissometer-database/ (last access: July 2022), 2020.
Gil, I. M., Keigwin, L. D., and Abrantes, F. G.: Deglacial diatom productivity and surface ocean properties over the Bermuda Rise, northeast Sargasso Sea, Paleoceanography, 24, PA4101, https://doi.org/10.1029/2008PA001729, 2009.
Gilbert, I. M., Pudsey, C. J., and Murray, J. W.: A sediment record of cyclic bottom-current variability from the northwest Weddell Sea, Sediment. Geol., 115, 185–214, https://doi.org/10.1016/S0037-0738(97)00093-6, 1998.
Giorgetti, A., Crise, A., Laterza, R., Perini, L., Rebesco, M., and Camerlenghi, A.: Water masses and bottom boundary layer dynamics above a sediment drift of the Antarctic Peninsula Pacific Margin, Antarct. Sci., 15, 537–546, https://doi.org/10.1017/S0954102003001652, 2003.
Goldich, S. S., Treves, S. B., Suhr, N. H., and Stuckless, J. S.: Geochemistry of the Cenozoic volcanic rocks of Ross Island and vicinity, Antarctica, J. Geology, 83, 415–435, 1975.
Golledge, N. R., Clark, P. U., He, F., Dutton, A., Turney, C. S. M., Fogwill, C. J., Naish, T. R., Levy, R. H., McKay, R. M., Lowry, D. P., Bertler., N. A. N., Dunbar, G. B., and Carlson, A. E.: Retreat of the Antarctic Ice Sheet during the Last Interglaciation and implications for future change, Geophys. Res. Lett., 48, e2021GL094513, https://doi.org/10.1029/2021GL094513, 2021.
Golynsky, A. V., Ferraccioli, F., Hong, J. K., Golynsky, D. A., von Frese, R. R. B., Young, D. A., Blankenship, D., Holt, J. W., Ivanov, S. V., Kiselev, A. V., Masolov, V. N., Eagles., G., Gohl, K., Jokat., W., Damaske, D., Finn, C., Aitken, A., Bell, R. E., Armadillo, E., Jordan, T. A., Greenbaum, J. S., Bozzo, E., Caneva, G., Forsberg, R., Ghidella, M., Galindo-Zaldivar, J., Bohoyo, F., Martos, Y. M., Nogi, Y., Quartini, E., Kim, H. R., and Roberts, J. L.: New magnetic anomaly map of the Antarctic, Geophys. Res. Lett. 45, 6437–6449, https://doi.org/10.1029/2018GL078153, 2018.
Goodge, J. W.: Geological and tectonic evolution of the Transantarctic Mountains, from ancient craton to recent enigma, Gondwana Res., 80, 50–122, https://doi.org/10.1016/j.gr.2019.11.001, 2020.
Goodge, J. W. and Finn, C. A.: Glimpses of East Antarctica: Aeromagnetic and satellite magnetic view from the central Transantarctic Mountains of East Antarctica, J. Geophys. Res.-Earth, 115, B09103, https://doi.org/10.1029/2009JB006890, 2010.
Goodge, J. W., Fanning, C. M., Norman, M. D., and Bennett, V. C.: Temporal, isotopic and spatial relations of early Paleozoic Gondwana-margin arc magmatism, central Transantarctic Mountains, Antarctica, J. Petrol., 53, 2027–2065, https://doi.org/10.1093/petrology/egs043, 2012.
Goodge, J. W., Vervoort, J. D., Fanning, C. M., Brecke, D. M., Farmer, G. L., Williams, I. S., Myrow, P. M., and DePaolo, D. J.: A positive test of East Antarctica–Laurentia juxtaposition within the Rodinia supercontinent, Science, 321, 235–240, https://doi.org/10.1126/science.1159189, 235-240, 2008.
Gow, A. J., Epstein, S., and Sheehy, W.: On the origin of stratified debris in ice cores from the bottom of the Antarctic ice sheet, J. Glaciol., 23, 185–192, https://doi.org/10.3189/S0022143000029828, 1979.
Gross, T. F. and Williams, A. J.: Characterization of deep-sea storms, Mar. Geol., 99, 281–301, https://doi.org/10.1016/0025-3227(91)90045-6, 1991.
Ha, H. K., Wåhlin, A. K., Kim, T. W., Lee, S. H., Lee, J. H., Lee, H. J., Hong, C. S., Arneborg, L., Björk, G., and Kalén, O.: Circulation and modification of warm deep water on the central Amundsen Shelf, J. Phys. Oceanogr., 44, 1493–1501, https://doi.org/10.1175/JPO-D-13-0240.1, 2014.
Hagedorn, B., Gersonde, R., Gohl, K., and Hubberten, H. W.: Petrology, geochemistry and K/Ar age constraints of the eastern De Gerlache Seamount alkaline basalts (Bellingshausen Sea, southeast Pacific), Polarforschung, 76, 87–94, https://doi.org/10.10013/epic.39339.d001, 2007.
Hagen, R. A., Gohl, K., Gersonde, R., Kuhn, G., Völker, D., and Kodagali, V. N.: A geophysical survey of the De Gerlache Seamounts: preliminary results, Geo-Mar. Lett., 18, 19–25, https://doi.org/10.1007/s003670050047, 1998.
Haran, T., Bohlander, J., Scambos, T., Painter, T., and Fahnestock, M.: MODIS Mosaic of Antarctica 2008-2009 (MOA2009) Image Map, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/4ZL43A4619AF, 2014, updated 2019.
Hart, S. R., Blusztajn, J., LeMasurier, W. E., and Rex, D. C.: Hobbs Coast Cenozoic volcanism: Implications for the West Antarctic rift system, Chem. Geol., 139, 223–248, https://doi.org/10.1016/S0009-2541(97)00037-5, 1997.
