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Abstract. Climate models, derived from process understand-
ing, are essential tools in the study of climate change and
its wide-ranging impacts. Hindcast and future simulations
provide comprehensive spatiotemporal estimates of clima-
tology that are frequently employed within the environmen-
tal sciences community, although the output can be afflicted
with bias that impedes direct interpretation. Post-processing
bias correction approaches utilise observational data to ad-
dress this challenge, although they are typically criticised
for not being physically justified and not considering uncer-
tainty in the correction. This paper proposes a novel Bayesian
bias correction framework that robustly propagates uncer-
tainty and models underlying spatial covariance patterns.
Shared latent Gaussian processes are assumed between the
in situ observations and climate model output, with the aim
of partially preserving the covariance structure from the cli-
mate model after bias correction, which is based on well-
established physical laws. Results demonstrate added value
in modelling shared generating processes under several sim-
ulated scenarios, with the most value added for the case of
sparse in situ observations and smooth underlying bias. Ad-
ditionally, the propagation of uncertainty to a simulated final
bias-corrected time series is illustrated, which is of key im-
portance to a range of stakeholders, such as climate scientists
engaged in impact studies, decision-makers trying to under-
stand the likelihood of particular scenarios and individuals
involved in climate change adaption strategies where accu-
rate risk assessment is required for optimal resource alloca-
tion. This paper focuses on one-dimensional simulated ex-
amples for clarity, although the code implementation is de-
veloped to also work on multi-dimensional input data, en-
couraging follow-on real-world application studies that will

further validate performance and remaining limitations. The
Bayesian framework supports uncertainty propagation under
model adaptations required for specific applications, provid-
ing a flexible approach that increases the scope of data as-
similation tasks more generally.

1 Introduction

Climate models are invaluable in the study of climate change
and its impacts (Bader et al., 2008; Flato et al., 2013).
Formulated from physical laws and with parameterisation
and process understanding derived from past observations,
climate models provide comprehensive spatiotemporal esti-
mates of our past, current and future climate under differ-
ent emission scenarios. Global climate models (GCMs) sim-
ulate important climatological features and drivers, such as
storm tracks and the El Niño–Southern Oscillation (ENSO)
(Greeves et al., 2007; Guilyardi et al., 2009). In addition, in-
dependently developed GCMs agree on the future direction
of travel for many important features, such as global tem-
perature rise under continued net-positive emission scenarios
(Tebaldi et al., 2021). However, GCMs are computationally
expensive to run and also exhibit significant systematic er-
rors, particularly on regional scales (Cattiaux et al., 2013;
Flato et al., 2013). Regional climate models (RCMs) aim
to downscale GCMs dynamically; represent climatology for
specific regions of interest more accurately; and have pa-
rameterisation, tuning and additional physical schemes op-
timised for the region (Giorgi, 2019; Doblas-Reyes et al.,
2021). Despite this, significant systematic errors remain, par-
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ticularly for regions with a complex climatology and with
sparse in situ observations available to inform process under-
standing, such as over Antarctica (Carter et al., 2022). These
systematic errors inhibit the direct interpretation of climate
model output, which is particularly important in impact as-
sessments (Ehret et al., 2012; Liu et al., 2014; Sippel et al.,
2016).

There are many fundamental causes of systematic errors in
climate models, including the absence or imperfect represen-
tation of physical processes, errors in initialisation, influence
of boundary conditions and finite resolution (Giorgi, 2019).
The inherent complexity and computationally expensive na-
ture of climate models make a direct reduction in systematic
errors through climate model development and tuning chal-
lenging (Hourdin et al., 2017). Additionally, end users are
typically only interested in a narrow aspect of the output (e.g.
possibly only one or two variables), which the climate model
is unlikely to be specifically tuned for. Post-processing bias
correction techniques allow for improvements to the consis-
tency, quality and value of climate model output specific to
the end user’s focus of interest, with a manageable computa-
tional cost and without the requirement for in-depth knowl-
edge behind the climate model itself (Ehret et al., 2012).
Transfer functions are derived between the climate model
output and in situ observational data to correct components
such as the mean (Das et al., 2022) or probability density
functions (PDFs) of the data (Qian and Chang, 2021). This
paper focuses on providing a novel framework for correcting
systematic errors in the PDF of the climate model output at
each grid point.

