Articles | Volume 17, issue 16
https://doi.org/10.5194/gmd-17-6277-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-6277-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A conservative immersed boundary method for the multi-physics urban large-eddy simulation model uDALES v2.0
Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United Kingdom
Dipanjan Majumdar
Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United Kingdom
Chris E. Wilson
Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United Kingdom
Paul Bartholomew
EPCC, University of Edinburgh, Edinburgh EH8 9BT, United Kingdom
Maarten van Reeuwijk
Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United Kingdom
Related authors
Ivo Suter, Tom Grylls, Birgit S. Sützl, Sam O. Owens, Chris E. Wilson, and Maarten van Reeuwijk
Geosci. Model Dev., 15, 5309–5335, https://doi.org/10.5194/gmd-15-5309-2022, https://doi.org/10.5194/gmd-15-5309-2022, 2022
Short summary
Short summary
Cities are increasingly moving to the fore of climate and air quality research due to their central role in the population’s health and well-being, while suitable models remain scarce. This article describes the development of a new urban LES model, which allows examining the effects of various processes, infrastructure and vegetation on the local climate and air quality. Possible applications are demonstrated and a comparison to an experiment is shown.
Ruiyue Huang, Claire E. Heaney, and Maarten van Reeuwijk
EGUsphere, https://doi.org/10.48550/arXiv.2505.02979, https://doi.org/10.48550/arXiv.2505.02979, 2026
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This paper uses the Neural Physics approach to determine parameters of a simple land-surface model. We show that we can only obtain a reliable parameter estimation using soil temperature measurements at more than one depth, and that latent and sensible heat fluxes cannot be differentiated. We then apply the inverse model to real urban flux tower data and show that parameters, as well as various heat fluxes, can be reliably estimated using an observed value for the effective surface albedo.
Ivo Suter, Tom Grylls, Birgit S. Sützl, Sam O. Owens, Chris E. Wilson, and Maarten van Reeuwijk
Geosci. Model Dev., 15, 5309–5335, https://doi.org/10.5194/gmd-15-5309-2022, https://doi.org/10.5194/gmd-15-5309-2022, 2022
Short summary
Short summary
Cities are increasingly moving to the fore of climate and air quality research due to their central role in the population’s health and well-being, while suitable models remain scarce. This article describes the development of a new urban LES model, which allows examining the effects of various processes, infrastructure and vegetation on the local climate and air quality. Possible applications are demonstrated and a comparison to an experiment is shown.
Cited articles
Anders, J., Schubert, S., Sauter, T., Tunn, S., Schneider, C., and Salim, M.: Modelling the impact of an urban development project on microclimate and outdoor thermal comfort in a mid-latitude city, Energ. Buildings, 296, 113324, https://doi.org/10.1016/j.enbuild.2023.113324, 2023. a
Antoniou, N., Montazeri, H., Neophytou, M., and Blocken, B.: CFD simulation of urban microclimate: Validation using high-resolution field measurements, Sci. Total Environ., 695, 133743, https://doi.org/10.1016/j.scitotenv.2019.133743, 2019. a
Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical processes of the UCLA general circulation model, General Circulation Models of the Atmosphere, 17, 173–265, 1977. a
Baker, C.: Wind engineering – Past, present and future, J. Wind Eng. Ind. Aerod., 95, 843–870, 2007. a
