Articles | Volume 17, issue 2
https://doi.org/10.5194/gmd-17-685-2024
https://doi.org/10.5194/gmd-17-685-2024
Model evaluation paper
 | 
26 Jan 2024
Model evaluation paper |  | 26 Jan 2024

Modeling below-cloud scavenging of size-resolved particles in GEM-MACHv3.1

Roya Ghahreman, Wanmin Gong, Paul A. Makar, Alexandru Lupu, Amanda Cole, Kulbir Banwait, Colin Lee, and Ayodeji Akingunola

Related authors

Alkaline dust deposition to foliage surfaces likely enhances the dry deposition velocity of SO2: An investigation in the Alberta Oil-Sands Region using the GEM-MACH air-quality model
Stefan Miller, Paul A. Makar, Kenjiro Toyota, Colin Lee, Verica Savic-Jovcic, Sepehr Fathi, Mathab Majdzadeh, and Katherine Hayden
EGUsphere, https://doi.org/10.5194/egusphere-2025-6392,https://doi.org/10.5194/egusphere-2025-6392, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Operational chemical weather forecasting with the ECCC online Regional Air Quality Deterministic Prediction System version 023 (RAQDPS023) – Part 2: Multi-year prospective and retrospective performance evaluation
Michael D. Moran, Alexandru Lupu, Verica Savic-Jovcic, Junhua Zhang, Qiong Zheng, Elisa I. Boutzis, Rabab Mashayekhi, Craig A. Stroud, Sylvain Ménard, Jack Chen, Konstantinos Menelaou, Rodrigo Munoz-Alpizar, Dragana Kornic, and Patrick M. Manseau
EGUsphere, https://doi.org/10.5194/egusphere-2025-4324,https://doi.org/10.5194/egusphere-2025-4324, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Development and validation of satellite-derived surface NO2 estimates using machine learning versus traditional approaches in North America
Debora Griffin, Colin Hempel, Chris McLinden, Shailesh Kumar Kharol, Colin Lee, Andre Fogal, Christopher Sioris, Mark Shephard, and Yuan You
Atmos. Meas. Tech., 18, 7497–7511, https://doi.org/10.5194/amt-18-7497-2025,https://doi.org/10.5194/amt-18-7497-2025, 2025
Short summary
Operational chemical weather forecasting with the ECCC online Regional Air Quality Deterministic Prediction System version 023 (RAQDPS023) – Part 1: System description
Michael D. Moran, Verica Savic-Jovcic, Craig A. Stroud, Sylvain Ménard, Wanmin Gong, Junhua Zhang, Qiong Zheng, Jack Chen, Ayodeji Akingunola, Alexandru Lupu, Konstantinos Menelaou, and Rodrigo Munoz-Alpizar
EGUsphere, https://doi.org/10.5194/egusphere-2025-4323,https://doi.org/10.5194/egusphere-2025-4323, 2025
Short summary
Quantifying forest canopy shading and turbulence effects on boundary layer ozone over the United States
Chi-Tsan Wang, Patrick C. Campbell, Paul Makar, Siqi Ma, Irena Ivanova, Bok H. Baek, Wei-Ting Hung, Zachary Moon, Youhua Tang, Barry Baker, Rick Saylor, Jung-Hun Woo, and Daniel Tong
Atmos. Chem. Phys., 25, 16631–16655, https://doi.org/10.5194/acp-25-16631-2025,https://doi.org/10.5194/acp-25-16631-2025, 2025
Short summary

Cited articles

AAF: Alberta Agriculture and Forestry, Alberta Climate Information Service (ACIS), https://agriculture.alberta.ca/acis (last access: 25 January 2024), 2022. 
Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation, 3, Sectional representation, J. Geophys. Res., 107, 4026, https://doi.org/10.1029/2001JD000483, 2022. 
Andronache, C.: Estimates of sulphate aerosol wet scavenging coefficient for locations in the Eastern United States, Atmos. Environ., 38, 795–804, https://doi.org/10.1016/j.atmosenv.2003.10.035, 2004. 
Andronache, C., Grönholm, T., Laakso, L., Phillips, V., and Venäläinen, A.: Scavenging of ultrafine particles by rainfall at a boreal site: observations and model estimations, Atmos. Chem. Phys., 6, 4739–4754, https://doi.org/10.5194/acp-6-4739-2006, 2006. 
Berthet, S., Leriche, M., Pinty, J.-P., Cuesta, J., and Pigeon, G.: Scavenging of aerosol particles by rain in a cloud resolving model, Atmos. Res., 96, 325–336, 2010. 
Download
Short summary
The article explores the impact of different representations of below-cloud scavenging on model biases. A new scavenging scheme and precipitation-phase partitioning improve the model's performance, with better SO42- scavenging and wet deposition of NO3- and NH4+.
Share