



## Supplement of

## Modeling below-cloud scavenging of size-resolved particles in GEM-MACHv3.1

Roya Ghahreman et al.

*Correspondence to:* Roya Ghahreman (roya.ghahreman@ec.gc.ca)

The copyright of individual parts of the supplement might differ from the article licence.



Figure S1: July average temperature, and total snow and rain fluxes.



Figure S2: Averaged SO<sub>2</sub> concentrations (ppb) for April (a) and July (b). Most of the SO<sub>4</sub><sup>=</sup> and HSO<sub>3</sub><sup>-</sup> in the region originates in emissions of SO<sub>2</sub> from the large stacks in the Oil Sands area. However, their influence when plotted as emissions is not easy to discern, since the relatively high emissions levels occur only in a few model grid cells (those in which the stack sources are located). To better show the relative influence of different sources of SO<sub>2</sub> as the emitted precursor of SO<sub>4</sub><sup>=</sup> and HSO<sub>3</sub><sup>-</sup>, we have provided a map of average SO<sub>2</sub> concentrations over the region for the period of our simulations, in the SI. This clearly shows the hotspots of SO<sub>2</sub> associated with the Oil Sands sources, and the relative influence of other sources in the model domain.



Figure S3: The net differences of mean SO<sub>3</sub><sup>1-</sup>, SO<sub>4</sub><sup>=</sup>, NO<sub>3</sub><sup>-</sup> and NH<sub>4</sub><sup>+</sup> for the multi-phase and basecase (e.g. Multi-phase – base-case) for July 2018.

Values of domain-mean depositions - Base-case:  $SO_3^- = 0.027 \ (0.216), SO_4^- = 0.187 \ (17.952), NO_3^- = 0.176 \ (9.68), NH_4^+ = 1.950 \ (21.45) \ \mu mol/m^2 \ (\mu g/m^2).$  Multi-phase:  $SO_3^- = 0.024 \ (2.0), SO_4^- = 0.190 \ (18.24), NO_3^- = 0.177 \ (9.73), NH_4^+ = 1.962 \ (21.59) \ \mu mol/m^2 \ (\mu g/m^2).$ 



Figure S4: The net differences of mean SO<sub>3</sub><sup>1-</sup>, SO<sub>4</sub><sup>=</sup>, NO<sub>3</sub><sup>-</sup> and NH<sub>4</sub><sup>+</sup> for Wang2014 and multi-phase experiments (e.g. Wang2014 – multi-phase) for July 2018.

Values of domain-mean depositions – Wang2014:  $SO_3^- = 0.024$  (1.92),  $SO_4^- = 0.191$  (18.37),  $NO_3^- = 0.178$  (9.79),  $NH_4^+ = 1.981$  (21.79) µmol/m<sup>2</sup> (µg/m<sup>2</sup>). Multi-phase:  $SO_3^- = 0.024$  (1.92),  $SO_4^- = 0.190$  (18.24),  $NO_3^- = 0.177$  (9.73),  $NH_4^+ = 1.962$  (21.59) µmol/m<sup>2</sup> (µg/m<sup>2</sup>).



Figure S5: Rain and snow scavenging coefficients versus the particle's sizes for July and April 2018.