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Abstract. Detection of atmospheric features in gridded
datasets from numerical simulation models is typically done
by means of rule-based algorithms. Recently, the feasibility
of learning feature detection tasks using supervised learning
with convolutional neural networks (CNNs) has been demon-
strated. This approach corresponds to semantic segmentation
tasks widely investigated in computer vision. However, while
in recent studies the performance of CNNs was shown to
be comparable to human experts, CNNs are largely treated
as a “black box”, and it remains unclear whether they learn
the features for physically plausible reasons. Here we build
on the recently published “ClimateNet” dataset that contains
features of tropical cyclones (TCs) and atmospheric rivers
(ARs) as detected by human experts. We adapt the explain-
able artificial intelligence technique “Layer-wise Relevance
Propagation” (LRP) to the semantic segmentation task and
investigate which input information CNNs with the Context-
Guided Network (CGNet) and U-Net architectures use for
feature detection. We find that both CNNs indeed consider
plausible patterns in the input fields of atmospheric variables.
For instance, relevant patterns include point-shaped extrema
in vertically integrated precipitable water (TMQ) and cir-
cular wind motion for TCs. For ARs, relevant patterns in-
clude elongated bands of high TMQ and eastward winds.
Such results help to build trust in the CNN approach. We also
demonstrate application of the approach for finding the most
relevant input variables (TMQ is found to be most relevant,
while surface pressure is rather irrelevant) and evaluating de-
tection robustness when changing the input domain (a CNN

trained on global data can also be used for a regional do-
main, but only partially contained features will likely not be
detected). However, LRP in its current form cannot explain
shape information used by the CNNs, although our findings
suggest that the CNNs make use of both input values and
the shape of patterns in the input fields. Also, care needs to
be taken regarding the normalization of input values, as LRP
cannot explain the contribution of bias neurons, accounting
for inputs close to zero. These shortcomings need to be ad-
dressed by future work to obtain a more complete explana-
tion of CNNs for geoscientific feature detection.

1 Introduction

The automated detection and tracking of 2-D and 3-D atmo-
spheric features including cyclones, fronts, jet streams, or at-
mospheric rivers (ARs) in simulation and observation data
has multiple applications in meteorology. For example, au-
tomatically detected features are used for weather forecast-
ing (e.g., Hewson and Titley, 2010; Mittermaier et al., 2016;
Hengstebeck et al., 2018), statistical and climatological stud-
ies (e.g., Dawe and Austin, 2012; Pena-Ortiz et al., 2013;
Schemm et al., 2015; Sprenger et al., 2017; Lawrence and
Manney, 2018), and visual data analysis (e.g., Rautenhaus et
al., 2018; Bosiger et al., 2022; Beckert et al., 2023). Features
are typically detected based on a set of physical and math-
ematical rules. For example, cyclones can be identified by
searching for minima or maxima in variables including mean
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sea level pressure and lower-tropospheric vorticity (Neu et
al., 2013; Bourdin et al., 2022). Atmospheric fronts can be
identified by means of derivatives of a thermal variable com-
bined with threshold-based filters (Jenkner et al., 2010; Hew-
son and Titley, 2010; Beckert et al., 2023) and ARs based on
thresholding and geometric requirements (Guan and Waliser,
2015; Shields et al., 2018).

Recent research has shown that, given a pre-defined la-
beled dataset, supervised learning with artificial neural net-
works (ANNs), in particular convolutional neural networks
(CNNs), can learn a feature detection task. For example,
Kapp-Schwoerer et al. (2020) and Prabhat et al. (2021) (ab-
breviated as KS20 and P21 hereafter) showed that CNNs can
be trained to detect tropical cyclone (TC) and AR features.
Lagerquist et al. (2019), Biard and Kunkel (2019), Niebler et
al. (2022), and Justin et al. (2023) used CNNs to detect at-
mospheric fronts. In these works, CNNs are used to classify
individual grid points of a gridded input dataset according to
whether they belong to a feature. This corresponds to a “se-
mantic segmentation task” widely investigated in the com-
puter vision literature for segmentation and classification of
regions in digital images, e.g., cars, trees, or road surface
(Long et al., 2015; Liu et al., 2019; Xie et al., 2021; Man-
akitsa et al., 2024).

Using CNNs for feature detection via semantic segmen-
tation can have several advantages. These include increased
computational performance (Boukabara et al., 2021; Higgins
et al., 2023) and the option to learn features that are diffi-
cult to formulate as a set of physical rules (P21; Niebler et
al., 2022; Tian et al., 2023). A major limiting factor, how-
ever, is that they are “black box” algorithms that do not al-
low for an easy interpretation of the decision-making pro-
cess inside CNNs. Hence, one does not know whether a CNN
bases its decision on plausible patterns in the data. If not, a
CNN may still perform well on the training data but fails to
generalize to unseen data (Lapuschkin et al., 2019). To ap-
proach this issue, the artificial intelligence (AI) community
has proposed methods for explainable artificial intelligence
(xAl) in the past decade (Linardatos et al., 2021; Holzinger et
al., 2022; Mersha et al., 2024). Examples include Layer-wise
Relevance Propagation (LRP; Bach et al., 2015), Local Inter-
pretable Model-Agnostic Explanations (LIME; Ribeiro et al.,
2016), Gradient-weighted Class Activation Mapping (Grad-
CAM,; Selvaraju et al., 2017), and Shapley Additive Explana-
tions (SHAP; Lundberg and Lee, 2017). In short, these meth-
ods provide information about what an ANN “looks at” when
computing its output, hence allowing evaluation of the plau-
sibility of the learned patterns.

The xAI methods vary with respect to several character-
istics. For example, the relevance of the input data can be
computed per input grid point' or for entire regions of the

]Computer vision literature concerned with image data uses the
term “pixel” for individual input data points. In this study we are
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input data and per input variable? or jointly for all variables.
Also, the complexity of implementation differs. For applica-
tion in semantic segmentation, an open challenge is also that
existing XAl methods have been mainly developed for clas-
sification tasks, i.e., for CNNs assigning input data to one
of several classes (instead of identifying the spatial structure
of a feature, this corresponds to the following question: “is a
particular feature contained in the input data?’). While Grad-
CAM is readily available for use with semantic segmentation
(Captum, 2023; MathWorks, 2023), it has the drawback of
not being able to differentiate between input variables (Sel-
varaju et al., 2017). SHAP can be implemented for seman-
tic segmentation (e.g., Dardouillet et al., 2023); however, it
computes relevance values for clusters of input grid points
and not for individual input grid points. The same applies to
LIME; moreover, to the best of our knowledge, we are not
aware of implementations of LIME for semantic segmenta-
tion. The feasibility of using LRP for semantic segmenta-
tion has been demonstrated in the context of medical imag-
ing (Tjoa et al., 2019; Ahmed and Ali, 2021), and it produces
relevance information per grid point and input variable.

Our goal for the study at hand is to provide an xAl method
that works with semantic segmentation CNNs trained to de-
tect atmospheric features. We are interested in opening the
“black box” to investigate whether a CNN uses physically
plausible input patterns to make its decision. This requires
analysis of the spatial distribution of input relevance (i.e.,
which regions and structures are relevant for a particular fea-
ture; hence relevance information per grid point is needed),
as well as analysis of distributions of relevant input variables
(i.e., which values of which input variables are of importance
to detect a feature; hence relevance information per input
variable are needed).

As an application example, we consider the work by KS20
and P21, who introduced an expert-labeled dataset of TCs
and ARs in atmospheric simulation data (the “ClimateNet”
dataset). KS20 and P21 trained two different CNN architec-
tures, DeepLabv3+ (Chen et al., 2018) and Context-Guided
Network (CGNet; Wu et al., 2021), to perform feature detec-
tion via semantic segmentation. The studies showed that for
the given task, the CNNs learned to detect TCs and ARs and
that the CGNet architecture outperformed the DeepLabv3+-
architecture. However, in neither study was an XAl technique
applied.

Mamalakis et al. (2022) (abbreviated as M22 hereafter) re-
cently presented work in this direction by reformulating the
P21 segmentation task into a classification task and evalu-
ating several available XAl techniques for classification, in-
cluding LRP and SHAP. They considered subregions of the
global dataset used by P21 and differentiated whether zero,

concerned with gridded simulation data and hence use the term
“grid point”.