One of the fundamental issues often attached to post-
processing bias correction is the lack of justification based
on known physical laws and process understanding (Ehret
et al., 2012; Maraun, 2016). The spatiotemporal field and as-
sociated covariance structure from the climate model, which
is consistent with accepted physical laws, are typically not
considered and therefore not preserved. Resulting corrected
fields may exhibit behaviour that is too smooth or sharply
varies over the region and has significant discontinuities near
observations. In addition, many approaches to bias correction
fail to adequately handle uncertainties or estimate them at all.
Reliable uncertainty estimation is valuable to include in im-
pact studies to inform resulting decision-making. This is es-
pecially true for regimes with tipping points, such as ice shelf
collapse over Antarctica, where uncertainties in the climatol-
ogy can cause a regime shift (DeConto and Pollard, 2016). In
this paper, these issues are partially addressed through the de-
velopment of a fully Bayesian hierarchical approach to bias
correction. Parameter uncertainties are propagated through
the hierarchical model, and underlying spatial covariance
structures are captured with latent Gaussian processes (GPs)
for both in situ observations and climate model output.

The approach presented builds on that of Lima et al.
(2021), which models the in situ observational data as gener-
ated from a GP and uses quantile mapping (Qian and Chang,

2021) to apply the correction to the climate model output. In
Lima et al. (2021), the spatial covariance structure of the cli-
mate model output is not considered and uncertainty is not
propagated to the final bias-corrected time series. The nov-
elty of the approach proposed here is that shared latent GPs
are modelled between the climate model output and the in
situ observational data, which is an attempt at incorporating
information from the physically realistic spatial patterns of
the climate model output in predictions of the unbiased field.
Additionally, uncertainty is propagated through the quantile
mapping step, which results in uncertainty bands in the bias-
corrected output. The approach is developed with the focus
on applying bias correction to regions with sparse in situ ob-
servations, such as over Antarctica, where capturing uncer-
tainty in the correction is of key importance and where in-
cluding data from all sources during inference is particularly
valuable. Performance under simulated scenarios with differ-
ing data density and underlying covariance length scales is
evaluated in this paper and the potential added value assessed
when compared with the approach in Lima et al. (2021).

While simple simulated scenarios are focused on in this
paper, the applicability of GPs for modelling complex spa-
tial patterns seen in real-world climatology is already illus-
trated in Zhang et al. (2021) and Lima et al. (2021). The
non-parametric nature of GPs makes the model flexible and
able to capture complex non-linear spatial relationships. Ad-
ditionally, features of GPs such as uncertainty estimation,
sensible extrapolation, kernel customisation and ability to
produce accurate predictions with limited data are desirable
for real-world case studies. Finally, advancements in approx-
imate inference methods have improved the scalability of
GPs, improving the applicability to large climate data sets, as
demonstrated in Wang and Chaib-draa (2017). In addition to
the main results presented in Sect. 4, to further demonstrate
the flexibility of the methodology presented in this paper and
its applicability to potential real-world scenarios, some addi-
tional simulated scenarios are created, with added complex-
ity, the results of which are presented in Appendix G. These
additional scenarios test the robustness of the model on po-
tential real-world situations, where not all the assumptions of
the model necessarily completely hold.

Developing the bias correction approach in a flexible
Bayesian framework means further adjustments and/or ad-
vancements that are necessary for real-world scenarios can
easily be incorporated while maintaining robust uncertainty
propagation. For example, extra predictors, such as elevation
and latitude, can be included in either the mean function or
the covariance matrix of the latent GPs. Alternatively, the
model could be expanded to incorporate a temporal compo-
nent of the bias, accounting for variability across different
seasons. This flexibility is important and increases the scope
of the work, allowing for the methodology to be applied to
a wide range of scenarios, including, for example, applica-
tion in many different meteorological fields and also combin-
ing observation data from different instruments rather than
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necessarily with respect to climate model output. Addition-
ally, the Bayesian framework allows for the incorporation of
domain-specific expert knowledge of different data sources
and their uncertainties through the choice of prior distribu-
tions.