Hauptvogel, D. W. and Passchier, S.: Early–Middle Miocene (17–14 Ma) Antarctic ice dynamics reconstructed from the heavy mineral provenance in the AND-2A drill core, Ross Sea, Antarctica, Global Planet. Change, 82, 38–50, https://doi.org/10.1016/j.gloplacha.2011.11.003, 2012.
Henjes-Kunst, F. and Schussler, U.: Metasedimentary units of the Cambro-Ordovician Ross Orogen in northern Victoria Land and Oates Land: implications for their provenance and geotectonic setting from geochemical and Nd-Sr isotope data, Terra Ant. Reports, 10, 105–128, 2003.
Herbert, L. C., Lepp, A. P., Munevar Garcia, S., Browning, A., Miller, L. E., Wellner, J., Severmann, S., Hillenbrand, C.-D., Johnson, J. S., and Sherrell, R. M.: Volcanogenic fluxes of iron from the seafloor in the Amundsen Sea, West Antarctica, Mar. Chem., 253, 104250, https://doi.org/10.1016/j.marchem.2023.104250, 2023.
Hergt, J. M., Chappell, B. W., Faure, G., and Mensing, T. M.: The geochemistry of Jurassic dolerites from Portal Peak, Antarctica, Contrib. Mineral. Petr., 102, 298–305, https://doi.org/10.1007/BF00373722, 1989.
Herman, F., Beyssac, O., Brughelli, M., Lane, S. N., Leprince, S., Adatte, T., Lin, J. Y. Y., and Avouac, J. P.: Erosion by an Alpine glacier, Science, 350, 193–195, 2015.
Hill, J. C. and Condron, A.: Subtropical iceberg scours and meltwater routing in the deglacial western North Atlantic, Nat. Geosci., 7, 806–810, https://doi.org/10.1038/ngeo2267, 2014.
Hillenbrand, C. D. and Ehrmann, W.: Late Neogene to Quaternary environmental changes in the Antarctic Peninsula region: evidence from drift sediments, Global Planet. Change, 45, 165–191, https://doi.org/10.1016/j.gloplacha.2004.09.006, 2005.
Hillenbrand, C. D., Baesler, A., and Grobe, H.: The sedimentary record of the last glaciation in the western Bellingshausen Sea (West Antarctica): implications for the interpretation of diamictons in a polar-marine setting, Mar. Geol., 21, 191–204, https://doi.org/10.1016/j.margeo.2005.01.007, 2005.
Hillenbrand, C. D., Crowhurst, S. J., Williams, M., Hodell, D. A., McCave, I. N., Ehrmann, W., Xuan, C., Piotrowski, A. M., Hernendez-Molina, F. J., Graham, A. G. C., Gorbe, H., Williams, T. J., Horrocks, J. R., Allen, C. S., and Larter, R. D.: New insights from multi-proxy data from the West Antarctic continental rise: Implications for dating and interpreting Late Quaternary palaeoenvironmental records, Quaternary Sci. Rev., 257, 106842, https://doi.org/10.1016/j.quascirev.2021.106842, 2021.
Hodson, T. O., Powell, R. D., Brachfeld, S. A., Tulaczyk, S., Scherer, R. P., and WISSARD Science Team: Physical processes in Subglacial Lake Whillans, West Antarctica: inferences from sediment cores, Earth Planet. Sc. Lett., 444, 56–63, https://doi.org/10.1016/j.epsl.2016.03.036, 2016.
Hogan, K. A., Larter, R. D., Graham, A. G. C., Arthern, R., Kirkham, J. D., Totten, R. L., Jordan, T. A., Clark, R., Fitzgerald, V., Wåhlin, A. K., Anderson, J. B., Hillenbrand, C.-D., Nitsche, F. O., Simkins, L., Smith, J. A., Gohl, K., Arndt, J. E., Hong, J., and Wellner, J.: Revealing the former bed of Thwaites Glacier using sea-floor bathymetry: implications for warm-water routing and bed controls on ice flow and buttressing, The Cryosphere, 14, 2883–2908, https://doi.org/10.5194/tc-14-2883-2020, 2020.
Holder, L. and Marschalek, J. W.: Surface sediment Nd isotope compositions from the Ross Sea, Antarctica (1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.7548284, 2023.
Hopwood, M. J., Carroll, D., Höfer, J., Achterberg, E. P., Meire, L., Le Moigne, F. A. C., Bach, L. T., Eich, C., Sutherland, D. A., and González, H. E.: Highly variable iron content modulates iceberg-ocean fertilisation and potential carbon export, Nat. Commun., 10, 1–10, https://doi.org/10.1038/s41467-019-13231-0, 2019.
Hulbe, C. and Fahnestock, M.: Century-scale discharge stagnation and reactivation of the Ross ice streams, West Antarctica, J. Geophys. Res.-Earth, 112, F03S27, https://doi.org/10.1029/2006JF000603, 2007.
Hunter, E. J., Fuchs, H. L., Wilkin, J. L., Gerbi, G. P., Chant, R. J., and Garwood, J. C.: ROMSPath v1.0: offline particle tracking for the Regional Ocean Modeling System (ROMS), Geosci. Model Dev., 15, 4297–4311, https://doi.org/10.5194/gmd-15-4297-2022, 2022.
Jacobson, S. B. and Wasserburg, G. J.: Sm-Nd isotopic evolution of chondrites, Earth Planet. Sc. Lett., 50, 139–155, 1980.
Jamieson, S. S., Sugden, D. E., and Hulton, N. R.: The evolution of the subglacial landscape of Antarctica, Earth Planet. Sc. Lett., 293, 1–27, https://doi.org/10.1016/j.epsl.2010.02.012, 2010.