2Simila.rly, we use the term “input variable” instead of “color
channel” commonly used in computer vision.
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one, or more ARs exist in a subregion. TCs were not con-
sidered. M22 showed that for their classification setup, LRP
yielded useful information to assess the plausibility of the
decision-making inside the CNN. LRP has also been success-
fully applied in further geoscientific studies concerned with
use of CNNs for classification tasks (Beobide-Arsuaga et al.,
2023; Davenport and Diffenbaugh, 2021; Labe and Barnes,
2022; Toms et al., 2020). It also fulfills our requirement of
computing relevance information per grid point and input
variable (at least in some variants; cf. M22).

In this study, we build on the work by KS20, P21, and
M22. We demonstrate and analyze the use of LRP for the
KS20/P21 case of detecting TCs and ARs, using the CGNet
architecture used by KS20 and the ClimateNet dataset pro-
vided by P21 (Sect. 2). We reproduce the KS20/P21 setup
(Sect. 3) and address the following objectives:

1. Adapt LRP to the semantic segmentation task for geo-
scientific datasets and extend the method to be applica-
ble to the CGNet CNN architecture (Sect. 4).

2. Examine the plausibility of spatial relevance patterns
and distributions of relevant inputs for TC and AR de-
tection as computed with LRP (Sects. 5 and 6).

3. Demonstrate further applications of LRP for semantic
segmentation, including assessment of the most relevant
input variables for a feature detection task and assess-
ment of the robustness of feature detection when data
of subregions instead of global data are used as input
(Sect. 7).

For comparison and due to its widespread use for semantic
segmentation in computer vision, we also consider the U-Net
architecture (Ronneberger et al., 2015). To limit paper length,
however, its results are mainly presented in the Supplement.

2 The ClimateNet dataset

The ClimateNet dataset introduced by P21 contains global 2-
D longitude—latitude grids of selected atmospheric variables
at a collection of time steps from a simulation conducted with
the Community Atmospheric Model (CAMS.1; Wehner et
al., 2014), spanning a time interval from 1996 to 2013 (note
that these are not reanalysis data). Each grid has a size of
768 x 1152 grid points and contains 16 variables, listed in
Table 1. Experts labeled 219 time steps, assigning each grid
point to one of three classes: background (BG), TC, and AR.
An individual feature is represented by connected grid points
of the same class. As most time steps were labeled by multi-
ple experts, the dataset contains 459 input—output mappings,
with sometimes very different labels for the same input data.
As P21 argued, these disagreements in classifications reflect
the diversity in views and assumptions by different experts.
P21 split the labeled data into a training (398 mappings) and
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test dataset (61 mappings) by taking all time steps prior to
2011 as training data and all other as test data.

Following KS20, we apply z-score normalization on each
variable to set the mean values to 0 and the standard devi-
ations to 1, hence achieving equally distributed inputs. As
discussed by LeCun et al. (2012), this normalization reduces
the convergence time of CNNs during training. Also, z-score
normalization helps to treat all input variables as equally im-
portant by a CNN (e.g., Chase et al., 2022). An issue when
using LRP (and other xAI methods; cf. M22) with z-score-
normalized data, however, is the “ignorant-to-zero-input is-
sue” discussed by M22: zero input values are assigned zero
relevance. We will discuss the impact of this issue on the use-
fulness of the LRP results. For comparison, we also discuss
results obtained by training the CNN’s using a min—max nor-
malization (which rescales the variable values to the range
[0, 1]; e.g., Garcia et al., 2014) and a modified z-score nor-
malization shifted by a value of 410 in the normalized data
domain (the mean value becomes +10; the standard devia-
tion remains 1).

3 Reproduction of the KS20/P21 task with CGNet and
U-Net

Following KS20/P21, we formulate the detection of TCs and
ARs as a semantic segmentation task, with the goal of assign-
ing one of the classes TC, AR, or BG to every grid point. We
evaluate the CGNet (Wu et al., 2021; shown by KS20 to out-
perform the DeepLabv3+ architecture used by P21) and U-
Net (Ronneberger et al., 2015) CNN architectures. Figure 1
illustrates both architectures. CNNs are a class of ANNS that
capture spatial patterns by successively convolving the data
with spatially local kernels (e.g., Russell and Norvig, 2021).
For semantic segmentation tasks, CNNs compute a proba-
bility value for each grid point and class as output. U-Net
features an encoder—decoder architecture that first succes-
sively decreases the grid size to detect high-level patterns at
different scales using convolutional layers, followed by up-
sampling and a combination of the extracted patterns lead-
ing to segmentation as output. To improve the quality of the
segmentation, skip connections between the respective lev-
els of the encoder and decoder are introduced. In contrast,
CGNet uses a typical classification-style CNN architecture
(Simonyan and Zisserman, 2015) without a dedicated de-
coder. It uses context guided blocks that combine spatially
local patterns with larger-scale patterns to produce a final
segmentation.

We use the same CGNet configuration used by KS20, who
in turn followed Wu et al. (2021). Our U-Net configuration
is based on Ronneberger et al. (2015). For training CGNet
and U-Net, we follow KS20. Most grid points in the Cli-
mateNet dataset belong to the background class; hence an
imbalance exists between the frequency of the three classes.
KS20 use the Jaccard loss function beneficial in cases of
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Table 1. Atmospheric 2-D fields (variables) contained in the P21 ClimateNet dataset. Variable short names are used throughout the text.

Variable Description Mean  Standard dev.  Units
U850 Zonal wind at 850 mbar pressure surface 1.56 829 ms~!
V850 Meridional wind at 850 mbar pressure surface 0.270 622 ms~!
UBOT Lowest level zonal wind 0.129 6.65 ms~!
VBOT Lowest model level meridional wind 0.332 577 ms~!
TS Surface temperature (radiative) 271 237 K
T200 Temperature at 200 mbar pressure surface 213 799 K
T500 Temperature at 500 mbar pressure surface 253 128 K
TREFHT  Reference height temperature 279 225 K
T™Q Total (vertically integrated) precipitable water 19.3 15.8 kg m—2
QREFHT  Reference height humidity 783x 1073  620x 1073 kgkg!
PRECT Total (convective- and large-scale) precipitation rate (liq + ice)  2.95 x 10-8 156 x 1077 ms~!
ZBOT Lowest model level height 61.3 491 m
7200 Geopotential Z at 200 mbar pressure surface 11.7x 103 0.635x10° m
71000 Geopotential Z at 1000 mbar pressure surface 474 833 m

PS Surface pressure 96.6 x 103 9.71x 10> Pa
PSL Sea level pressure 101 x 103 1.46 x 103 Pa

(a) CG-Net

(b) U-Net

3 CG blocks

4

21 CG blocks

Encoder

Decoder

Figure 1. Schematic illustration of the (a) CGNet (Wu et al., 2021) and (b) U-Net (Ronneberger et al., 2015) CNN architectures. Yellow
color denotes convolutional layers, red average pooling layers, blue/grey transposed convolutional layers, and violet context guided blocks.
Blue arrows indicate skip connections.
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class imbalance (Rahman and Wang, 2016). It applies the
intersection-over-union (IoU; Everingham et al., 2010) met-
ric commonly used in semantic segmentation (e.g., Cordts et
al., 2016; Zhou et al., 2017; Abu Alhaija et al., 2018). The
IoU score characterizes the overlap of two features by di-
viding the size (in the computer vision literature as number
of pixels, in our case in grid points) of feature intersection
by the size of the feature union.? If two features are iden-
tical, the IoU score equals 1; if they do not overlap at all,
the score equals 0. The Jaccard loss function is minimized
(equivalent to maximizing IoU) using the Adam optimizer
(Kingma and Ba, 2015), with a learning rate of 0.001. Since
random weight initialization leads to differing results in dif-
ferent training runs (Narkhede et al., 2022), we train each
network five times and select the best performing. We use
convolution kernels of size 3 x 3 grid points. Grid bound-
aries in longitudinal direction are handled with circular (i.e.,
cyclic) padding; at the poles, replicate padding is used.

KS20, as well as P21, only uses a subset of the 16 variables
contained in the ClimateNet dataset: TMQ, U850, V850, and
PSL in KS20 and TMQ, U850, V850, and PRECT in P21. We
reproduce the KS20 CGNet setup for our objective of investi-
gating whether it bases its detection on plausible patterns. For
evaluation, IoU scores are computed for each feature class in-
dividually and for comparison with values provided by KS20
as multiclass means. All scores are computed for the test data
(cf. Sect. 2) and listed in percent.

