Articles | Volume 17, issue 2
https://doi.org/10.5194/gmd-17-759-2024
https://doi.org/10.5194/gmd-17-759-2024
Model evaluation paper
 | 
30 Jan 2024
Model evaluation paper |  | 30 Jan 2024

Modeling collision–coalescence in particle microphysics: numerical convergence of mean and variance of precipitation in cloud simulations using the University of Warsaw Lagrangian Cloud Model (UWLCM) 2.1

Piotr Zmijewski, Piotr Dziekan, and Hanna Pawlowska

Related authors

University of Warsaw Lagrangian Cloud Model (UWLCM) 2.0: adaptation of a mixed Eulerian–Lagrangian numerical model for heterogeneous computing clusters
Piotr Dziekan and Piotr Zmijewski
Geosci. Model Dev., 15, 4489–4501, https://doi.org/10.5194/gmd-15-4489-2022,https://doi.org/10.5194/gmd-15-4489-2022, 2022
Short summary

Cited articles

Andrejczuk, M., Grabowski, W. W., Reisner, J., and Gadian, A.: Cloud-aerosol interactions for boundary layer stratocumulus in the Lagrangian Cloud Model, J. Geophys. Res.-Atmos., 115, D22214, https://doi.org/10.1029/2010JD014248, 2010. a
Arabas, S. and Shima, S. I.: Large-eddy simulations of trade wind cumuli using particle-based microphysics with monte Carlo coalescence, J. Atmos. Sci., 70, 2768–2777, https://doi.org/10.1175/JAS-D-12-0295.1, 2013. a
Arabas, S., Jaruga, A., Pawlowska, H., and Grabowski, W. W.: libcloudph++ 1.0: a single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics library in C++, Geosci. Model Dev., 8, 1677–1707, https://doi.org/10.5194/gmd-8-1677-2015, 2015. a, b
Arabas, S., Jaruga, A., Dziekan, P., Waruszewski, M., and Jarecka, D.: libcloudph++ v3.1 source code, Zenodo [code], https://doi.org/10.5281/zenodo.7643319, 2023a. a
Arabas, S., Waruszewski, M., Dziekan, P., Jaruga, A., Jarecka, D., Badger, C., and Singer, C.: libmpdata++ v2.1 source code, Zenodo [code], https://doi.org/10.5281/zenodo.7643674, 2023b. a
Download
Short summary
In computer simulations of clouds it is necessary to model the myriad of droplets that constitute a cloud. A popular method for this is to use so-called super-droplets (SDs), each representing many real droplets. It has remained a challenge to model collisions of SDs. We study how precipitation in a cumulus cloud depends on the number of SDs. Surprisingly, we do not find convergence in mean precipitation even for numbers of SDs much larger than typically used in simulations.
Share