2 Methodology

In a probabilistic framework, the in situ observations and
climate model output are treated as realisations from latent
spatiotemporal stochastic processes, denoted as {Y (s, t) : s ∈
S, t ∈ T } and {Z(s, t) : s ∈ S, t ∈ T } respectively. Stochas-
tic processes are sequences of random variables indexed by
a set, which, in this case, are the spatial and temporal co-
ordinates in the domain (S,T ). The observed data are then
considered to be a realisation of the joint distribution over a
finite set of random variables across the domain. For the pur-
pose of evaluating the time-independent component of the
climate model bias, the random variables are treated as inde-
pendent and identically distributed across time. That is, the
collection of temporal data for a given spatial location can
be considered to be multiple realisations based on the same
random variable. The random variables for each location
are distributed respectively as Y (s)∼ fY (φY (s)) and Z(s)∼
fY (φZ(s)), where φY (s) and φZ(s) represent the collection
of parameters that describe the PDF. For example, if the PDF
is approximated as normal, then φ(s)= [µ(s),σ (s)]. The
disparity between each of the PDF parameters for the in situ
observations and climate model at each site then gives a mea-
sure of bias. The goal is to estimate the parameters φY (s)
and φZ(s) at the climate model grid points to quantify the
bias and to apply quantile mapping to bias-correct the cli-
mate model output. Gaussian processes are used to model
the underlying spatial covariance structure of the parameters,
which is required to estimate φY (s) when away from the lo-
cation of the in situ observations. Further discussion around
the definition of bias in climate models is provided in Ap-
pendix A.

Consider a collection of nY in situ observational sites,
where for each site i there exist mi measurements of some
property. In addition, consider gridded output from a climate
model at nz locations, where at each location there exist mz
measurements of the same property. The data can then be
represented by the following:

y = [ys1 , . . .,ysny ], (1)

ysi = [ysi ,1, . . .,ysi ,mi ], (2)
z= [zs′1

, . . .,zs′nz
], (3)

zs′i
= [zs′i ,1

, . . .,zs′i ,mz
]. (4)

If the collection of in situ observation sites is defined as
sy = [s1, . . ., sny ] and the collection of climate model output
locations as sz = [s′1, . . ., s

′
nz
], the collection of PDF parame-

Figure 1. Plate diagram illustrating the full hierarchical model. The
random variables for the in situ observations, Y (s), and climate
model output, Z(s), have PDFs with the collection of parameters
φY (s) and φZ(s) respectively, where φZ(s) is modelled as the sum
of φY (s) and some independent bias φB (s). The parameter φY (s)
and the corresponding bias φB (s) are each themselves modelled
over the domain as generated from Gaussian processes with hyper-
parameters θY and θB .

ter values for each set of locations is then written as

φY (sy)= [φY (s1), . . .,φY (sny )], (5)
φZ(sz)= [φZ(s

′

1), . . .,φZ(s
′
nz
)]. (6)

The PDF parameters are each modelled as being generated
from latent stochastic processes {φY (s)} and {φZ(s)}. The la-
tent processes that generate the parameters for climate model
are considered to be composed of two independent processes,
one that also generates the equivalent parameters for the in
situ observations and another that generates some bias, such
that {φZ(s)} = {φY (s)}+ {φB(s)}. The family of GPs is cho-
sen for the latent processes. A link function is used for the
case where the parameter space is not the same as the sample
space for GPs. Considering the case of no link function, the
following can then be written:

φY (s)∼ GP(·, ·|θφY ), (7)
φB(s)∼ GP(·, ·|θφB ), (8)
φZ(s)∼ GP(·, ·|θφY ,θφB ). (9)

The collection of hyper-parameters for the generating pro-
cesses is given by θφY and θφB respectively. The hyper-
parameters used in this paper consist of a mean constant,
kernel variance and kernel length scale. Note that the addi-
tive property of GPs allows φZ(s) to also be represented by a
GP, where the mean and covariances are computed using the
sum of the relative values from the independent processes.
Further discussion around the properties of GPs is provided
in Appendix B. The hierarchical model is illustrated through
the plate diagram shown in Fig. 1. In addition, a specific ex-
ample where the PDFs are approximated as normal is pre-
sented in Appendix D.