Table 2 lists evaluation results for both CGNet and U-Net.
KS20 only provide an evaluation score for the AR-TC-BG
mean of 56.1 %. Our reproduction (using the same imple-
mentation) yields a similar score (slightly different due to
random initialization); Table 2 in addition shows the scores
for the individual feature classes. KS20 use a training batch
size of 4; with 20 training-evaluation epochs a single train-
ing run takes about 19 min on an 18-core Intel Xeon® Gold
6238R CPU with 128 GB RAM and a Nvidia A6000 GPU
with 48 GB VRAM. To speed up training, the batch size can
be increased. For instance, a batch size of 10 reduces training
time for a single run by 10 % without significantly deviat-
ing from the evaluation results. The U-Net implementation
achieves similar scores, confirming that the detection task
can be learned by different CNN architectures. Also, our ex-
periments showed that for U-Net, reducing the number of
neurons per layer to one-quarter compared to the original
Ronneberger et al. (2015) implementation reduces training
time by 35 % without significantly deviating from the eval-
uation results. One may hypothesize that due to its larger
number of weights the U-Net architecture has an increased
potential to learn complex tasks and thus may achieve higher
IoU scores for the problem at hand. This, however, seems not

3Note that this approach does not entirely correspond to the ge-
ometric area of the features on the globe. For features that occur
closer to the poles, a metric based on the geometric feature area
would be more suitable.
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to be the case. Also, U-Net in our case requires 50 training-
evaluation epochs to converge, requiring about 46 min on our
system.

Concluding, all CNN setups achieve very similar evalua-
tion scores, which provides confidence that they are learning
similar structures that can be further analyzed using LRP.

We note that the size of the ClimateNet dataset (cf. Sect. 2)
can be considered small for training a deep CNN, a challenge
also encountered, e.g., in the literature for medical image
segmentation (e.g., Rueckert and Schnabel, 2020; AvberSek
and Repovs, 2022). P21 stated they expect CNN performance
to improve if a larger dataset was available. However, we also
note that ClimateNet’s characteristics of containing differing
labels by multiple experts for many time steps may be ef-
fective in avoiding overfitting. Also, it may limit achievable
IoU scores. If strong overfitting was present, we expect phys-
ically implausible structures to show up in the LRP results.
Also, strong overfitting typically results in evaluation scores
being distinctly better for the training data compared to the
test data (e.g., Bishop, 2007). For example, for the CGNet
implementation by KS20, batch size 10, we obtain the fol-
lowing IoU scores for the training data: AR = 43.6 %, TC
= 37.7%, BG = 95.2 %, and AR-TC-BG mean = 58.8 %.
These scores are very close to those listed in Table 2 for the
test data, indicating that no overfitting is present. In compar-
ison, if we deliberately overfit CGNet by training with 100
training-evaluation epochs (instead of 20), we obtain IoU
scores of AR = 60.0 %, TC = 53.3 %, BG = 96.7 %, and
AR-TC-BG mean = 70.0 % for the training data and AR =
37.8%, TC = 32.5 %, BG = 94.4 %, and AR-TC-BG mean
= 55.0 % for the test data.

4 Adapting LRP to semantic segmentation

For our first objective, we adapt LRP to the semantic seg-
mentation task. LRP was originally developed to understand
the decision-making process of ANNs designed for solving
classification tasks (Bach et al., 2015). After a classification
ANN has computed class probabilities from some input data
grid, LRP considers a single feature class by only retaining
its probability (all other class probabilities are set to zero).
This modified output is interpreted as the initial value for
the relevance to be computed; it is propagated backwards
through the network towards the input layer. Figure 2 il-
lustrates the approach. In an iterative process, the relevance
R;4+1,m of a given neuron m in a network layer / 4 1 is dis-
tributed over all neurons 7 in the preceding layer / (conserv-
ing the total relevance). Practically, this is implemented by it-
eratively computing the relevance R; ,, of the neurons in layer
1, as proposed by Montavon et al. (2019):

+1),
al,n‘p(wl(,: )m)

Riy1,m.
1+1), ’
€+ p (w ")

)]
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Table 2. Intersection-over-union scores reached by CGNet trained as proposed by KS20, using a batch size of 4 and 10. For comparison,
scores for U-Net are provided. All values are computed for the test data and are listed in percentages. The highest score per column is written

in bold.
CNN implementation AR TC AR-TC BG AR-TC-BG
mean mean
CGNet implementation by KS20, batch size 4 40.8 353 38.0 94.1 56.7
CGNet implementation by KS20, batch size 10 40.3 359 381 944 56.8
U-Net (Ronneberger et al., 2015), batch size 4 40.2  36.0 38.1 943 56.8
U-Net with num. of neurons per layer reduced to 1/4 of Ronnebergeret  40.1  36.1 38.1 94.7 57.0

al. (2015), batch size 10

layer | layer I+1

bias neuron bias neuron
R TR

//// \:\LO Ve \}\ 1+1,0
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/
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Figure 2. Schematic illustration of two (hidden) layers of an ANN
(cf. Eq. 1). ay ;,, denotes the activation of neuron m in layer [, R; ,,
the corresponding relevance, and wy ;; the weight between neuron
n and m. Neuron “0” of each layer is a bias neuron. Red color inten-
sity symbolizes exemplary relevance back-propagated from neuron
m in layer / + 1 towards layer /, distributed according to neuron ac-
tivation and weights. In setups discussed in this study, activation
a and relevance R are 3-D grids with size of the current layer-
dependent horizontal grid times the number of classes; the weights
w can be scalars or convolution kernels depending on layer type.

. . 1+1
Here, a; , denotes the activation value of neuron n, wl(: )m

the weights between neurons n and m, p an optional function
that modulates the weights, and € a constant value that can
be used to absorb weak or contradictory relevance. Note that
in our case, activation a and relevance R are 3-D grids. Their
size is given by the size of the 2-D data grid of the respec-
tive layer times the number of classes. The weights w can
be scalars or convolution kernels depending on layer type.
We refer to Montavon et al. (2019) for further details. In this
study, we use the so-called LRP, rule (M22; also called LRP-
0 rule; e.g., Montavon et al., 2019). That is, the function pis
a simple identity mapping, and € equals 1 x 10~ to prevent
division by zero. The relevance distribution of the input layer
is the desired result. LRP, distinguishes between positive and
negative contributions. They can be interpreted as arguments
for (positive relevance) and against (negative relevance) clas-
sifying grid points as belonging to a feature.

Other LRP rules exist, and M22 discussed their properties
for CNN architectures designed for classification (note that

Geosci. Model Dev., 18, 1017-1039, 2025

the LRPcomp and LRPcomp/fiac Tules recommended by M22
are not directly applicable to our setup; e.g., our CNNs do
not contain fully connected layers, and also, the LRP¢omp/flat
rule cannot distinguish between different input variables).

As noted in Sect. 2, LRP using the LRP, rule suffers from
what is referred to by M22 as the “ignorant-to-zero-input is-
sue”. An ANN’s bias neurons (e.g., Bishop, 2007; index 0
in each layer in Fig. 2) are required, e.g., to consider input
values close to zero that would otherwise have no effect on
the ANN output due to the multiplicative operations at each
neuron (e.g., Saitoh, 2021). Due to the design of LRP,, rele-
vance assigned to bias neurons is not passed on to the previ-
ous layer and will not be included in the final result. Hence,
input values of zero will receive zero relevance (Montavon et
al., 2019).

For our setup we note that, in contrast to the ANNs used
by M22, CGNet and U-Net as used in the present study con-
tain batch normalization layers (Ioffe and Szegedy, 2015).
These layers apply z-score normalization to the output of the
convolutional layers. Additionally, the normalized values are
shifted and rescaled according to two learned parameters j
and y. This normalization cancels the bias effect. It is, how-
ever, subsumed by B and still present. In practical implemen-
tations, the bias neurons and weights are hence deactivated
during training (Ioffe and Szegedy, 2015). This becomes rel-
evant for the computation of relevance, which can be done
separately for convolutional layers (Bach et al., 2015) and
batch normalization layers (Hui and Binder, 2019). Alterna-
tively, implementations have been proposed in which both
layers are merged, with the advantage that relevance only
needs to be computed for the merged layer (Guillemot et al.,
2020). In our work, relevance needs to be computed many
times for a given ANN (for grid points and features). For ef-
ficiency we choose the second option, as a merged layer only
needs to be computed once. The merged layer weights are
inferred from the original two layers. In particular, the bias
weights are reintroduced, and the ignorant-to-zero issue per-
sists as in M22.