Jenkins, A., Shoosmith, D., Dutrieux, P., Jacobs, S., Kim, T. W., Lee, S. H., Ha, H. K., and Stammerjohn, S.: West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability, Nat. Geosci., 11, 733–738, https://doi.org/10.1038/s41561-018-0207-4, 2018.
Johnson, G. L., Kyle, P. R., Vanney, J. R., and Campsie, J.: Geology of Scott and Balleny Islands, Ross Sea, Antarctica, and morphology of adjacent seafloor, New Zeal. J. Geol. Geop., 25, 427–436, https://doi.org/10.1080/00288306.1982.10421508, 1982.
Jordan, T. A., Ferraccioli, F., Armadillo, E., and Bozzo, E.: Crustal architecture of the Wilkes Subglacial Basin in East Antarctica, as revealed from airborne gravity data, Tectonophysics, 585, 196–206, https://doi.org/10.1016/j.tecto.2012.06.041, 2013a.
Jordan, T. A., Ferraccioli, F., Ross, N., Corr, H. F., Leat, P. T., Bingham, R. G., Rippin, D.M., le Brocq, A., and Siegert, M. J.: Inland extent of the Weddell Sea Rift imaged by new aerogeophysical data, Tectonophysics, 585, 137–160, https://doi.org/10.1016/j.tecto.2012.09.010, 2013b.
Jordan, T. A., Riley, T. R., and Siddoway, C. S.: The geological history and evolution of West Antarctica, Nat. Rev. Earth Environ., 1, 117–133, https://doi.org/10.1038/s43017-019-0013-6, 2020.
Jordan, T. A., Thompson, S., Kulessa, B., and Ferraccioli, F.: Geological sketch map and implications for ice flow of Thwaites Glacier, West Antarctica, from integrated aerogeophysical observations, Sci. Adv., 9, eadf2639, https://doi.org/10.1126/sciadv.adf2639, 2023.
Jouvet, G. and Funk, M.: Modelling the trajectory of the corpses of mountaineers who disappeared in 1926 on Aletschgletscher, Switzerland, J. Glaciol., 60, 255–261, https://doi.org/10.3189/2014JoG13J156, 2014.
Kellogg, T. and Kellogg, D.: Antarctic cryogenic sediments: biotic and inorganic facies of ice shelf and marine-based ice sheet environments, Palaeogeogr. Palaeocl., 67, 51–74, https://doi.org/10.1016/0031-0182(88)90122-8, 1988.
Kellogg, T., Kellogg, D., and Stuiver, M.: Late Quaternary history of the southwestern Ross Sea: evidence from debris bands on the McMurdo Ice Shelf, Antarct. Res. Ser., 50, 25–56, https://doi.org/10.1029/AR050p0025, 1990.
Kipf, A., Hauff, F., Werner, R., Gohl, K., van den Bogaard, P., Hoernle, K., Maicher, D., and Klügel, A.: Seamounts off the West Antarctic margin: A case for non-hotspot driven intraplate volcanism, Gondwana Res., 25, 1660–1679, https://doi.org/10.1016/j.gr.2013.06.013, 2014.
Korhonen, F. J., Saito, S., Brown, M., Siddoway, C. S., and Day, J. M. D.: Multiple generations of granite in the Fosdick Mountains, Marie Byrd Land, West Antarctica: implications for polyphase intracrustal differentiation in a continental margin setting, J. Petrol., 51, 627–670, https://doi.org/10.1093/petrology/egp093, 2010.
Lange, M. and van Sebille, E.: Parcels v0.9: prototyping a Lagrangian ocean analysis framework for the petascale age, Geosci. Model Dev., 10, 4175–4186, https://doi.org/10.5194/gmd-10-4175-2017, 2017.
Lawver, L., Lee, J., Kim, Y., and Davey, F.: Flat-topped mounds in western Ross Sea: Carbonate mounds or subglacial volcanic features?, Geosphere, 8, 645–653, https://doi.org/10.1130/GES00766.1, 2012.
LeMasurier, W. E. and Landis, C. A.: Mantle-plume activity recorded by low-relief erosion surfaces in West Antarctica and New Zealand, Geol. Soc. Am. Bull., 108, 1450–1466, https://doi.org/10.1130/0016-7606(1996)108<1450:MPARBL>2.3.CO;2, 1996.
LeMasurier, W. E., Thomson, J. W., Baker, P. E., Kyle, P. R., Rowley, P. D., Smellie, J. L., and Verwoerd, W. J.: Volcanoes of the Antarctic plate and Southern Ocean, Antar. Res. Ser., 48, American Geophysical Union, 487, https://doi.org/10.1029/AR048, 1990.
Lepp, A. P., Simkins, L. M., Anderson, J. B., Clark, R. W., Wellner, J. S., Hillenbrand, C. D., Smith, J. A., Lehrmann, A. A., Totten, R., Larter, R. D., and Hogan, K. A.: Sedimentary Signatures of Persistent Subglacial Meltwater Drainage From Thwaites Glacier, Antarctica, Front. Earth Sci., 10, 863200, https://doi.org/10.3389/feart.2022.863200, 2022.
Licht, K. J. and Hemming, S. R.: Analysis of Antarctic glacigenic sediment provenance through geochemical and petrologic applications, Quaternary Sci. Rev., 164, 1–24, https://doi.org/10.1016/j.quascirev.2017.03.009, 2017
Licht, K. J., Hennessy, A. J., and Welke, B. M.: The U-Pb detrital zircon signature of West Antarctic ice stream tills in the Ross embayment, with implications for Last Glacial Maximum ice flow reconstructions, Antarct. Sci., 26, 687–697, https://doi.org/10.1017/S0954102014000315, 2014.