Inference on the parameters of the hierarchical model
given the data are applied in a Bayesian framework, where
parameters of the model are themselves treated as random
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variables with distributions. The distribution prior to con-
ditioning on any data is known as the prior distribution
and allows for the incorporation of a domain-specific ex-
pert’s knowledge in the estimates of the parameters. The
updated distribution after conditioning on the observed
data is known as the posterior and is approximated us-
ing Markov chain Monte Carlo (MCMC) methods, which
provide samples of the parameters from the distribution
P(φY (sy),φZ(sz),θφY ,θφB |y,z). Estimates of the parame-
ters φY and φZ at any set of new locations ŝ can then be made
by constructing the posterior predictive distribution; in par-
ticular, for the purpose of bias correction, estimates of φY at
the climate model locations can be made by sampling from
the posterior predictive distribution of P(φY (sz)|y,z).

After obtaining multiple realisations of φY (sz) and
φZ(sz), quantile mapping is then used to bias-correct the cli-
mate model time series at every grid cell location. Specif-
ically, for each value of the time series from the climate
model output at a given point (zs′i ,j ), this involves finding
the percentile of that value using the parameter φZ(s

′

i) and
then mapping the value onto the corresponding value of the
equivalent percentile of the PDF estimated for the unbiased
process, defined through the parameter φY (s

′

i). The cumula-
tive density function (CDF) returns the percentile of a given
value and the inverse CDF returns the value that corresponds
to a given percentile, which results in the correction function
ẑsi ,j = F

−1
Ysi
(FZsi (zsi ,j )), where F represents the CDF at a

specific site. The CDF can be estimated as an integral over
the parametric form assumed for the PDF. The Bayesian hier-
archical model presented provides a collection of realisations
for φY (sz) and φZ(sz) from an underlying latent distribution.
Applying quantile mapping with each set of realisations then
results in a collection of bias-corrected time series, with an
expectation and uncertainty. The full framework for bias cor-
rection proposed in this paper is then illustrated in Fig. 2. The
formulation for the posterior and posterior predictive is given
in Appendix C.

3 Data generation

The goal of the hierarchical model in Fig. 1 is primarily to
estimate, with reliable uncertainties, the true unbiased values
of the PDF parameters at each location of the climate model
output so bias correction can be applied. Simulated examples
are generated that highlight the advantage of two key features
of the methodology over other approaches in the literature:
modelling shared spatial covariance between the in situ data
and climate model output through the inclusion of a shared
generating latent process (Sect. 3.1) and the Bayesian hier-
archical framework with uncertainty propagation (Sect. 3.2).
One-dimensional simulated examples are chosen for clarity
when illustrating these features, although it is noted that the
implementation works for higher-dimensional domains, as is
useful in real-world scenarios.

3.1 Non-hierarchical examples: data generation

To illustrate the potential advantage of modelling shared
generating spatial processes, non-hierarchical examples are
generated for simplicity. Direct measurements are assumed
for one parameter of the PDFs for the in situ observations,
φY (sy), and for the climate model output, φZ(sz). The goal
is to predict the unbiased parameter at the climate model lo-
cation φY (sz) using information from both sets of input data,
φY (sy) and φZ(sz), which are related by φZ(s)= φY (s)+
φB(s). Comparison is made to the approach of inferring
φY (sz) from the in situ data, φY (sy), alone, as in Lima et al.
(2021). Relative performance is evaluated for three alterna-
tive simulated scenarios that correspond to different possible
real-world situations. The data are generated assuming the
model in Fig. 1, where the GPs are taken with constant mean,
and a radial basis function (RBF) kernel, with constant ker-
nel length scale and kernel variance. The specific values of
the hyper-parameters used to generate the data and the num-
ber of observations under the different scenarios is given in
Table 1.