LRP implementations for classification tasks have been
described in the literature (e.g., Montavon et al., 2019; M22).
For semantic segmentation tasks, the question arises of how
the gridded output (instead of single class probabilities)

https://doi.org/10.5194/gmd-18-1017-2025
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should be considered. A straightforward approach is to con-
sider an individual detected feature (i.e., a region of con-
nected grid points of the same class) and to compute a rel-
evance map for each grid point of the feature, i.e., treating
each grid point as an individual classification task. Then, the
resulting relevance maps can be summed to obtain a total
feature relevance. While for a given location the contribu-
tion from different relevance maps can be of opposite sign,
the sum expresses the predominant signal. For more detailed
analysis, positive and negative relevance can be split into sep-
arate maps. Also, we propose to compute the extent to which
different grid points of a feature contribute to the (total or
positive or negative) relevance in a selected region R. The
resulting maps show, for each grid point of a feature, the
summed relevance that this point has contributed to all grid
points in R.

An important aspect is that the absolute relevance values
computed by LRP depend on the absolute probability values
computed by the CNN. For example, if a grid point is clas-
sified as a TC based on probabilities (TC =0.3, AR=0.2,
BG=0.1), the corresponding relevance map will contain
lower absolute relevance values than if the probabilities were,
e.g., TC=0.8, AR=0.6, and BG=0.4. The question arises
of whether the relevance values should be normalized before
summation, as the absolute probability values are not rele-
vant for assigning a grid point to a particular class. They can,
however, be interpreted as how “likely”” the CNN is in assign-
ing a class to a certain grid point. This aligns with Montavon
et al. (2019), who link the ANN output with the probabil-
ity of each predicted class. We hence argue that for all grid
points belonging to a given feature, no normalization should
be applied. This way, in the resulting total relevance map, the
individual grid points’ contributions are weighted according
to their probability of belonging to the feature; higher rele-
vance is deemed to be more important for the overall feature
as well.

To compare relevance maps of distinct features, or to
jointly display the relevance of multiple features in a single
map, we however argue that the relevance maps of the indi-
vidual features should be normalized first. This ensures that
the spatial structures relevant for the detection of a feature
show up at similar relevance magnitudes.

For computing relevance maps for the individual grid
points, an existing LRP implementation for classification,
e.g., Captum (Kokhlikyan et al., 2020), can be used by adding
an additional layer to the network that reduces the output grid
to a single point (this corresponds to setting the output prob-
abilities of all grid points except the considered one to zero).
This approach has recently been used by Farokhmanesh et
al. (2023) for an image-to-image task similar to semantic
segmentation. The resulting relevance maps can be summed
and normalized in a subsequent step. Depending on grid size
and number of neurons in the CNN, this approach, however,
can be time-consuming (in our setup, a single LRP pass re-
quires about 100 ms; with an AR feature typically consisting
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of more than 5000 grid points in the given dataset, calculating
LRP with this approach sums to about 8§ min for an AR fea-
ture). To speed up the computation, we modify the approach
by retaining the output probabilities of all grid points that
belong to a specific feature. The LRP algorithm is executed
only once (thus only requiring about 100 ms for an entire AR
feature). Due to the distributive law for addition and multipli-
cation, this is equivalent to the first approach. This approach
has also been used by Ahmed and Ali (2021) for a specific
U-Net architecture in a medical application, although for the
entire data domain instead of individual features.

To apply LRP with the CGNet architecture, the additional
challenge of handling CGNet-specific layer types arises. In
addition to layer types also present in the U-Net architecture
(for which LRP implementations have been described in the
literature, including convolutional layers (Montavon et al.,
2019), pooling layers (Montavon et al., 2019), batch normal-
ization layers (Hui and Binder, 2019; Guillemot et al., 2020),
and concatenation-based skip connections (Ahmed and Alj,
2021)), CGNet uses addition-based skip connections, a spa-
tial upscaling layer, and a global context extractor (GCE; Wu
etal., 2021).

For addition-based skip connections, we first calculate the
relative activations of both the skip connection and the di-
rect connection in relation to the summed activation. Next,
the relevance of the subsequent deeper layer is multiplied by
these relative activations to determine the relevance for both
connections. LRP for spatial upscaling layers is calculated by
spatially downscaling the relevance maps by the correspond-
ing scaling factor. Following the argumentation by Arras et
al. (2017) for adapting LRP to multiplicative gates in long
short-term memory (LSTM) units, we omit the relevance cal-
culation of GCE units.

5 Case study: plausibility of spatial relevance patterns
for detected TC and AR features

For our second objective, we discuss the example of the time
step labeled “27 September 2013”. We assess the plausibility
of spatial relevance patterns obtained using our adapted LRP
approach and the CGNet setup that reproduces the KS20
setup (using z-score normalization; cf. Table 2). In the cho-
sen example, several TC and AR features were present that
we consider representative.

Figure 3a and b show global maps of TMQ and PSL of
the chosen time step, overlaid with expert-labeled and CNN-
detected TC and AR features. Distinct features in the North
Atlantic region are enlarged. In general, TCs are character-
ized by high humidity and minima in PSL (e.g., Stull, 2017)
and ARs by strong horizontal moisture transport (implying
high humidity and wind speed; e.g., Ahrens et al., 2012).
ARs also take the form of elongated bands of elevated hu-
midity connected to mid-latitude cyclones (Gimeno et al.,
2014). These aspects are commonly used by rule-based de-
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tection methods (e.g., Tory et al., 2013; Shields et al., 2018;
Nellikkattil et al., 2023); we are hence interested in whether
CGNet learns similar aspects.

In addition, Fig. 3c and d show the z-score-normalized
TMQ and PSL fields that are the actual input to the ANN.
As discussed in Sect. 4, the employed LRP, rule is “ignorant
to zero input” (M22), it is hence important to see where zero
values are input to the CNN.

Figure 3e and f show the relevance of TMQ and PSL for
the detected TC features (i.e., the summed relevance of all
grid points classified as TC as described in Sect. 4). We in-
terpret the relevance maps as “what the CNN looks at” to
detect a feature and where it collects arguments for (positive
relevance) and against (negative relevance) classifying grid
points as belonging to a feature. If the relevance is close to
zero despite having a non-zero input value, the correspond-
ing location is considered irrelevant to the current feature of
interest.

For both TMQ and PSL, CGNet learns to positively con-
sider extreme values at the center of the detected TCs, with
TMQ considered more relevant than PSL (normalized rele-
vance of up to 1.0 vs. up to 0.5). The relevance mostly is
spatially confined to the feature region. Positive TMQ rele-
vance is mostly found at TMQ maxima, which also corre-
spond to z-score-normalized maxima (Fig. 3a and c). PSL
relevance is also collocated with PSL minima, which, how-
ever, are surrounded by bands of close-to-zero values after z-
score normalization. We hypothesize that this can cause the
lower relevance values compared to TMQ. That is, CGNet
could consider PSL values more strongly, but this is not dis-
cernible in the LRP,-computed relevance of the used setup.

A further noticeable characteristic in Fig. 3e and f is that
the detected TC features are markedly larger than the rele-
vant regions. Here our hypothesis is that CGNet learned to
classify grid points at a certain distance around point-like ex-
trema as TC. That is, for grid points at the edge of a feature,
the most relevant information is that it is at a specific distance
to the TMQ maximum and PSL minimum. This hypothesis
would be consistent with the specific capabilities of CNNs;
their convolution filters take neighboring grid points into ac-
count (e.g., Bishop, 2007). If CGNet had primarily learned
some sort of thresholding on TMQ or PSL, and no informa-
tion about the spatial structure of the fields, we would have
expected the relevance to cover the feature area (with values
above/below a specific threshold) more uniformly.

