Articles | Volume 17, issue 14
https://doi.org/10.5194/gmd-17-5733-2024
https://doi.org/10.5194/gmd-17-5733-2024
Development and technical paper
 | 
31 Jul 2024
Development and technical paper |  | 31 Jul 2024

Bayesian hierarchical model for bias-correcting climate models

Jeremy Carter, Erick A. Chacón-Montalván, and Amber Leeson

Related authors

Variability in Antarctic surface climatology across regional climate models and reanalysis datasets
Jeremy Carter, Amber Leeson, Andrew Orr, Christoph Kittel, and J. Melchior van Wessem
The Cryosphere, 16, 3815–3841, https://doi.org/10.5194/tc-16-3815-2022,https://doi.org/10.5194/tc-16-3815-2022, 2022
Short summary

Related subject area

Climate and Earth system modeling
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024,https://doi.org/10.5194/gmd-17-5913-2024, 2024
Short summary
A 3D-Var assimilation scheme for vertical velocity with CMA-MESO v5.0
Hong Li, Yi Yang, Jian Sun, Yuan Jiang, Ruhui Gan, and Qian Xie
Geosci. Model Dev., 17, 5883–5896, https://doi.org/10.5194/gmd-17-5883-2024,https://doi.org/10.5194/gmd-17-5883-2024, 2024
Short summary
Updating the radiation infrastructure in MESSy (based on MESSy version 2.55)
Matthias Nützel, Laura Stecher, Patrick Jöckel, Franziska Winterstein, Martin Dameris, Michael Ponater, Phoebe Graf, and Markus Kunze
Geosci. Model Dev., 17, 5821–5849, https://doi.org/10.5194/gmd-17-5821-2024,https://doi.org/10.5194/gmd-17-5821-2024, 2024
Short summary
An urban module coupled with the Variable Infiltration Capacity model to improve hydrothermal simulations in urban systems
Yibing Wang, Xianhong Xie, Bowen Zhu, Arken Tursun, Fuxiao Jiang, Yao Liu, Dawei Peng, and Buyun Zheng
Geosci. Model Dev., 17, 5803–5819, https://doi.org/10.5194/gmd-17-5803-2024,https://doi.org/10.5194/gmd-17-5803-2024, 2024
Short summary
Evaluation of the coupling of EMACv2.55 to the land surface and vegetation model JSBACHv4
Anna Martin, Veronika Gayler, Benedikt Steil, Klaus Klingmüller, Patrick Jöckel, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 17, 5705–5732, https://doi.org/10.5194/gmd-17-5705-2024,https://doi.org/10.5194/gmd-17-5705-2024, 2024
Short summary

Cited articles

Bader, D., Covey, C., Gutowski, W., Held, I., Kunkel, K., Miller, R., Tokmakian, R., and Zhang, M.: Climate Models: An Assessment of Strengths and Limitations, Climate Models: An Assessment of Strengths and Limitations, ISBN 9781507847190, 2008. a
Beyer, R., Krapp, M., and Manica, A.: An empirical evaluation of bias correction methods for palaeoclimate simulations, Clim. Past, 16, 1493–1508, https://doi.org/10.5194/cp-16-1493-2020, 2020. a, b
Carter, J.: Bias Correction of Climate Models using a Bayesian Hierarchical Model: Code, Zenodo [code], https://doi.org/10.5281/zenodo.10053653, 2023a. a
Carter, J.: Data used in generation of results in “Bias Correction of Climate Models using a Bayesian Hierarchical Model” J.Carter et. al., Zenodo [data set], https://doi.org/10.5281/zenodo.10053531, 2023b. a
Carter, J., Leeson, A., Orr, A., Kittel, C., and van Wessem, M.: Variability in Antarctic surface climatology across regional climate models and reanalysis datasets, The Cryosphere, 16, 3815–3841, https://doi.org/10.5194/tc-16-3815-2022, 2022. a, b
Download
Short summary
Climate models are essential tools in the study of climate change and its wide-ranging impacts on life on Earth. However, the output is often afflicted with some bias. In this paper, a novel model is developed to predict and correct bias in the output of climate models. The model captures uncertainty in the correction and explicitly models underlying spatial correlation between points. These features are of key importance for climate change impact assessments and resulting decision-making.