Articles | Volume 17, issue 14
https://doi.org/10.5194/gmd-17-5733-2024
https://doi.org/10.5194/gmd-17-5733-2024
Development and technical paper
 | 
31 Jul 2024
Development and technical paper |  | 31 Jul 2024

Bayesian hierarchical model for bias-correcting climate models

Jeremy Carter, Erick A. Chacón-Montalván, and Amber Leeson

Related authors

Variability in Antarctic surface climatology across regional climate models and reanalysis datasets
Jeremy Carter, Amber Leeson, Andrew Orr, Christoph Kittel, and J. Melchior van Wessem
The Cryosphere, 16, 3815–3841, https://doi.org/10.5194/tc-16-3815-2022,https://doi.org/10.5194/tc-16-3815-2022, 2022
Short summary

Cited articles

Bader, D., Covey, C., Gutowski, W., Held, I., Kunkel, K., Miller, R., Tokmakian, R., and Zhang, M.: Climate Models: An Assessment of Strengths and Limitations, Climate Models: An Assessment of Strengths and Limitations, ISBN 9781507847190, 2008. a
Beyer, R., Krapp, M., and Manica, A.: An empirical evaluation of bias correction methods for palaeoclimate simulations, Clim. Past, 16, 1493–1508, https://doi.org/10.5194/cp-16-1493-2020, 2020. a, b
Carter, J.: Bias Correction of Climate Models using a Bayesian Hierarchical Model: Code, Zenodo [code], https://doi.org/10.5281/zenodo.10053653, 2023a. a
Carter, J.: Data used in generation of results in “Bias Correction of Climate Models using a Bayesian Hierarchical Model” J.Carter et. al., Zenodo [data set], https://doi.org/10.5281/zenodo.10053531, 2023b. a
Carter, J., Leeson, A., Orr, A., Kittel, C., and van Wessem, M.: Variability in Antarctic surface climatology across regional climate models and reanalysis datasets, The Cryosphere, 16, 3815–3841, https://doi.org/10.5194/tc-16-3815-2022, 2022. a, b
Download
Short summary
Climate models are essential tools in the study of climate change and its wide-ranging impacts on life on Earth. However, the output is often afflicted with some bias. In this paper, a novel model is developed to predict and correct bias in the output of climate models. The model captures uncertainty in the correction and explicitly models underlying spatial correlation between points. These features are of key importance for climate change impact assessments and resulting decision-making.
Share