Articles | Volume 17, issue 17
https://doi.org/10.5194/gmd-17-6761-2024
https://doi.org/10.5194/gmd-17-6761-2024
Development and technical paper
 | 
12 Sep 2024
Development and technical paper |  | 12 Sep 2024

Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0

Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang

Related authors

CLEO: The Numerical Methods of a New Superdroplet Model including a Droplet Breakup Algorithm
Clara J. A. Bayley, Ann Kristin Naumann, Florian Poydenot, Raphaela Vogel, Bjorn Stevens, and Shin-Ichiro Shima
EGUsphere, https://doi.org/10.5194/egusphere-2025-4399,https://doi.org/10.5194/egusphere-2025-4399, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
A Middle Atmospheric Chemistry-Climate Model MACO: Model Description and Simulation Evaluation
Zhipeng Zhu, Limin Zhou, and Ziniu Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2025-3636,https://doi.org/10.5194/egusphere-2025-3636, 2025
Short summary
Simulation of marine stratocumulus using the super-droplet method: numerical convergence and comparison to a double-moment bulk scheme using SCALE-SDM 5.2.6-2.3.1
Chongzhi Yin, Shin-ichiro Shima, Lulin Xue, and Chunsong Lu
Geosci. Model Dev., 17, 5167–5189, https://doi.org/10.5194/gmd-17-5167-2024,https://doi.org/10.5194/gmd-17-5167-2024, 2024
Short summary
Overcoming computational challenges to realize meter- to submeter-scale resolution in cloud simulations using the super-droplet method
Toshiki Matsushima, Seiya Nishizawa, and Shin-ichiro Shima
Geosci. Model Dev., 16, 6211–6245, https://doi.org/10.5194/gmd-16-6211-2023,https://doi.org/10.5194/gmd-16-6211-2023, 2023
Short summary
Responses of CIPS/AIM noctilucent clouds to the interplanetary magnetic field
Liang Zhang, Brian Tinsley, and Limin Zhou
Atmos. Chem. Phys., 22, 13355–13370, https://doi.org/10.5194/acp-22-13355-2022,https://doi.org/10.5194/acp-22-13355-2022, 2022
Short summary

Cited articles

Andronache, C.: Diffusion and electric charge contributions to below-cloud wet removal of atmospheric ultra-fine aerosol particles, J. Aerosol Sci., 35, 1467–1482, https://doi.org/10.1016/j.jaerosci.2004.07.005, 2004. 
Arabas, S. and Shima, S.-i.: Large-eddy simulations of trade wind cumuli using particle-based microphysics with monte carlo coalescence, J. Atmos. Sci., 70, 2768–2777, https://doi.org/10.1175/JAS-D-12-0295.1, 2013. 
Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical processes of the UCLA general circulation model, Meth. Comput. Phys., 17, 173–265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4, 1977. 
Ardon-Dryer, K., Huang, Y.-W., and Cziczo, D. J.: Laboratory studies of collection efficiency of sub-micrometer aerosol particles by cloud droplets on a single-droplet basis, Atmos. Chem. Phys., 15, 9159–9171, https://doi.org/10.5194/acp-15-9159-2015, 2015. 
Beard, K. V., Ochs III, H. T., and Twohy, C. H.: Aircraft measurements of high average charges on cloud drops in layer clouds, Geophys. Res. Lett., 31, L14111, https://doi.org/10.1029/2004GL020465, 2004. 
Download
Short summary
Solar activity weakly ionises Earth's atmosphere, charging cloud droplets. Electro-coalescence is when oppositely charged droplets stick together. We introduce an analytical expression of electro-coalescence probability and use it in a warm-cumulus-cloud simulation. Results show that charge cases increase rain and droplet size, with the new method outperforming older ones. The new method requires longer computation time, but its impact on rain justifies inclusion in meteorology models.
Share