To test the hypothesis, we consider two individual grid
points in the inset region in Fig. 3 that are of interest be-
cause they are close to the border of the TC and AR features
around 45°W and 35°N: how does CGNet distinguish be-
tween the two feature classes in this region? Figure 4 shows
TMQ relevance maps for the two points, the southern one
being classified as belonging to the TC and the northern one
as belonging to the AR (black crosses in Fig. 4a; note that
in Fig. 4b and c the relevance for the classification of the
single grid points only is shown, not the summed relevance
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of all feature grid points as in Fig. 3). For the TC grid point,
Fig. 4b shows that the CNN considers the nearby TMQ maxi-
mum at 43° W and 31° N as a strong argument for its decision
to classify the point as TC, confirming our hypothesis. Some
patches, in particular south of the TC center, are considered
arguments against, though at much weaker relevance magni-
tude. We hypothesize that this may be due to the shape of the
TMQ field in this region with weak filaments of TMQ be-
ing drawn into the TC from the southwest (arrow in Fig. 4a).
We will come back to this issue in the next section. For the
AR grid point, CGNet considers the nearby TMQ maximum
as a strong argument against classifying the point as AR. In
contrast, the also nearby band of high TMQ extending from
40°W and 40° N towards the northeast is considered an ar-
gument for the point being part of an AR. We interpret these
findings such that the CNN indeed considers the spatial dis-
tance to a point-like TMQ maximum and possibly also the
filamentary structures in TMQ. Note that the final classifica-
tion decision, however, is of course based on all input fields.

Figure 3g and h show the relevance of TMQ and PSL for
the detected AR features. We again focus on the North At-
lantic region in the inset, containing two ARs. The elongated
band of high TMQ associated with the eastern AR is sur-
rounded by drier air, making it distinctly stand out in Fig. 3a.
CGNet finds positive relevance in this band; few arguments
against the structure being an AR are found in its surround-
ings except for the discussed TMQ maximum in the TC di-
rectly south of the AR (Fig. 3g). However, again we note that
if information directly around the band of high TMQ were
considered by the CNN, it would not show up in the rele-
vance map as the z-score-normalized values surrounding the
band are close to zero (Fig. 3c).

The western AR, however, is not as clearly surrounded by
drier air and hence not as clearly discernible in the TMQ field
(Fig. 3a). While for this feature also the elongated band of
high humidity is taken as an argument for the AR class, at
the southern edge and south of the AR, regions of arguments
against show up (Fig. 3g). We interpret this as some sort of
uncertainty of the CNN, like a human expert that would an-
alyze the region around this AR more carefully, also consid-
ering other available variables to make their decision.

The western AR also is interesting as it iS not among
the expert labels (Fig. 3a), although we note that the dis-
cussed time step has been labeled by a single expert only
(cf. Sect. 2). Is this a “false positive” or did the expert miss
a potential AR? To further understand CGNet’s reasoning,
we split the total TMQ relevance into positive and negative
components. Also, for selected regions, we investigate which
parts of the AR contributed to the relevance (cf. Sect. 4).

Figure 5a shows that for some of the grid points that com-
prise the AR, the regions of high TMQ at the southern edge
and south of the AR are also taken as (weak) arguments for
belonging to the AR. Figure 5d shows that for some grid
points the elongated band of high TMQ inside the AR is
taken as an argument against. Further analysis shows that the
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Figure 3. Global maps of (a) TMQ and (b) PSL for the time step contained for 27 September 2013 in the ClimateNet dataset. Orange (red)
contours show TC (AR) features detected with CGNet using the KS20 setup. Green (blue) contours show TC (AR) features labeled by an
expert. Panels (c¢) and (d) show z-score-normalized fields input to the ANN. Panels (e) and (f) show summed TMQ and PSL relevance of all
grid points classified as TC and panels (g) and (f) the summed relevance of all grid points classified as AR.
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but for R2.

predominantly positive relevance along the elongated band
is mostly caused by grid points on or close to the band. As
an example, Fig. 5b shows that positive relevance in a se-
lected region R1 is mostly caused by grid points inside and
around R1. Individually, these grid points show relevance
patterns as shown in Fig. 5c. Here, with respect to TMQ,
the elongated band is the main argument for belonging to the
AR. Figure 5e shows that negative relevance in R1 is mostly
caused by grid points at a certain distance to R1, with a dis-
tinct “blocky” shape that we attribute to the CNN’s convolu-
tional layers. We interpret this as CGNet having learned that
(1) grid points located on or close to an elongated band of

Geosci. Model Dev., 18, 1017-1039, 2025

high TMQ likely belong to an AR, and (2) grid points located
at some distance to such a structure likely do not belong to
an AR. Figure 5f confirms this hypothesis. R2 is located on
another filament of high TMQ close to but separate from the
AR’s “main band” of high TMQ. Negative relevance in R2 is
mostly caused by grid points on the AR’s “main band”. For
these grid points, being close to another band-like structure
of high TMQ seems to be an argument against belonging to
an AR.

We provide a more complete picture in Figs. S6 and S7
in the Supplement, showing relevance contribution for fur-
ther regions. For many grid points in the discussed feature,
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the presence of the band-like structures of high TMQ at the
southern edge and south of the AR counter the arguments of
the “main band” for an AR and hence cause “uncertainty”.
We argue, however, that this behavior of the CNN is plau-
sible and that a human expert could also have labeled the
structure as an AR.

Figure 3h shows that for AR detection CGNet cannot infer
much information from the PSL field. While it “looked” at
the regions surrounding the ARs, the relevance field is weak
and noisy, and no recognizable structure is found. This is
plausible since in Fig. 3b there are no discernible PSL struc-
tures visible for the AR features. To the best of our knowl-
edge, there are also no rule-based systems that use PSL for
AR detection.

Figure 6 shows, however, that both 850 hPa wind com-
ponents are used for the detection of both TCs and ARs.
The western AR in the inset is characterized by high zonal
wind (Fig. 6a). It coincides with a clearly positively relevant
structure (Fig. 6g). Meridional winds are strongest around the
mid-latitude cyclone at the northern end of the AR (Fig. 6b).
CGNet also considers this as positively relevant (Fig. 6h).
The dipole structure discernible in both wind components
close to cyclone centers (both tropical and mid-latitude) is
considered an argument against ARs by the CNN (negative
relevance in Fig. 6g and h). Our interpretation is that CGNet
learned to identify such dipoles with TCs and cannot infer
that a mid-latitude dipole northeast of an AR would be an
argument for the AR feature. This is supported by that for
detection of TC features, the dipoles are considered posi-
tively relevant (Fig. 6e and f). Both wind components are
also widely used in rule-based detection systems, for exam-
ple by three of the four algorithms discussed by Bourdin et
al. (2022) for detection of TCs. For rule-based AR detec-
tion, wind components are contained in the integrated vapor
transport (IVT) variable that is commonly used (Shields et
al., 2018; Wick et al., 2013).

We conclude the discussion with the interpretation that
CGNet in the present setup learned overall very plausible
structures to detect TCs and ARs, which is very promis-
ing for gaining confidence in CNN-based detection of atmo-
spheric features.

Reproductions of Figs. 3 and 6 when using U-Net instead
of CGNet are provided in the Supplement (Figs. S8 and S9).
Despite the differences in CNN architecture (cf. Sect. 3),
very similar results are found. Notable differences include
that the U-Net setup detects smoother feature contours and
that its relevance values are more pronounced and show
smoother spatial patterns. We consider it promising, how-
ever, that two different CNN architectures learn very similar
patterns.

Geosci. Model Dev., 18, 1017-1039, 2025

6 Relevant input variable values: the issues of shape
and input normalization for explaining feature
detection

Figures 3 to 6 show a single time step that we consider rep-
resentative as an example of the spatial relevance patterns
obtained from LRP. For a more complete picture of what the
CGNet has learned, we are interested in statistical summaries
of input values that it considers relevant. The goal is to see if,
for example, also on average high values of TMQ are learned
to be most relevant for TC and AR detection.

