Articles | Volume 17, issue 2
https://doi.org/10.5194/gmd-17-685-2024
https://doi.org/10.5194/gmd-17-685-2024
Model evaluation paper
 | 
26 Jan 2024
Model evaluation paper |  | 26 Jan 2024

Modeling below-cloud scavenging of size-resolved particles in GEM-MACHv3.1

Roya Ghahreman, Wanmin Gong, Paul A. Makar, Alexandru Lupu, Amanda Cole, Kulbir Banwait, Colin Lee, and Ayodeji Akingunola

Related authors

The Global Forest Fire Emissions Prediction System version 1.0
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024,https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Implementation of the MOSAIC Aerosol Module (v1.0) in the Canadian Air Quality Model GEM-MACH (v3.1)
Kirill Semeniuk, Ashu Dastoor, and Alex Lupu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2958,https://doi.org/10.5194/egusphere-2024-2958, 2024
Short summary
Natural Surface Emissions Dominate Anthropogenic Emissions Contributions to Total Gaseous Mercury (TGM) at Canadian Rural Sites
Irene Cheng, Amanda Cole, Leiming Zhang, and Alexandra Steffen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2895,https://doi.org/10.5194/egusphere-2024-2895, 2024
Short summary
Biomass burning CO emissions: exploring insights through TROPOMI-derived emissions and emission coefficients
Debora Griffin, Jack Chen, Kerry Anderson, Paul Makar, Chris A. McLinden, Enrico Dammers, and Andre Fogal
Atmos. Chem. Phys., 24, 10159–10186, https://doi.org/10.5194/acp-24-10159-2024,https://doi.org/10.5194/acp-24-10159-2024, 2024
Short summary
Characterization of atmospheric water-soluble brown carbon in the Athabasca Oil Sands Region, Canada
Dane Blanchard, Mark Gordon, Duc Huy Dang, Paul Andrew Makar, and Julian Aherne
EGUsphere, https://doi.org/10.5194/egusphere-2024-2584,https://doi.org/10.5194/egusphere-2024-2584, 2024
Short summary

Related subject area

Atmospheric sciences
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024,https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024,https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024,https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024,https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024,https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary

Cited articles

AAF: Alberta Agriculture and Forestry, Alberta Climate Information Service (ACIS), https://agriculture.alberta.ca/acis (last access: 25 January 2024), 2022. 
Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation, 3, Sectional representation, J. Geophys. Res., 107, 4026, https://doi.org/10.1029/2001JD000483, 2022. 
Andronache, C.: Estimates of sulphate aerosol wet scavenging coefficient for locations in the Eastern United States, Atmos. Environ., 38, 795–804, https://doi.org/10.1016/j.atmosenv.2003.10.035, 2004. 
Andronache, C., Grönholm, T., Laakso, L., Phillips, V., and Venäläinen, A.: Scavenging of ultrafine particles by rainfall at a boreal site: observations and model estimations, Atmos. Chem. Phys., 6, 4739–4754, https://doi.org/10.5194/acp-6-4739-2006, 2006. 
Berthet, S., Leriche, M., Pinty, J.-P., Cuesta, J., and Pigeon, G.: Scavenging of aerosol particles by rain in a cloud resolving model, Atmos. Res., 96, 325–336, 2010. 
Download
Short summary
The article explores the impact of different representations of below-cloud scavenging on model biases. A new scavenging scheme and precipitation-phase partitioning improve the model's performance, with better SO42- scavenging and wet deposition of NO3- and NH4+.