Lipp, A. G., Roberts, G. G., Whittaker, A. C., Gowing, C. J., and Fernandes, V. M.: River sediment geochemistry as a conservative mixture of source regions: Observations and predictions from the Cairngorms, UK, J. Geophys. Res.-Earth, 125, e2020JF005700, https://doi.org/10.1029/2020JF005700, 2020.
Lumborg, U.: Modelling the deposition, erosion, and flux of cohesive sediment through Øresund, J. Marine Syst., 56, 179–193, https://doi.org/10.1016/j.jmarsys.2004.11.003, 2005.
Luyendyk, B. P., Wilson, D. S., and Siddoway, C. S.: Eastern margin of the Ross Sea Rift in western Marie Byrd Land, Antarctica: Crustal structure and tectonic development, Geochem., Geophy., Geosy., 4, 1090, https://doi.org/10.1029/2002GC000462, 2003.
Magrani, F., Valla, P. G., and Egholm, D.: Modelling alpine glacier geometry and subglacial erosion patterns in response to contrasting climatic forcing, Earth Surf. Process., 47, 1054–1072, https://doi.org/10.1002/esp.5302, 2022.
Marschalek, J. W.: TASP (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.11449956, 2023.
Marschalek, J. W., Zurli, L., Talarico, F., van de Flierdt, T., Vermeesch. P., Carter, A., Beny, F., Bout-Roumazeilles, V., Sangiorgi, F., Hemming, S. R., Perez, L. F., Colleoni, F., Prebble, J. G., van Peer, T. E., Perotti, M., Shevenell, A. E., Browne, I., Kulhanek, D. K., Levy, R., Harwood, D., Sullivan, N. B., Meyers, S. R., Griffith, E. M., Hillenbrand, C.-D., Gasson, E., Siegert, M. J., Keisling, B., Licht, K. J., Kuhn, G., Dodd, J. P., Boshuis, C., De Santis, L., McKay, R. M., and the Expedition 374 Science Party: A large West Antarctic Ice Sheet explains early Neogene sea-level amplitude, Nature, 600, 450–455, https://doi.org/10.1038/s41586-021-04148-0, 2021.
Marsland, S. J., Bindoff, N. L., Williams, G. D., and Budd, W. F.: Modeling water mass formation in the Mertz Glacier Polynya and Adélie Depression, east Antarctica, J. Geophys. Res.-Oceans, 109, C11003, https://doi.org/10.1029/2004JC002441, 2004.
Martin, A. P., Cooper, A. F., and Price, R. C.: Petrogenesis of Cenozoic, alkalic volcanic lineages at Mount Morning, West Antarctica and their entrained lithospheric mantle xenoliths: Lithospheric versus asthenospheric mantle sources, Geochim. Cosmochim. Ac., 122, 127–152, https://doi.org/10.1016/j.gca.2013.08.025, 2013.
Massom, R. A., Hill, K. L., Lytle, V. I., Worby, A. P., Paget, M. J., and Allison, I.: Effects of regional fast-ice and iceberg distributions on the behaviour of the Mertz Glacier polynya, East Antarctica, Ann. Glaciol., 33, 391–398, https://doi.org/10.3189/172756401781818518, 2001.
McCave, I. N.: Deposition from suspension, Encyclopedia of Geology, Elsevier Science Ltd., Amsterdam, 759–770, https://doi.org/10.1016/B978-0-08-102908-4.10992-0, 2005.
McCave, I. N.: Size sorting during transport and deposition of fine sediments: sortable silt and flow speed, in: Developments in Sedimentology, 60, edited by: Rebesco, M. and Camerlenghi, A., Elsevier Science Ltd., 121–142, https://doi.org/10.1016/S0070-4571(08)10008-5, 2008.
McCave, I. N. and Hall, I. R.: Size sorting in marine muds: Processes, pitfalls, and prospects for paleoflow-speed proxies, Geochem. Geophy. Geosy., 7, Q10N05, https://doi.org/10.1029/2006GC001284, 2006.
Mofjeld, H. O.: Depth dependence of bottom stress and quadratic drag coefficient for barotropic pressure-driven currents, J. Phys. Oceanogr., 18, 1658–1669, https://doi.org/10.1175/1520-0485(1988)018<1658:DDOBSA>2.0.CO;2, 1988.
Molzahn, M., Reisberg, L., and Wörner, G.: Os, Sr, Nd, Pb, O isotope and trace element data from the Ferrar flood basalts, Antarctica: evidence for an enriched subcontinental lithospheric source, Earth Planet. Sc. Lett., 144, 529–545, https://doi.org/10.1016/S0012-821X(96)00178-1, 1996.
Monien, D., Kuhn, G., von Eynatten, H., and Talarico, F. M.: Geochemical provenance analysis of fine-grained sediment revealing Late Miocene to recent Paleo-Environmental changes in the Western Ross Sea, Antarctica, Global Planet. Change, 96, 41–58, https://doi.org/10.1016/j.gloplacha.2010.05.001, 2012.
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., Eisen, O., Farraccioli, F., Forsburg, R., Fretwell, P., Goel., V., Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat, I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K., Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S., Ruppel, A., Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., van den Broeke, M. R., van Ommen, T. D., van Wessem, M., and Young, D. A.: Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet, Nat. Geosci., 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8, 2020.
Mouginot, J., Scheuchl, B., and Rignot. E.: MEaSUREs Antarctic Boundaries for IPY 2007-2009 from Satellite Radar, Version 2, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/AXE4121732AD, 2017.
Mulder, T.: Gravity processes and deposits on continental slope, rise and abyssal plains, in: Developments in Sedimentology, 63, edited by: H. Huneke and T. Mulder, 25–148, Elsevier, https://doi.org/10.1016/B978-0-444-53000-4.00002-0, 2011.