Bao, J., Chow, F. K., and Lundquist, K. A.: Large-eddy simulation over complex terrain using an improved immersed boundary method in the Weather Research and Forecasting Model, Mon. Weather Rev., 146, 2781–2797, 2018. a
Bartholomew, P., Deskos, G., Frantz, R. A., Schuch, F. N., Lamballais, E., and Laizet, S.: Xcompact3D: An open-source framework for solving turbulence problems on a Cartesian mesh, SoftwareX, 12, 100550, https://doi.org/10.1016/j.softx.2020.100550, 2020. a
Bartholomew, P., Moulinec, C., Weiland, M., and Laizet, S.: Developing in-situ analysis capabilities for pre-Exascale simulations with Xcompact3D, ARCHER2-eCSE03-02, Zenodo [report], https://doi.org/10.5281/zenodo.7898885, 2023. a
Bastin, J. F., Clark, E., Elliott, T., Hart, S., Van Den Hoogen, J., Hordijk, I., Ma, H., Majumder, S., Manoli, G., Maschler, J., and Mo, L.: Understanding climate change from a global analysis of city analogues, PLOS ONE, 14, e0217592, https://doi.org/10.1371/journal.pone.0224120, 2019. a
Blocken, B.: LES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion?, Building Simulation, 11, 821–870, 2018. a
Borazjani, I., Ge, L., and Sotiropoulos, F.: Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies, J. Comput. Phys., 227, 7587–7620, 2008. a
Cai, X.-M., Barlow, J., and Belcher, S.: Dispersion and transfer of passive scalars in and above street canyons – large-eddy simulations, Atmos. Environ., 42, 5885–5895, 2008. a
Chen, Q.: Ventilation performance prediction for buildings: A method overview and recent applications, Build. Environ., 44, 848–858, 2009. a
Cheng, H. and Castro, I. P.: Near wall flow over urban-like roughness, Bound.-Lay. Meteorol., 104, 229–259, 2002. a
DeGraw, J. and Walton, G.: View3D, Tech. rep., National Renewable Energy Lab. (NREL), Golden, CO, USA, 2018. a
Enenkel, K., Quinio, V., and Swinney, P.: Holding our breath – How poor air quality blights cities, Centre for Cities, https://www.centreforcities.org/reader/cities-outlook-2020/air-quality-cities/ (last access: 4 August 2024), 2020. a
EPCC: ARCHER2 User Documentation, EPCC, https://docs.archer2.ac.uk (last access: 4 August 2024), 2022. a
Ferziger, J. H., Perić, M., and Street, R. L.: Computational methods for fluid dynamics, Springer, Cham, https://doi.org/10.1007/978-3-319-99693-6, 2020. a, b, c
Frigo, M. and Johnson, S. G.: FFTW: An adaptive software architecture for the FFT, in: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP'98 (Cat. No. 98CH36181), Seattle, WA, USA, vol. 3, IEEE, pp. 1381–1384, 1998. a
Gao, Z., Bresson, R., Qu, Y., Milliez, M., De Munck, C., and Carissimo, B.: High resolution unsteady RANS simulation of wind, thermal effects and pollution dispersion for studying urban renewal scenarios in a neighborhood of Toulouse, Urban Climate, 23, 114–130, 2018. a
Greater London Authority: Interim 2021-based Population Projection Results, Greater London Authority, https://data.london.gov.uk/dataset/trend-based-population-projections (last access: 4 August 2024), 2023. a
Grylls, T. and van Reeuwijk, M.: How trees affect urban air quality: It depends on the source, Atmos. Environ., 290, 119275, https://doi.org/10.1016/j.atmosenv.2022.119275, 2022. a
Grylls, T., Le Cornec, C. M., Salizzoni, P., Soulhac, L., Stettler, M. E., and van Reeuwijk, M.: Evaluation of an operational air quality model using large-eddy simulation, Atmospheric Environment: X, 3, 100041, https://doi.org/10.1016/j.aeaoa.2019.100041, 2019. a, b
Grylls, T., Suter, I., and van Reeuwijk, M.: Steady-state large-eddy simulations of convective and stable urban boundary layers, Bound.-Lay. Meteorol., 175, 309–341, 2020. a