For each scenario, a sample of the parameters φY (s?) and
φB(s

?) is taken from the distributions GPφY and GPφB at reg-
ularly spaced high-resolution intervals. These samples are re-
ferred to here as complete realisations and represent under-
lying fields for each parameter across the domain. The com-
plete realisations of φY (s?) are sampled at lower-resolution
randomised locations, with the addition of some noise, to
provide direct simulated “in situ observations” of the param-
eter φY (sy). In order to simulate input data for the parameter
φZ(sz) of the climate model output, the complete realisations
of φY (s?) and φB(s?) are sampled at regularly spaced inter-
vals to provide φY (sz) and φB(sz), and then the sum of these
samples at each location is taken to give φZ(sz). The input
data for inference are then φY (sy) and φZ(sz) and can be
considered the training set, while the underlying realisations
generated for φY (sz) are the test set used for validating the
model performance.

Data are generated for three scenarios chosen to represent
different potential real-world situations, illustrated in Fig. 3.
The first scenario (Fig. 3a) represents an example case where
it is expected that there are ample data provided in the form
of in situ observations to capture the features of the under-
lying complete realisation of φY without significant added
value provided from the inclusion of the climate model out-
put during inference. The second scenario (Fig. 3b) is an ad-
justment where the in situ observations are relatively sparse
and the underlying bias is relatively smooth. In this situation,
the climate model output should provide significant added
value in estimating φY across the domain since it is only af-
flicted by a comparatively simple bias that is easy to esti-
mate. The final scenario (Fig. 3c) also involves sparse in situ
observational data but with a reduced smoothness of the bias
compared to the other scenarios. In this scenario, the climate
model output should provide added value in estimating φY
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Figure 2. The full bias correction framework proposed in this paper, broken down into the key steps.

across the domain, but this will be limited compared to sce-
nario 2 due to the difficulty of disaggregating the components
and estimating the comparatively more complex bias.

In practice, real-world data sets are likely to be a com-
bination of these scenarios. For example, the methodology
in Lima et al. (2021) is applied to bias correcting precipita-
tion over a domain covering South Korea and the surrounding
ocean. Over land, there is a sufficient spatial density of ob-
servational rainfall gauges to adequately capture the spatial
features of the unbiased underlying field from the observa-
tions alone (similarly to scenario 1). Over the ocean, rainfall
gauges are very sparse and so its important to consider the
spatial patterns observed from the climate model output (sim-
ilarly to scenario 2). Not accounting for the spatial features
seen in the climate model output over the ocean results in un-
desirable extrapolation over this region, as seen in the results
presented in Lima et al. (2021). This undesirable property
is something that is addressed by the methodology proposed
in this paper, as illustrated by results for scenario 2 given in
Sect. 4.1.

3.2 Hierarchical example: data generation

Following on from the non-hierarchical examples, to il-
lustrate the advantage of uncertainty propagation in the
Bayesian framework, a hierarchical example is generated.
In situ data and climate model output are simulated at each
site as generated from normal distributions such that Y (s)∼
N (µY (s),σY (s)) and Z(s)∼N (µY (s),σY (s)), as in Ap-
pendix D. The relationship µZ(s)= µY (s)+µB(s) is as-
sumed for the mean parameters, where µB(s) is the bias of
the mean for the climate data. For the standard deviation,
the parameters are first transformed using a logarithmic link
function, and then the relationship σ̃Z(s)= σ̃Y (s)+ σ̃B(s)
is assumed, where σ̃B(s) is the bias in the transformed pa-
rameter. The latent distributions that generate µY (s), µB(s),
σ̃Y (s) and σ̃B(s) across the domain are assumed to be in-
dependent GPs with a constant mean and an RBF kernel.
The hyper-parameters for these latent generating processes
are set for a single scenario, as given in Table 2 along with
the number of simulated observation locations and the num-
ber of samples per location.