Neff, P. D. and Bertler, N. A.: Trajectory modeling of modern dust transport to the Southern Ocean and Antarctica, J. Geophys. Res.-Atmos., 120, 9303–9322, 2015.
Nicholls, K. W., Corr, H. F. J., Makinson, K., and Pudsey, C. J.: Rock debris in an Antarctic ice shelf, Ann. Glaciol., 53, 235–240, https://doi.org/10.3189/2012AoG60A014, 2012.
O'Callaghan, J. F. and Mark, D. M.: The extraction of drainage networks from digital elevation data, Comput. Vision Graph., 28, 323–344, 1984.
Orejola, N., Passchier, S., and the IODP Expedition 318 Scientists: Sedimentology of lower Pliocene to Upper Pleistocene diamictons from IODP Site U1358, Wilkes Land margin, and implications for East Antarctic ice sheet dynamics, Antarct. Sci., 26, 183–192, https://doi.org/10.1017/S0954102013000527, 2014.
Orheim, O., Giles, B., Moholdt, G., Jacka, J., and Bjørdal, A.: The SCAR International Iceberg Database, Norwegian Polar Institute [data set], https://doi.org/10.21334/npolar.2021.e4b9a604, 2021.
Orsi, A. H. and Wiederwohl, C. L.: A recount of Ross Sea waters, Deep-Sea Res. Pt. II, 56, 778–795, https://doi.org/10.1016/j.dsr2.2008.10.033, 2009.
Orsi, A. H., Whitworth III, T., and Nowlin Jr., W. D.: On the meridional extent and fronts of the Antarctic Circumpolar Current, Deep-Sea Res. Pt. I, 42, 641–673, https://doi.org/10.1016/0967-0637(95)00021-W, 1995
Pandey, M., Pant, N. C., Biswas, P., Shrivastava, P. K., Joshi, S., and Nagi, N.: Heavy mineral assemblage of marine sediments as an indicator of provenance and east Antarctic ice sheet fluctuations, Geo. Soc. S. P., 461, 95–111, https://doi.org/10.1144/SP461.2, 2018.
Pankhurst, R. J., Storey, B. C., and Millar, U.: Magmatism related to the break-up of Gondwana, edited by: Crame, J. A. and Thomson, J. W., Geological evolution of Antarctica, Volume 1, Cambridge University Press, 573–579, 1991.
Pankhurst, R. J., Millar, I. L., Grunow, A. M., and Storey, B. C.: The pre-Cenozoic magmatic history of the Thurston Island crustal block, West Antarctica, J. Geophys. Res.-Earth, 98, 11835–11849, https://doi.org/10.1029/93JB01157, 1993.
Pankhurst, R. J., Weaver, S. D., Bradshaw, J. D., Storey, B. C., and Ireland, T. R.: Geochronology and geochemistry of pre-Jurassic superterranes in Marie Byrd Land, Antarctica, J. Geophys. Res.-Earth, 103, 2529–2547, https://doi.org/10.1029/97JB02605, 1998.
Panter, K. S. and Castillo, P.: Petrogenesis and source of lavas from seamounts in the Adare Basin, Western Ross Sea: Implications for the origin of Cenozoic magmatism in Antarctica, in: Antarctica: A Keystone in a Changing World, Online Proceedings of the 10th ISAES X, USGS Open-File Report 2007-1047, Extended Abstract 69, 2007.
Patrick, M. R. and Smellie, J. L.: Synthesis A spaceborne inventory of volcanic activity in Antarctica and southern oceans, 2000–10, Antarct. Sci., 25, 475–500, https://doi.org/10.1017/S0954102013000436, 2013.
Paxman, G. J., Jamieson, S. S., Ferraccioli, F., Jordan, T. A., Bentley, M. J., Ross, N., Forsberg, R., Matsuoka, K., Steinhage, D., Eagles, G., and Casal, T. G.: Subglacial Geology and Geomorphology of the Pensacola-Pole Basin, East Antarctica, Geochem. Geophy. Geosy., 20, 2786–2807, https://doi.org/10.1029/2018GC008126, 2019.
Perotti, M., Andreucci, B., Talarico, F., Zattin, M., and Langone, A.: Multianalytical provenance analysis of Eastern Ross Sea LGM till sediments (Antarctica): Petrography, geochronology, and thermochronology detrital data, Geochem. Geophy. Geosy., 18, 2275–2304, https://doi.org/10.1002/2016GC006728, 2017.
Pettit, E. C., Whorton, E. N., Waddington, E. D., and Sletten, R. S.: Influence of debris-rich basal ice on flow of a polar glacier, J. Glaciol., 60, 989–1006, https://doi.org/10.3189/2014JoG13J161, 2014.
Peucat, J. J., Ménot, R. P., Monnier, O., and Fanning, C. M.: The Terre Adélie basement in the East-Antarctica Shield: geological and isotopic evidence for a major 1.7 Ga thermal event; comparison with the Gawler Craton in South Australia, Precambrian Res., 94, 205–224, https://doi.org/10.1016/S0301-9268(98)00119-3, 1999.
Phillips, E. H., Sims, K. W. W., Blichert-Toft, J., Aster, R. C., Gaetani, G. A., Kyle, P. R., Wallace, P. J., and Rasmussen, D. J.: The nature and evolution of mantle upwelling at Ross Island, Antarctica, with implications for the source of HIMU lavas, Earth Planet. Sc. Lett., 498, 38–53, https://doi.org/10.1016/j.epsl.2018.05.049, 2018.
Pierce, E. L., Williams, T., Van De Flierdt, T., Hemming, S. R., Goldstein, S. L., and Brachfeld, S. A.: Characterizing the sediment provenance of East Antarctica's weak underbelly: The Aurora and Wilkes sub-glacial basins, Paleoceanography, 26, PA4217, doi.org/10.1029/2011PA002127, 2011.