We compute distributions over all time steps in the test
dataset (cf. Sect. 2) of the CNN input variables, both at all
grid points and at grid points considered relevant to different
extent (note that, as seen in Figs. 3 and 6, this includes grid
points outside the detected features). Figure 7 shows the dis-
tributions of TMQ, PSL, U850, and V850. As reference, the
value distributions for the entire globe, i.e., all grid points, are
shown (Fig. 7a). To learn which variable values are consid-
ered relevant by LRP for TC and AR detection, we divide the
relevance range [—1... 1] into six distinct intervals of width
0.3 and show distributions for each feature and interval. The
relevance range [—0.1...0.1] is omitted to mask out regions
of zero and low relevance. Note that for all variables, this in-
cludes over 98 % of all grid points. That is, on average fewer
than 1 % of all grid points are assigned relevance values with
magnitude larger than 0.1 in the present CGNet setup. Distri-
butions of the relevance range [—0.1...0.1] hence look very
similar to the reference distributions of the entire globe.

First notice that CGNet for TC detection, also aver-
aged over the entire test dataset, considers high values of
TMQ positively relevant. Already for the relevance range
[0.1...0.4], the distribution peaks at values slightly above
55kgm~2, which is at the upper end of the global distribu-
tion. The TMQ distributions of grid points with higher rel-
evance peak at even slightly higher values (although much
fewer grid points are assigned high relevance). This finding
is in line with our hypothesis from Sect. 5 that CGNet learned
to associate TCs with TMQ extrema.

It is noticeable that the distributions of positive and neg-
ative relevance intervals cover similar TMQ values, how-
ever, with more relevant grid points on the positive side.
This raises the question of why similar values are consid-
ered in both pro and contra arguments — GG-Net could have
also learned to use low TMQ values as an argument against
a TC feature. However, high TMQ values occur not only
within TCs but also elsewhere particularly in the tropics (cf.
Fig. 3a). In Sect. 5 we discussed that CGNet is capable of
learning spatial structure by means of convolution filters. We
hence hypothesize that the “pro/contra TC decision” is based
on spatial structure, which cannot be inferred from the rele-
vance distributions in Fig. 7.

First consider the distributions shown with the blue curves
in Fig. 7b. They correspond to the KS20 setup with z-score-
normalized data used in the previous sections. Most distribu-
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the Southern Hemisphere.

tions of relevant grid points clearly differ from the global ref-
erence distributions; hence CGNet gathers information from
the values of the input variables.

To investigate, we compute composite relevance maps of
all TC and AR features in the test dataset. Figure 8 shows the
average relevance of TMQ for both feature classes, obtained
by averaging the relevance of all features. For clarity of pre-
sentation, only AR features from the Northern Hemisphere
are considered since their orientation differs between both
hemispheres (if ARs from both hemispheres are plotted, we
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obtain a cross-shaped pattern). Figure 8 shows that for TCs,
CGNet on average learned to detect spherical structures. For
ARs, elongated structures from the southwest to northeast
are detected (northwest to southeast on the Southern Hemi-
sphere; not shown). We interpret this finding as strong sup-
port for the hypothesis that spatial structure plays a crucial
role in the detection process. However, we note that more
detailed investigation is required. Shape information is not
directly accessible via LRP. To the best of our knowledge,
also in general not much of the literature has investigated
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Figure 9. Same as Figs. 3g and h and 6g and h but for relevance obtained from CGNet trained with z-score-normalized input data shifted by

+10.

the explanation of shapes in CNN-based feature detection.
While recently a potentially useful method (Concept Rele-
vance Propagation, CRP; Achtibat et al., 2023) has been pub-
lished, it has yet to be applied to meteorological data and is
left for future work.

Figure 7c shows the TMQ distributions of grid points rele-
vant for AR detection. While the distributions also show that
more relevant grid points correspond to higher TMQ values
(which is plausible given the discussion in Sect. 5), here we
observe bimodal distributions with minima located around
the mean of the global distribution. As discussed in Sects. 4
and 5, values around the global mean become close to zero
after z-score normalization. Hence, the minimum could be
a consequence of the “ignorant-to-zero-input issue” (M22).
The question hence arises of whether CGNet indeed does not
consider TMQ values around the global mean of 19.3 kg m~>
(cf. Table 1; for which to the best of our knowledge there
would be no plausible physical reason) or whether that rele-
vance information is simply missing in LRP, output.

To investigate, we retrain CGNet with two alternative nor-
malizations. First, we shift the z-score-normalized data by
+10. The value of 10 is chosen as minimum values after z-
score normalization are about —§&; hence the shift ensures
that all input data are positive and at some distance from zero.
Second, we apply the min—max normalization (e.g., Garcia et
al., 2014) that linearly scales all inputs to the range [0. .. 1].
It, however, has the disadvantage of being more sensitive to
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outliers and cannot ensure that all inputs are treated equally
important by the CNN (since the means of the different input
variables are not mapped to the same normalized value; cf.
Sect. 2).

IoU evaluation scores for both alternative normalizations
are comparable to the original z-score normalization (e.g.,
AR-TC mean of 37.8 for z score+10 and 37.7 for min—max,
compared to 38.1 for the original z-score setup). Also, Fig. 7c
clearly shows that with the alternative normalizations, TMQ
values around the global mean are attributed to be relevant.
The minimum in the z-score-normalization distribution van-
ishes, and in particular for the z-score+10 data, a maximum
is found instead. Hence, CGNet does consider TMQ values
in this range relevant.

Figure 9 revisits the case from Sect. 5 and shows AR
relevance maps obtained from the CGNet trained with z-
score+10-normalized inputs. Full reproductions of Figs. 3
and 6 for both alternative normalizations are provided in the
Supplement (Figs. S2-S5). Figure 9a shows that, compared
to Fig. 3g, the elongated AR bands of high TMQ are still dis-
tinctly positively relevant. However, some noisy relevance is
now found in the surroundings of the ARs, exactly where
TMQ values around the global mean are found. We interpret
this finding as further confirmation that CGNet does consider
the values of TMQ for feature detection but only in combi-
nation with shape information.
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For min—max normalization, similar results are found for
the case from Sect. 5 (cf. Supplement, Figs. S4-S5). How-
ever, the relevance of TMQ values around the global mean
is not as pronounced as for the shifted z-score normalization
(Fig. 7c). For TC detection, the TMQ distributions hardly dif-
fer for the three normalizations (Fig. 7b). In this case, how-
ever, the relevant TMQ values are all well above the global
mean (and hence already for the original z-score-normalized
data above zero).

We find similarly plausible results for the other input vari-
ables. Notably, with the alternative normalizations the PSL
input also shows up as relevant for TC detection (Fig. 7b).
For AR detection, the PSL distributions become unimodal as
for TMQ. With the alternative normalizations, however, the
distributions of relevant PSL values are very similar to the
global distribution. This indicates that CGNet does not in-
fer much information from PSL values. Since, however, the
number of relevant grid points is of the same order as for the
other input variables (cf. the fractions listed in Fig. 7b and
c¢), CGNet does use PSL inputs — likely using shape informa-
tion from this field. Further evidence for this hypothesis is
found in Fig. 9b, where PSL relevance also shows elongated
structures aligned with the ARs.

For the U850 and V850 wind components, the bimodal
distributions of relevant wind values obtained from the orig-
inal CGNet setup (both for TCs and ARs) could have
been plausible in that the CNN only considers stronger
winds. However, relevance from the alternative normaliza-
tions shows that also grid points with weak winds are consid-
ered relevant. An example of this is that in Fig. 9c and d the
entire AR structures show relevance, including the regions of
weak wind at the southern parts of both ARs (cf. Fig. 6a and
b). This relevance is not present in Fig. 6g and h; the finding
again suggests that shape information used by CGNet. The
distributions in Fig. 7c show, however, that for ARs, more rel-
evant grid points are associated with elevated eastward winds
(positive U850 component). This is plausible since on both
hemispheres ARs are characterized by mid-latitude eastward
winds.

Concluding, the obtained distributions also provide evi-
dence that CGNet learned physically plausible structures for
TC and AR detection. However, due to its inability to at-
tribute relevance from bias neurons, LRP, applied to the orig-
inal KS20 CGNet setup using z-score normalization does not
yield information about input values close to zero after nor-
malization, which limits its use. Also, the use of shape in-
formation by the CNN cannot be attributed. Both types of
information, however, would be required for full analysis of
the learned detection rules.

Again, reproductions of Figs. 7 and 9 when using U-Net
instead of CGNet are provided in the Supplement. For the
U-Net setup, we observe that a larger number of grid points
is considered relevant. However, the shape of the distribu-
tions (Fig. S8) remains similar to the CGNet setup (Fig. 7).
Also, changes in spatial relevance patterns when using the
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shifted z-score normalization instead of z-score normaliza-
tion (Fig. S9) are analogous to the CGNet setup (Fig. 9).