Grylls, T., Suter, I., Sützl, B., Owens, S., Meyer, D., and van Reeuwijk, M.: uDALES: large-eddy-simulation software for urban flow, dispersion, and microclimate modelling, Zenodo [code], https://doi.org/10.5281/ZENODO.10671714, 2024. a
Hadžiabdić, M., Hafizović, M., Ničeno, B., and Hanjalić, K.: A rational hybrid RANS-LES model for CFD predictions of microclimate and environmental quality in real urban structures, Build. Environ., 217, 109042, https://doi.org/10.1016/j.buildenv.2022.109042, 2022. a
Hanjalić, K.: One-point closure models for buoyancy-driven turbulent flows, Annu. Rev. Fluid Mech., 34, 321–347, 2002. a
Hefny, M. M. and Ooka, R.: CFD analysis of pollutant dispersion around buildings: Effect of cell geometry, Build. Environ., 44, 1699–1706, 2009. a
Hundsdorfer, W., Koren, B., vanLoon, M., and Verwer, J. G.: A positive finite-difference advection scheme, J. Computat. Phys., 117, 35–46, https://doi.org/10.1006/jcph.1995.1042, 1995. a
Hutchins, N. and Marusic, I.: Evidence of very long meandering features in the logarithmic region of turbulent boundary layers, J. Fluid Mech., 579, 1–28, 2007. a
Huttner, S.: Further development and application of the 3D microclimate simulation ENVI-met, PhD thesis, Diss., 2012, Univ., Mainz, 2012. a
Jarvis, P.: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field, Philos. T. Roy. Soc. B, 273, 593–610, 1976. a
Kadasch, E., Sühring, M., Gronemeier, T., and Raasch, S.: Mesoscale nesting interface of the PALM model system 6.0, Geosci. Model Dev., 14, 5435–5465, https://doi.org/10.5194/gmd-14-5435-2021, 2021. a
Kosutova, K., Vanderwel, C., van Hooff, T., Blocken, B., and Hensen, J. L.: Wind-tunnel experiments on cross-ventilative cooling in a generic isolated building with one heated wall: impact of opening size, Build. Environ., 259, 111628, https://doi.org/10.1016/j.buildenv.2024.111628, 2024. a
Krč, P., Resler, J., Sühring, M., Schubert, S., Salim, M. H., and Fuka, V.: Radiative Transfer Model 3.0 integrated into the PALM model system 6.0, Geosci. Model Dev., 14, 3095–3120, https://doi.org/10.5194/gmd-14-3095-2021, 2021. a
Kubilay, A., Derome, D., and Carmeliet, J.: Coupling of physical phenomena in urban microclimate: A model integrating air flow, wind-driven rain, radiation and transport in building materials, Urban Climate, 24, 398–418, 2018. a
Lim, H., Hertwig, D., Grylls, T., Gough, H., Reeuwijk, M. V., Grimmond, S., and Vanderwel, C.: Pollutant dispersion by tall buildings: Laboratory experiments and Large-Eddy Simulation, Exp. Fluids, 63, 92, https://doi.org/10.1007/s00348-022-03439-0, 2022. a, b
Lin, D., Khan, B., Katurji, M., Bird, L., Faria, R., and Revell, L. E.: WRF4PALM v1.0: a mesoscale dynamical driver for the microscale PALM model system 6.0, Geosci. Model Dev., 14, 2503–2524, https://doi.org/10.5194/gmd-14-2503-2021, 2021. a
Louis, J.-F.: A parametric model of vertical eddy fluxes in the atmosphere, Bound.-Lay. Meteorol., 17, 187–202, 1979. a
Majumdar, D., Bose, C., and Sarkar, S.: Capturing the dynamical transitions in the flow-field of a flapping foil using immersed boundary method, J. Fluid. Struct., 95, 102999, https://doi.org/10.1016/j.jfluidstructs.2020.102999, 2020. a
Maronga, B., Banzhaf, S., Burmeister, C., Esch, T., Forkel, R., Fröhlich, D., Fuka, V., Gehrke, K. F., Geletič, J., Giersch, S., Gronemeier, T., Groß, G., Heldens, W., Hellsten, A., Hoffmann, F., Inagaki, A., Kadasch, E., Kanani-Sühring, F., Ketelsen, K., Khan, B. A., Knigge, C., Knoop, H., Krč, P., Kurppa, M., Maamari, H., Matzarakis, A., Mauder, M., Pallasch, M., Pavlik, D., Pfafferott, J., Resler, J., Rissmann, S., Russo, E., Salim, M., Schrempf, M., Schwenkel, J., Seckmeyer, G., Schubert, S., Sühring, M., von Tils, R., Vollmer, L., Ward, S., Witha, B., Wurps, H., Zeidler, J., and Raasch, S.: Overview of the PALM model system 6.0, Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020, 2020. a
Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., and Shukla, P. R.: Global Warming of 1.5 °C: IPCC special report on impacts of global warming of 1.5 °C above pre-industrial levels in context of strengthening response to climate change, sustainable development, and efforts to eradicate poverty, Cambridge University Press, Cambridge, 2022. a
Moonen, P., Dorer, V., and Carmeliet, J.: Effect of flow unsteadiness on the mean wind flow pattern in an idealized urban environment, J. Wind Eng. Ind. Aerod., 104, 389–396, 2012. a
Murakami, S. (Ed.): Comparison of various turbulence models applied to a bluff body, in: Computational Wind Engineering 1, Elsevier, https://doi.org/10.1016/0167-6105(93)90112-2, pp. 21–36, 1993. a
Musy, M., Malys, L., Morille, B., and Inard, C.: The use of SOLENE-microclimat model to assess adaptation strategies at the district scale, Urban Climate, 14, 213–223, 2015. a
Musy, M., Azam, M.-H., Guernouti, S., Morille, B., and Rodler, A.: The SOLENE-Microclimat model: potentiality for comfort and energy studies, in: Urban Microclimate Modelling for Comfort and Energy Studies, edited by: Palme, M. and Salvati, A., Springer, Cham, https://doi.org/10.1007/978-3-030-65421-4_13, pp. 265–291, 2021. a
Owens, S. O., Majumdar, D., Wilson, C. E., Bartholomew, P., and van Reeuwijk, M.: A conservative immersed boundary method for the multi-physics urban large-eddy simulation model uDALES v2.0, Zenodo [data set], https://doi.org/10.5281/zenodo.12510825, 2024. a
Pope, S. B.: Turbulent flows, Meas. Sci. Technol., 12, 2020–2021, 2001. a
Radović, J., Belda, M., Resler, J., Eben, K., Bureš, M., Geletič, J., Krč, P., Řezníček, H., and Fuka, V.: Challenges of constructing and selecting the “perfect” boundary conditions for the large-eddy simulation model PALM, Geosci. Model Dev., 17, 2901–2927, https://doi.org/10.5194/gmd-17-2901-2024, 2024. a
Resler, J., Krč, P., Belda, M., Juruš, P., Benešová, N., Lopata, J., Vlček, O., Damašková, D., Eben, K., Derbek, P., Maronga, B., and Kanani-Sühring, F.: PALM-USM v1.0: A new urban surface model integrated into the PALM large-eddy simulation model, Geosci. Model Dev., 10, 3635–3659, https://doi.org/10.5194/gmd-10-3635-2017, 2017. a
Resler, J., Eben, K., Geletič, J., Krč, P., Rosecký, M., Sühring, M., Belda, M., Fuka, V., Halenka, T., Huszár, P., Karlický, J., Benešová, N., Ďoubalová, J., Honzáková, K., Keder, J., Nápravníková, Š., and Vlček, O.: Validation of the PALM model system 6.0 in a real urban environment: a case study in Dejvice, Prague, the Czech Republic, Geosci. Model Dev., 14, 4797–4842, https://doi.org/10.5194/gmd-14-4797-2021, 2021. a
Salim, M. H., Schlünzen, K. H., Grawe, D., Boettcher, M., Gierisch, A. M. U., and Fock, B. H.: The microscale obstacle-resolving meteorological model MITRAS v2.0: model theory, Geosci. Model Dev., 11, 3427–3445, https://doi.org/10.5194/gmd-11-3427-2018, 2018. a
Salim, M. H., Schubert, S., Resler, J., Krč, P., Maronga, B., Kanani-Sühring, F., Sühring, M., and Schneider, C.: Importance of radiative transfer processes in urban climate models: a study based on the PALM 6.0 model system, Geosci. Model Dev., 15, 145–171, https://doi.org/10.5194/gmd-15-145-2022, 2022. a
Schumann, U. and Sweet, R. A.: Fast Fourier transforms for direct solution of Poisson's equation with staggered boundary conditions, J. Comput. Phys., 75, 123–137, 1988. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D. M., and Huang, X. Y.: A description of the advanced research WRF version 4, NCAR tech. note ncar/tn-556+ str, 145, https://doi.org/10.5065/1dfh-6p97,2019. a
