Articles | Volume 18, issue 4
https://doi.org/10.5194/gmd-18-1017-2025
https://doi.org/10.5194/gmd-18-1017-2025
Methods for assessment of models
 | 
24 Feb 2025
Methods for assessment of models |  | 24 Feb 2025

Explaining neural networks for detection of tropical cyclones and atmospheric rivers in gridded atmospheric simulation data

Tim Radke, Susanne Fuchs, Christian Wilms, Iuliia Polkova, and Marc Rautenhaus

Related authors

The effect of lossy compression of numerical weather prediction data on data analysis: a case study using enstools-compression 2023.11
Oriol Tintó Prims, Robert Redl, Marc Rautenhaus, Tobias Selz, Takumi Matsunobu, Kameswar Rao Modali, and George Craig
Geosci. Model Dev., 17, 8909–8925, https://doi.org/10.5194/gmd-17-8909-2024,https://doi.org/10.5194/gmd-17-8909-2024, 2024
Short summary
An objective identification technique for potential vorticity structures associated with African easterly waves
Christoph Fischer, Andreas H. Fink, Elmar Schömer, Marc Rautenhaus, and Michael Riemer
Geosci. Model Dev., 17, 4213–4228, https://doi.org/10.5194/gmd-17-4213-2024,https://doi.org/10.5194/gmd-17-4213-2024, 2024
Short summary
Visual analysis of model parameter sensitivities along warm conveyor belt trajectories using Met.3D (1.6.0-multivar1)
Christoph Neuhauser, Maicon Hieronymus, Michael Kern, Marc Rautenhaus, Annika Oertel, and Rüdiger Westermann
Geosci. Model Dev., 16, 4617–4638, https://doi.org/10.5194/gmd-16-4617-2023,https://doi.org/10.5194/gmd-16-4617-2023, 2023
Short summary
The three-dimensional structure of fronts in mid-latitude weather systems in numerical weather prediction models
Andreas A. Beckert, Lea Eisenstein, Annika Oertel, Tim Hewson, George C. Craig, and Marc Rautenhaus
Geosci. Model Dev., 16, 4427–4450, https://doi.org/10.5194/gmd-16-4427-2023,https://doi.org/10.5194/gmd-16-4427-2023, 2023
Short summary
The three-dimensional structure of fronts in mid-latitude weather systems as represented by numerical weather prediction models
Andreas Alexander Beckert, Lea Eisenstein, Annika Oertel, Timothy Hewson, George C. Craig, and Marc Rautenhaus
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-36,https://doi.org/10.5194/wcd-2022-36, 2022
Preprint withdrawn
Short summary

Related subject area

Atmospheric sciences
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025,https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025,https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025,https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025,https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025,https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary

Cited articles

Abu Alhaija, H., Mustikovela, S. K., Mescheder, L., Geiger, A., and Rother, C.: Augmented Reality Meets Computer Vision: Efficient Data Generation for Urban Driving Scenes, Int. J. Comput. Vis., 126, 961–972, https://doi.org/10.1007/s11263-018-1070-x, 2018. 
Achtibat, R., Dreyer, M., Eisenbraun, I., Bosse, S., Wiegand, T., Samek, W., and Lapuschkin, S.: From attribution maps to human-understandable explanations through Concept Relevance Propagation, Nat. Mach. Intell., 5, 1006–1019, https://doi.org/10.1038/s42256-023-00711-8, 2023. 
Ahmed, A. M. A. and Ali, L.: Explainable Medical Image Segmentation via Generative Adversarial Networks and Layer-wise Relevance Propagation, Nordic Machine Intelligence, 1, 20–22, https://doi.org/10.5617/nmi.9126, 2021. 
Ahrens, C. D., Jackson, P. L., and Jackson, C. E. O.: Meteorology Today: An Introduction to Weather, Climate, and the Environment, Nelson Education, 710 pp., ISBN-10 0357452070, ISBN-13 978-0357452073, 2012. 
Alves, D. B. M., Sapucci, L. F., Marques, H. A., and Souza, E. M.: Using a regional numerical weather prediction model for GNSS positioning over Brazil, GPS Solut., 20, 677–685, https://doi.org/10.1007/s10291-015-0477-x, 2016. 
Download
Short summary
In our study, we built upon previous work to investigate the patterns artificial intelligence (AI) learns to detect atmospheric features like tropical cyclones (TCs) and atmospheric rivers (ARs). As primary objective, we adopt a method to explain the AI used and investigate the plausibility of learned patterns. We find that plausible patterns are learned for both TCs and ARs. Hence, the chosen method is very useful for gaining confidence in the AI-based detection of atmospheric features.
Share