7 LRP applications: finding most relevant input
variables and evaluating detection robustness

In addition to providing a means to open the “black box” of
a given CNN-based semantic segmentation setup as demon-
strated in Sects. 5 and 6, we investigate further applications
of LRP for semantic segmentation. Here, we discuss two ap-
plications: (A1) finding the most relevant input variables for
a given feature detection task and (A2) evaluating the robust-
ness of a trained detection-CNN when some characteristic of
the input data is changed, e.g., grid resolution is changed, or
a different geographical domain is used.

Regarding A1, P21 provided 2-D fields of 16 atmospheric
variables in the ClimateNet dataset (cf. Sect. 2). Today’s nu-
merical simulation models commonly output far more and
also 3-D fields. KS20 and P21, on the other hand, used a
subset of four variables only to train their CNNs (TMQ, PSL,
V850, and U850 and TMQ, PRECT, V850, and U850); M22
only used the three inputs TMQ, V850, and U850. Using a
subset of available variables can be beneficial, e.g., to re-
duce computational complexity (data acquisition and stor-
age; computing time and memory requirements for CNN
training) and to reduce overfitting issues when only limited
training data are available (e.g., Schittenkopf et al., 1997).
Suitable variables can be selected based on expert knowledge
(using those variables that are known to be associated with
the atmospheric feature of interest, e.g., humidity and wind
for TCs and ARs). However, how can suitable variables be
selected if such knowledge is not readily available (e.g., for
features not well investigated or if data for required variables
are not available), without extensive evaluation of different
variable combinations?

The analysis in Sect. 6 showed that for the different input
variables, different fractions of grid points were found to be
relevant in the different relevance intervals (numbers listed
in Fig. 7). If a CNN is hence trained with all available input
variables, distributions of relevance values can be computed
for each input variable and the most relevant variables can
be selected. We apply the approach to CGNet trained with z-
score-normalized inputs shifted by 410 (cf. Sect. 6), to avoid
the “ignorance-to-zero-input issue” (M22). Figure 10 shows
violin plots (Hintze and Nelson, 1998) of the relevance distri-
butions for each of the 16 ClimateNet variables. As in Sect. 6,
we omit absolute relevance below 0.1. Variables are shown
on the same order as in Table 1; the given ranking is based
on the number of grid points with absolute relevance larger
than 0.1.

Indeed, TMQ is found to be the most relevant input vari-
able for both TC and AR detection. For TCs, the QREFHT
variable is also considered relevant by CGNet. However, it
should be closely correlated with TMQ. U850 and V850 are
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Figure 10. Distributions of relevance values (computed from test dataset) for CGNet trained with all 16 variables contained in the ClimateNet
dataset, for (a) TC and (b) AR features. Z-score normalization shifted by +10 is used on all inputs for the reasons discussed in Sect. 6.
Width of violin plots is differently scaled for TCs and ARs but consistent for all variables within (a) and (b). Relevance values in the range

[-0.1...
relevance > 0.1.

third and fourth, followed by several other variables of sim-
ilar relevance. Some variables including TS, PS, and Z1000
are hardly of relevance. For ARs, U850 is also considered
relevant; however, V850 is not. The results suggest, however,
that AR detection could benefit from including T500 in the
set of input variables. These findings, of course, can be ex-
pected due to existing meteorological knowledge (Gimeno et
al., 2014). It is promising, however, that LRP analysis again
provides plausible results.

Table 3 shows IoU scores for CGNet trained with all 16
input variables, the KS20 subset of TMQ, PSL, V850, and
U850, as well as different selections that could be inferred
from Fig. 10. The scores are largely of the same order; no-
tably the three-input subset of TMQ, V850, U850 used by
M?22 achieves even higher scores than the KS20 subset and
the 16-variable setup. Only when even more inputs are with-
drawn does the detection performance drop, although it re-
mains remarkably high. We note, however, that for every
setup a relevance analysis as in Sects. 5 and 6 should be car-
ried out to ensure plausible results.

We also note that since the size of the ClimateNet dataset
is limited (cf. Sects. 2 and 3), we split the data into train-
ing and test parts only (cf. Sect. 2). Relevant variables were
determined based on the test data (Fig. 10). The retrained
CGNet setups in Table 3 were again evaluated on the test
data. Some care needs to be taken with the results of this ap-
proach, as the variables found to be relevant could potentially
be relevant mostly for the test data. If a larger dataset were
available, an improved setup would split the data into three
parts, also including a validation part (e.g., Bishop, 1995) for
evaluating the results of the retrained setups.

Regarding A2, consider that in both operational weather
forecasting and atmospheric research, numerical weather
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0.1] are omitted. Numbers at the bottom as well as grey shade indicate ranking in terms of numbers of grid points with absolute

prediction (NWP) models with a regional domain are fre-
quently used. The analysis discussed in the previous sections
was based on global data. Could the CGNet trained on global
data be also used with data from a regional domain, or would
it have to be retrained? The analysis of spatial relevance pat-
terns in Sect. 5 suggested that CGNet mostly considers grid
points within or in close vicinity of a detected feature; hence
we see a chance that detection with regional data could work
“out of the box”. This would be valuable for cases where
CNN training is expensive (e.g., Niebler et al., 2022, reported
high computational demand for training their front-detection
CNN), as a CNN trained globally could be applied to differ-
ent regional models.

We consider our case from Sect. 5 and compare detected
features and spatial relevance patterns (1) if the detection is
based on global data as in the previous sections, and then
the subregion is cut out, and (2) if the detection is based
on regional data input into CGNet trained on global data.
For our experiments, we simply cut out data from the global
ClimateNet data; i.e., the grid point spacing is unchanged.
Figure 11 shows how the detection result changes for two
selected TC and AR features (blue boxes in Fig. 11a). Fig-
ure 11b and d show the features and relevance patterns when
global data are used and Fig. 11c and e when regional data
are used for testing. Note that for simplicity of display, the
relevance of all four input variables is averaged in Fig. 11.
Also note that for the regional domains, circular padding (cf.
Sect. 3) is not suitable; here replicate padding is used instead.

Figure 11b—e show that the features at the center of the
regional domains are fully detected with high similarity be-
tween both approaches. In contrast, the features only par-
tially included in the region are not or not completely de-
tected. These findings are plausible given that due to the con-
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Table 3. IoU scores reached by CGNet trained for different input variable combinations, using z-score normalization shifted by +10 for all
input variables. All values are in percentages. The highest score per column is written in bold. Compare to Table 2.

Input AR TC AR-TC Background AR-TC-BG
variables mean mean
All 16 variables listed in Table 1 41.0 337 37.4 94.9 56.5
TMQ-PSL-U850-V850 404 352 37.8 94.8 56.8
TMQ-QREFHT-U850-V850-T500 40.3 35.5 37.9 94.7 56.8
TMQ-T500-U850-V850 40.5 35.6 38.1 94.5 56.9
TMQ-Z200-U850-V850 40.6 359 38.2 94.5 57.0
TMQ-US850-V850 41.0 354 38.2 94.5 57.0
TMQ-U850 40.4 338 37.1 94.6 56.3
TMQ 39.8 304 35.1 94.0 54.7

detection based on
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Figure 11. Regional domains to evaluate the robustness of feature detection when the CGNet trained on global data is applied with data
on a regional domain. Same case and CGNet setup (KS20 setup and z-score normalization) as in Figs. 3 and 6. Blue bounding boxes in
(a) surround selected TC and AR features; spatial relevance patterns in these regions is shown (b, d) for global data input into CGNet, and
then the subregion is cut out from the global result, and (c, e) for only subregion data input into CGNet. Note that here relevance values are
summed over all variables. Red bounding boxes in (a) show domains of regional NWP models: HAFS-SAR (North Atlantic), Eta (South
America), SADC region (southern Africa), MSM (Japan), and ACCESS-R (Oceania). Domains are approximate where model domains are

not rectangular in longitude and latitude.

volutional architecture of CGNet, some area around a fea-
ture is required for detection. It is noticeable, however, that
the inclusion of the TC center in the southeastern corner of
Fig. 11b and c seems to be sufficient to detect the partially
included TC. This is also further evidence for our hypothesis
from Sect. 5 that the distance to a TC center plays a crucial
role in the detection process. Also note that from the AR in
the northeastern part of Fig. 11b, a small part is still detected
in the regional data (Fig. 11c). Unlike rule-based systems that
often define a minimum size for an AR feature (Shields et al.,
2018), CGNet seems to not learn such size limitations.