Stewart, J.: Modelling surface conductance of pine forest, Agr. Forest Meteorol., 43, 19–35, 1988. a
Suter, I.: Simulating the impact of blue-green infrastructure on the microclimate of urban areas, PhD thesis, Imperial College London, London, https://doi.org/10.25560/78715, 2018. a, b
Sützl, B. S., Rooney, G. G., Finnenkoetter, A., Bohnenstengel, S. I., Grimmond, S., and van Reeuwijk, M.: Distributed urban drag parametrization for sub-kilometre scale numerical weather prediction, Q. J. Roy. Meteor. Soc., 147, 3940–3956, 2021a. a
Sützl, B. S., Rooney, G. G., and van Reeuwijk, M.: Drag distribution in idealized heterogeneous urban environments, Bound.-Lay. Meteorol., 178, 225–248, 2021b. a
Tominaga, Y.: Flow around a high-rise building using steady and unsteady RANS CFD: Effect of large-scale fluctuations on the velocity statistics, J. Wind Eng. Ind. Aerod., 142, 93–103, 2015. a
Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M., and Shirasawa, T.: AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings, J. Wind Eng. Ind. Aerod., 96, 1749–1761, 2008. a
Toparlar, Y., Blocken, B., Vos, P. v., Van Heijst, G., Janssen, W., van Hooff, T., Montazeri, H., and Timmermans, H.: CFD simulation and validation of urban microclimate: A case study for Bergpolder Zuid, Rotterdam, Build. Environ., 83, 79–90, 2015. a
United Nations Human Settlements Programme (UN-Habitat): Envisioning Future Cities: World Cities Report 2022, United Nations Research Institute for Social Development, https://unhabitat.org/wcr/ (last access: 4 August 2024), 2022. a
Uno, I., Cai, X. M., Steyn, D., and Emori, S.: A simple extension of the Louis method for rough surface layer modelling, Bound.-Lay. Meteorol., 76, 395–409, 1995. a
Vita, G., Salvadori, S., Misul, D. A., and Hemida, H.: Effects of inflow condition on RANS and LES predictions of the flow around a high-rise building, Fluids, 5, 233, https://doi.org/10.3390/fluids5040233, 2020. a
Vreman, A.: An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications, Phys. Fluids, 16, 3670–3681, 2004. a
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019. a
Watanabe, K., Kikuchi, K., Boku, T., Sato, T., and Kusaka, H.: High Resolution of City-Level Climate Simulation by GPU with Multi-physical Phenomena, in: IFIP International Conference on Network and Parallel Computing, Paris, France, pp. 3–15, Springer, Berlin, 2021. a
Wong, N. H., He, Y., Nguyen, N. S., Raghavan, S. V., Martin, M., Hii, D. J. C., Yu, Z., and Deng, J.: An integrated multiscale urban microclimate model for the urban thermal environment, Urban Climate, 35, 100730, https://doi.org/10.1016/j.uclim.2020.100730, 2021. a
Xie, Z.-T. and Castro, I. P.: Efficient generation of inflow conditions for large eddy simulation of street-scale flows, Flow Turbul. Combust., 81, 449–470, 2008. a
Xu, X., Yang, Q., Yoshida, A., and Tamura, Y.: Characteristics of pedestrian-level wind around super-tall buildings with various configurations, J. Wind Eng. Ind. Aerod., 166, 61–73, 2017. a
Short summary
Designing cities that are resilient, sustainable, and beneficial to health requires an understanding of urban climate and air quality. This article presents an upgrade to the multi-physics numerical model uDALES, which can simulate microscale airflow, heat transfer, and pollutant dispersion in urban environments. This upgrade enables it to resolve realistic urban geometries more accurately and to take advantage of the resources available on current and future high-performance computing systems.
Designing cities that are resilient, sustainable, and beneficial to health requires an...