Pierce, E. L., van de Flierdt, T., Williams, T., Hemming, S. R., Cook, C. P., and Passchier, S.: Evidence for a dynamic East Antarctic ice sheet during the mid-Miocene climate transition, Earth Planet. Sc. Lett., 478, 1–13, https://doi.org/10.1016/j.epsl.2017.08.011, 2017.
Pollard, D. and DeConto, R. M.: Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2, Nature, 421, 245–249, https://doi.org/10.1038/nature01290, 2003.
Pollard, D. and DeConto, R. M.: Description of a hybrid ice sheet-shelf model, and application to Antarctica, Geosci. Model Dev., 5, 1273–1295, https://doi.org/10.5194/gmd-5-1273-2012, 2012.
Pollard, D. and DeConto, R. M.: Continuous simulations over the last 40 million years with a coupled Antarctic ice sheet-sediment model, Palaeogeogr. Palaeocl., 537, 109374, https://doi.org/10.1016/j.palaeo.2019.109374, 2019.
Prestvik, T. and Duncan, R. A.: The geology and age of Peter I Øy, Antarctica, Polar Res., 9, 89–98, https://doi.org/10.3402/polar.v9i1.6781, 1991.
Rackow, T., Wesche, C., Timmermann, R., Hellmer, H. H., Juricke, S., and Jung, T.: A simulation of small to giant Antarctic iceberg evolution: Differential impact on climatology estimates, J. Geophys. Res.-Oceans, 122, 3170–3190, https://doi.org/10.1002/2016JC012513, 2017.
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-shelf melting around Antarctica, Science, 341, 266–270, https://doi.org/10.1126/science.1235798, 2013.
Rilling, S., Mukasa, S., Wilson, T., Lawver, L., and Hall, C.: New determinations of isotopic ages and flow volumes for Cenozoic volcanism in the Terror Rift, Ross Sea, Antarctica, J. Geophys. Res.-Earth, 114, B12207, https://doi.org/10.1029/2009JB006303, 2009.
Rocchi, S., Tonarini, S., Armienti, P., Innocenti, F., and Manetti, P.: Geochemical and isotopic structure of the early Palaeozoic active margin of Gondwana in northern Victoria Land, Antarctica, Tectonophysics, 284, 261–281, https://doi.org/10.1016/S0040-1951(97)00178-9, 1998.
Rocchi, S., LeMasurier, W. E., and Di Vincenzo, G.: Oligocene to Holocene erosion and glacial history in Marie Byrd Land, West Antarctica, inferred from exhumation of the Dorrel Rock intrusive complex and from volcano morphologies, Geol. Soc. Am. Bull., 118, 991–1005, https://doi.org/10.1130/B25675.1, 2006.
Rocchi, S., Di Vincenzo, G., Ghezzo, C., and Nardini, I.: Granite-lamprophyre connection in the latest stages of the early Paleozoic Ross Orogeny (Victoria Land, Antarctica), Geol. Soc. Am. Bull., 121, 801–819, https://doi.org/10.1130/B26342.1, 2009.
Rodrigues, S., Hernández-Molina, F. J., Hillenbrand, C. D., Lucchi, R. G., Rodríguez-Tovar, F. J., Rebesco, M., and Larter, R. D.: Recognizing key sedimentary facies in mixed depositional systems: the case of the Pacific margin of the Antarctic Peninsula, Sedimentology, 69, 1953–1991, https://doi.org/10.1111/sed.12978, 2022a.
Rodrigues, S., Hernández-Molina, F. J., Larter, R. D., Rebesco, M., Hillenbrand, C. D., Lucchi, R. G., and Rodríguez-Tovar, F. J.: Sedimentary model for mixed depositional systems along the Pacific margin of the Antarctic Peninsula: Decoding the interplay of deep-water processes, Mar. Geol., 445, 106754, https://doi.org/10.1016/j.margeo.2022.106754, 2022b.
Roy, M., van de Flierdt, T., Hemming, S. R., and Goldstein, S. L.: 40Ar/39Ar ages of hornblende grains and bulk Sm/Nd isotopes of circum-Antarctic glacio-marine sediments: implications for sediment provenance in the southern ocean, Chem. Geol., 244, 507–519, 2007.
Russell-Head, D. S.: The melting of free-drifting icebergs, Ann. Glaciol., 1, 119–122, https://doi.org/10.3189/S0260305500017092, 1980.
Sandroni, S. and Talarico, F. M.: The record of Miocene climatic events in AND-2A drill core (Antarctica): Insights from provenance analyses of basement clasts, Global Planet Change, 75, 31–46, https://doi.org/10.1016/j.gloplacha.2010.10.002, 2011.
Schroeder, D. M., Blankenship, D. D., Young, D. A., and Quartini, E.: Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic Ice Sheet, P. Natl. Acad. Sci. USA, 111, 9070–9072, https://doi.org/10.1073/pnas.1405184111, 2014.
Shao, H., He, J., Wu, L., and Wei, L.: Elemental and Sr–Nd isotopic compositions of surface clay-size sediments in the front end of major ice shelves around Antarctica and indications for provenance, Deep-Sea Res. Pt. II, 195, 105011, https://doi.org/10.1016/j.dsr2.2021.105011, 2022.
Shaw, T. J., Raiswell, R., Hexel, C. R., Vu, H. P., Moore, W. S., Dudgeon, R., and Smith Jr., K. L.: Input, composition, and potential impact of terrigenous material from free-drifting icebergs in the Weddell Sea, Deep-Sea Res. Pt. II, 58, 1376–1383, https://doi.org/10.1016/j.dsr2.2010.11.012, 2011.