The selected case provides promising evidence that indeed
the CGNet trained on global data could be used for detect-
ing features in regional data as well. For a more complete
picture, we consider several regional domains used by na-
tional weather services (red boxes in Fig. 11a): the National
Oceanographic and Atmospheric Administration (NOAA)
in the USA (Dong et al., 2020), the Center for Weather
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Forecasting and Climate Studies (CPTEC) in Brazil (Alves
et al., 2016), the South African Weather Service (SAWS;
Mulovhedzi et al., 2021), the Japan Meteorological Agency
(JMA; Saito et al., 2006), and the Australian Government
Bureau of Meteorology (BoM; Puri et al., 2013). Table 4
lists IoU scores for the respective regional domains, again
for feature detection based on (1) global data and (2) regional
data. Despite using the same input data for detection, the IoU
scores for (1) differ from the global IoU scores listed in Ta-
ble 2 since only subsets of all features are present in the re-
gional domains. Scores roughly deviate more from Table 2
for smaller subregions. For (2), IoU scores are lower com-
pared to (1) for all subregions. This, however, is plausible
considering the above discussion that features included only
partially in a subregion are less well detected when only re-
gional data are input to CGNet. The differences in IoU scores
that we observe between approaches (1) and (2) are smaller
for TCs (maximum difference of 5.6 % in Oceania) and more
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Table 4. IoU scores for TC and AR detection in subregions used by different regional NWP models. CGNet with the KS20 setup and z-score
normalization is used (as for Figs. 3 and 6). Scores are computed (a) for global data input into CGNet, and then the subregion is cut out from

the global result, and (b) for only subregion data input into CGNet.

Region (a) IoU of subregion (b) IoU of subregion
(detection using global data) | (detection using regional data)
AR TC BG | AR TC BG
Global (same as in Table 2) 40.3 359 94.4
NOAA (North Atlantic) 345 41.1 91.7 | 31.2 41.0 92.3
CPTEC (South America) 413 433 92.5 | 34.8 382 92.3
SAWS (southern Africa) 39.9 5.0 91.6 | 255 0.0 90.9
JMA (Japan) 31,5 41.0 88.9 | 19.1 41.6 88.3
BoM (Oceania) 389 103 91.8 | 36.9 4.7 92.3

substantial for ARs (difference of up to 14.4 % for the south-
ern African region and 12.4 % for the Japanese region). Our
hypothesis is that this is due to the smaller size of TCs, which
are hence more often completely contained in a subregion.
Similarly, larger regional grids show higher IoU scores, pos-
sibly for the same reason of containing more complete fea-
tures.

Concluding, we note that while detection performance de-
creases when regional data are used for testing, we argue that
the method still has value, e.g., to assist forecasters in becom-
ing aware of potentially important features. Also, the issue of
decreased detection performance for only partially contained
features in a region also affects rule-based detection meth-
ods, e.g., if rules with respect to feature size are used.

Results for A1 and A2 when using U-Net instead of
CGNet are provided in the Supplement (Figs. S10 and S11;
Tables S1 and S2 in the Supplement). Both CNN architec-
tures again yield very similar results. Notably, regarding A1,
the U-Net setup also considers TMQ to be the most relevant
input; however, in contrast to CGNet the TS input provides
more information.

8 Summary and conclusion

We adapted the XAl method Layer-wise Relevance Propaga-
tion, widely used in the literature for classification tasks, to
be used for semantic segmentation tasks with gridded geo-
scientific data. We implemented the method for use with the
CGNet and U-Net CNN architectures (Fig. 1) and investi-
gated relevance patterns these CNNs learned for detection
of 2-D tropical cyclone and atmospheric river features. Our
analysis built on previous work by KS20, P21, and M22.
In this paper, we focused on the CGNet setup suggested by
KS20 using the four gridded and z-score-normalized input
variables TMQ, PSL, U850, and V850 from the ClimateNet
dataset provided by P21 (Table 1). Comparative results for
U-Net are provided in the Supplement.
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The main findings from our study are as follows:

— With both CGNet and U-Net we were able to reproduce

KS20 and P21 results with similar IoU scores (Sect. 3;
Table 2).

Adapting LRP (Fig. 2) to the semantic segmentation
task provided the challenge of how to generalize the
classification approach used by previous studies. We ar-
gue that averaging relevance from all grid points as-
signed to a feature provides meaningful results. Also,
to use our method with the CGNet architecture, sev-
eral layer-specific LRP calculation specifications had
to be implemented for CNN layers specific to CGNet
(Sect. 4).

For the selected case, we found that CGNet learned
physically plausible patterns for the detection task
(Sect. 5). For TCs, relevant patterns include point-
shaped extrema in TMQ and circular wind motion. For
ARs, relevant patterns include elongated bands of high
TMQ with different orientation on the Northern and
Southern Hemisphere and eastward winds (Figs. 3 and
6).

Spatial relevance is mostly locally confined around fea-
tures, but analysis of the relevance of individual grid
points indicated that for each grid point, CGNet uses
its convolutional filters to account for the surrounding
region (Fig. 4).

CGNet makes use of both input values and the shape
of patterns in the input fields. Analysis of input vari-
able values at grid points that were attributed high rel-
evance showed that, e.g., high values of TMQ are rele-
vant for both TC and AR detection, however, that these
high values are used for both pro and contra arguments
for assigning a grid point to a feature (Sect. 6; Fig. 7).
This behavior can be explained by the hypothesis that
CGNet uses additional shape information for its deci-
sion. LRP does not provide information about shape rel-
evance; however, composite maps we computed from
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all detected features provide strong evidence that TCs
are detected as point-like structures and ARs as elon-
gated bands (Fig. 7).

— Care needs to be taken when using LRP, with z-score
normalization (mapping the mean of a variable to zero
and its standard deviation to +1; as used by KS20, P21,
and M22). CNNs including CGNet and U-Net include
bias neurons to account for input data close to zero;
however, LRP cannot attribute relevance to bias neu-
rons. Hence, input values close to zero are assigned a
relevance close to zero (referred to as the “ignorant-
to-zero-input issue” by M22; cf. Fig. 6), even if the
CNN does use the information via the bias neurons. As
a workaround, we shifted the z-score-normalized data
by +10 to avoid zero values (and also evaluated use
of min—max normalization that maps variable values
to 0...1). With these alternative normalizations, zero
relevance around variable means disappears (Fig. 7),
and spatial relevance patterns further suggest the role
of shape information in the detection process (Fig. 8).

— LRP can be used for additional applications (Sect. 7).
We demonstrated its use for finding the most relevant
input variables to build a CNN setup by training CGNet
with all 16 input variables in the ClimateNet dataset and
then using relevance distributions to find the most rele-
vant variables that need to be retained for a useful setup
(Fig. 10 and Table 3). Also, we evaluated the robust-
ness of detection when only data from subregions are
used with the CGNet trained on global data. This has
potential benefit to use a globally trained CNN for de-
tecting features in data from regional NWP models. We
find that due to the locality of relevance, features fully
included in a subregion are well detected, while only
partially contained features are not (Fig. 11 and Table
4).

Concluding, LRP in our opinion is a very useful tool to gain
confidence for CNN-based detection of atmospheric features.
For the case of TC and AR detection proposed by KS20 and
P21, we find that their setup indeed learns physically plausi-
ble patterns for feature detection. We provide the source code
of our implementation along with this paper and invite the
geoscientific community to apply the method to further de-
tection tasks. However, the open challenges of accounting for
the relevance of bias neurons (“ignorant-to-zero-input issue’;
M?22) as well as for shape information need to be approached
to be able to explain the behavior of CNNs for semantic seg-
mentation tasks more completely. First work for accounting
for bias relevance has recently been published in the com-
puter vision literature (Wang et al., 2019), as has a method
for accounting for shape information (Achtibat et al., 2023).
These need to be adapted and potentially refined for geosci-
entific data. We look forward to future work in this direction.
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