Shi, B., Wang, Y. P., Yang, Y., Li, M., Li, P., Ni, W., and Gao, J.: Determination of critical shear stresses for erosion and deposition based on in situ measurements of currents and waves over an intertidal mudflat, J. Coastal Res., 31, 1344–1356, https://doi.org/10.2112/JCOASTRES-D-14-00239.1, 2015.
Simões Pereira, P.: Insights into West Antarctica's geology and late Pleistocene ice sheet behaviour from isotopic sedimentary provenance studies, Ph.D. thesis, Imperial College London, 2018.
Simões Pereira, P., van de Flierdt, T., Hemming, S. R., Hammond, S. J., Kuhn, G., Brachfeld, S., Doherty, C., and Hillenbrand, C. D.: Geochemical fingerprints of glacially eroded bedrock from West Antarctica: Detrital thermochronology, radiogenic isotope systematics and trace element geochemistry in Late Holocene glacial-marine sediments, Earth-Sci. Rev., 182, 204–232, https://doi.org/10.1016/j.earscirev.2018.04.011, 2018.
Simões Pereira, P., van de Flierdt, T., Hemming, S. R., Frederichs, T., Hammond, S. J., Brachfeld, S., Doherty, C., Kuhn, G., Smith, J. A., Klages, J. P., and Hillenbrand, C. D.: The geochemical and mineralogical fingerprint of West Antarctica's weak underbelly: Pine Island and Thwaites glaciers, Chem. Geol., 550, 119649, https://doi.org/10.1016/j.chemgeo.2020.119649, 2020.
Smith, J. A., Hillenbrand, C. D., Larter, R. D., Graham, A. G., and Kuhn, G.: The sediment infill of subglacial meltwater channels on the West Antarctic continental shelf, Quaternary Res., 71, 190–200, https://doi.org/10.1016/j.yqres.2008.11.005, 2009.
Smith, J. A., Graham, A. G., Post, A. L., Hillenbrand, C. D., Bart, P. J., and Powell, R. D.: The marine geological imprint of Antarctic ice shelves, Nat. Commun., 10, 1–16, https://doi.org/10.1038/s41467-019-13496-5, 2019.
Storey, B. C., Pankhurst, R. J., and Johnson, A. C.: The Grenville Province within Antarctica: a test of the SWEAT hypothesis, J. Geol. Soc. London, 151, 1–4, https://doi.org/10.1144/gsjgs.151.1.0001, 1994.
Stow, D. A. V.: Deep sea processes of sediment transport and deposition, Sediment Transport and Depositional Processes, edited by: Pye K., Blackwell Scientific Publications, Oxford, 257–291, 1994.
Struve, T., van de Flierdt, T., Burke, A., Robinson, L. F., Hammond, S. J., Crocket, K. C., Bradtmiller, L. I., Auro, M. E., Mohanmed, K. J., and White, N. J.: Neodymium isotopes and concentrations in aragonitic scleractinian cold-water coral skeletons-Modern calibration and evaluation of palaeo-applications, Chem. Geol., 453, 146–168, https://doi.org/10.1016/j.chemgeo.2017.01.022, 2017.
Stuart, K. M. and Long, D. G.: Tracking large tabular icebergs using the SeaWinds Ku-band microwave scatterometer, Deep-Sea Res. Pt. II, 58, 1285–1300, https://doi.org/10.1016/j.dsr2.2010.11.004, 2011.
Studinger, M., Bell, R. E., Fitzgerald, P. G., and Buck, W. R.: Crustal architecture of the Transantarctic Mountains between the Scott and Reedy Glacier region and South Pole from aerogeophysical data, Earth Planet. Sc. Lett., 250, 182–199, https://doi.org/10.1016/j.epsl.2006.07.035, 2006.
Sugden, D., McCulloch, R., Bory, A. M., and Hein, A. S.: Influence of Patagonian glaciers on Antarctic dust deposition during the last glacial period, Nat. Geosci., 2, 281–285, https://doi.org/10.1038/ngeo474, 2009.
Talarico, F., Borsi, L., and Lombardo, B.: Relict granulites in the Ross Orogen of northern Victoria Land (Antarctica), II. Geochemistry and palaeo-tectonic implications, Precambrian Res., 75, 157–174, https://doi.org/10.1016/0301-9268(95)80004-2, 1995.
Tonarini, S. and Rocchi, S.: Geochronology of Cambro-Ordovician intrusives in Victoria Land: A review, Terra Ant. Reports, 1, 46–50, 1994.
Tournadre, J., Bouhier, N., Girard-Ardhuin, F., and Rémy, F.: Antarctic icebergs distributions 1992–2014, J. Geophys. Res.-Oceans, 121, 327–349, https://doi.org/10.1002/2015JC011178, 2016.
Tucholke, B. E.: Sedimentation processes and acoustic stratigraphy in the Bellingshausen Basin, Mar. Geol., 25, 209–230, https://doi.org/10.1016/0025-3227(77)90053-6, 1977.
Ugelvig, S. V., Egholm, D. L., Anderson, R. S., and Iverson, N. R.: Glacial erosion driven by variations in meltwater drainage. J. Geophys. Res.-Earth Surface, 123, 2863–2877, https://doi.org/10.1029/2018JF004680, 2018.
Umlauf, L. and Arneborg, L.: Dynamics of rotating shallow gravity currents passing through a channel. Part I: Observation of transverse structure, J. Phys. Oceanogr., 39, 2385–2401, https://doi.org/10.1175/2009JPO4159.1, 2009.
van de Flierdt, T., Goldstein, S. L., Hemming, S. R., Roy, M., Frank, M., and Halliday, A. N.: Global neodymium–hafnium isotope systematics – revisited, Earth Planet. Sc. Lett., 259, 432–441, https://doi.org/10.1016/j.epsl.2007.05.003, 2007.
van Wyk de Vries, M., Bingham, R. G., and Hein, A. S.: A new volcanic province: an inventory of subglacial volcanoes in West Antarctica, Geo. Soc. S. P., 461, 231–248, https://doi.org/10.1144/SP461.7, 2018.
Wagner, T. J., Dell, R. W., and Eisenman, I.: An analytical model of iceberg drift, J. Phys. Oceanogr., 47, 1605–1616, https://doi.org/10.1175/JPO-D-16-0262.1, 2017.
Walter, H. J., Hegner, E., Diekmann, B., and Kuhn, G.: Provenance and transport of terrigenous sediment in the South Atlantic Ocean and their relations to glacial and interglacial cycles: Nd and Sr isotopic evidence, Geochim. Cosmochim. Ac., 64, 3813–3827, https://doi.org/10.1016/S0016-7037(00)00476-2, 2000.
Wang, R., Williams, T. J., Hillenbrand, C.-D., Ehrmann, W., Larkin, C. S., Hutchings, A. M., and Piotrowski, A. M.: Boundary processes and neodymium cycling along the Pacific margin of West Antarctica, Geochim. Cosmochim. Ac., 327, 1–20, https://doi.org/10.1016/j.gca.2022.04.012, 2022.
Wang, X., Holland, D. M., and Gudmundsson, G. H.: Accurate coastal DEM generation by merging ASTER GDEM and ICESat/GLAS data over Mertz Glacier, Antarctica, Proc. Spie, 206, 218–230, https://doi.org/10.1016/j.rse.2017.12.041, 2018.
Wareham, C. D., Stump, E., Storey, B. C., Millar, I. L., and Riley, T. R.: Petrogenesis of the Cambrian Liv Group. A bimodal volcanic rock suite from the Ross orogen, Transantarctic Mountains, Geol. Soc. Am. Bull., 113, 360–372, https://doi.org/10.1130/0016-7606(2001)113<0360:POTCLG>2.0.CO;2, 2001.
Weaver, S. D., Adams, C. J., Pankhurst, R. J., and Gibson, I. L.: Granites of Edward VII Peninsula, Marie Byrd Land: anorogenic magmatism related to Antarctic-New Zealand rifting, T. RSE Earth, 83, 281–290, https://doi.org/10.1017/S0263593300007963, 1992.
Weis, D., Kieffer, B., Maerschalk, C., Barling, J., De Jong, J., Williams, G. A., Hanano, D., Pretorius, W., Mattielli, N., Scoates, J. S., and Goolaerts, A.: High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS, Geochem. Geophy. Geosy., 7, Q08006, https://doi.org/10.1029/2006GC001283, 2006.
Wengler, M., Lamy, F., Struve, T., Borunda, A., Böning, P., Geibert, W., Kuhn, G., Pahnke, K., Roberts, J., Tiedemann, R., and Winckler, G.: A geochemical approach to reconstruct modern dust fluxes and sources to the South Pacific, Geochim. Cosmochim. Ac., 264, 205–223, https://doi.org/10.1016/j.gca.2019.08.024, 2019.
Williams, T., Hemming, S. R., Licht, K., Agrios, L., Brachfeld, S. A., van de Flierdt, T., Hillenbrand, C. D., Ehrmann, W.U., Zhai, X., Cai, Y., Corley, A. D., and Kuhn, G.: Insights into the Geographic Sequence of Deglaciation in the Weddell Sea Embayment by Provenance of Ice-Rafted Debris, AGU Fall Meeting, 11–15 December 2017, New Orleans, C21E-1168, 2017.
Willis, I. C., Pope, E. L., Gwendolyn, J. M., Arnold, N. S., and Long, S.: Drainage networks, lakes and water fluxes beneath the Antarctic ice sheet, Ann. Glaciol., 57, 96–108, https://doi.org/10.1017/aog.2016.15, 2016.
Wilson, D. J., Bertram, R. A., Needham, E. F., van de Flierdt, T., Welsh, K. J., McKay, R. M., Mazumder, A., Riesselman, C. R., Jimnez-Espejo, F. J., and Escutia, C.: Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials, Nature, 561, 383–386, https://doi.org/10.1038/s41586-018-0501-8, 2018.
Yakymchuk, C., Brown, C. R., Brown, M., Siddoway, C. S., Fanning, C. M., and Korhonen, F. J.: Paleozoic evolution of western Marie Byrd Land, Antarctica, Geol. Soc. Am. Bull., 127, 1464–1484, https://doi.org/10.1130/B31136.1, 2015.
Yevteyev, S. A.: Opredeleniye kolichestva morennogo materiala, perenosimogo lednikami vostochnogo poberezh'ya Antarktidy [Determination of the amount of morainic material carried down by glaciers of the east Antarctic coast], Informatsionnyy Byulleten' Sovetskoy Antarkticheskoy Ekspeditsii, 11, 14–16, 1959.
Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., and Mayer, M.: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment, Ocean Sci., 15, 779–808, https://doi.org/10.5194/os-15-779-2019, 2019.
Zwally, H. J., Giovinetto, M. B., Beckley, M. A., and Saba, J. L.: Antarctic and Greenland Drainage Systems, GSFC Cryospheric Sciences Laboratory, http://icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.php (last access: June 2023), 2012.
Short summary
Ice sheet models can help predict how Antarctica's ice sheets respond to environmental change, and such models benefit from comparison to geological data. Here, we use an ice sheet model output and other data to predict the erosion of debris and trace its transport to where it is deposited on the ocean floor. This allows the results of ice sheet modelling to be directly and quantitively compared to real-world data, helping to reduce uncertainty regarding Antarctic sea level contribution.
Ice sheet models can help predict how Antarctica's ice sheets respond to environmental change,...