A sample of the parameters µY (s
?), µB(s?), σ̃Y (s?)

and σ̃B(s
?) is taken from the distributions GPµY , GPµB ,

GPσ̃Y and GPσ̃B at regularly spaced high-resolution inter-
vals. These samples are referred to as complete realisations
and represent the underlying fields for each PDF parame-
ter across the domain. The complete realisations of µY (s?)
and σ̃Y (s?) are sampled at a selection of lower-resolution
randomised locations that represent simulated in situ obser-
vation sites to give µY (sy) and σ̃Y (sy). Multiple observa-
tions of Y (si) are then generated at each in situ observation
site by sampling from the corresponding normal distribu-
tion, N (µY (si), σ̃Y (si)). In the case of the simulated climate
model output, samples are first taken from µY (s

?), µB(s?),
σ̃Y (s

?) and σ̃B(s?) at regularly spaced intervals, then the sum
of these samples at each location is taken to give µZ(sz) and
σ̃Z(sz). The climate model output is then generated at each
of these locations from the corresponding normal distribu-
tion, Z(si)∼N (µZ(si), σ̃Z(si)).

In the generated example, there are 40 locations corre-
sponding to simulated in situ observation sites, where, for
each site, 20 measurements are generated. There are 80 loca-
tions corresponding to simulated climate model output grid
points, and, at each location, 100 samples are generated. This
reflects the typical scenario, where the climate model output
has greater spatiotemporal coverage than in situ observations
but is afflicted with bias. In Fig. 4, examples of the gener-
ated samples of Y (si) and Z(si) are shown that correspond
to the nearest sites for three locations. It is clear that, due to
limited observations, there will be significant uncertainty in
estimates of the mean and standard deviation parameters at
each site and it is important that this uncertainty be propa-
gated to the inference of the hyper-parameters for the latent
GPs and also to the estimates of the unbiased PDF parame-
ters at the climate model locations (µY (sz) and σ̃Y (sz)). The
underlying complete realisations of the parameters µY (s?),
µZ(s

?), σY (s?) and σZ(s?), as well as the bias, µB(s?) and
σB(s

?), are shown in Fig. 5. In addition, the empirical mean
value and standard deviation of the generated data are illus-
trated at the simulated in situ observation and climate model
sites. The goal of the hierarchical model is then to predict the
unbiased values for the parameters of the PDFs at the loca-
tions of the climate model output (µY (sz) and σ̃Y (sz)) while
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Table 1. A table showing the hyper-parameters of the two latent Gaussian processes used to generate the complete underlying realisations
of φY (s?); φB (s?); and, hence, φZ(s?), as well as observations of φY (sy) and φZ(sz), on which inference is done for three scenarios. The
number of observations representing in situ data and climate model output is also given.

Dependent variable Model parameters Scenario 1 Scenario 2 Scenario 3

Unbiased PDF parameter (φY )

Kernel variance (vφY ) 1.0 1.0 1.0
Kernel length scale (lφY ) 3.0 3.0 3.0
Mean constant (mφY ) 1.0 1.0 1.0
Noise (σφY ) 0.1 0.1 0.1
No. of observations 80.0 20.0 20.0

Bias PDF parameter (φB )
Kernel variance (vφB ) 1.0 1.0 1.0
Kernel length scale (lφB ) 10.0 20.0 5.0
Mean constant (mφB ) −1.0 −1.0 −1.0

Climate model PDF parameter (φZ) No. of observations 100.0 80.0 80.0

Figure 3. A figure showing simulated observed data for the PDF parameters φY (sy) and φZ(sz), as well as the underlying complete realisa-
tions for each parameter and the underlying bias (φY (s?), φZ(s?) and φB (s?)). Three scenarios are shown and correspond to data generated
from parameters in Table 1.
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propagating uncertainty. An example of how the uncertainty
in predictions of µY (sz) and σ̃Y (sz) is propagated through
quantile mapping is then provided.

4 Results

Inference is done in a Bayesian framework using MCMC
and the No-U-Turn Sampler (NUTS) algorithm (Hoffman
and Gelman, 2014) implemented in NumPyro (Phan et al.,
2019). For the MCMC sampling, 1000 iterations were used
for warm-up, and then 2000 samples were taken, which was
found to be adequate for convergence. The parameters and
hyper-parameters are treated as random variables with as-
sociated probability distributions. A prior distribution is set
for each hyper-parameter and represents the belief in the
distribution before observing any data, which typically in-
corporates knowledge from application-specific experts. In
the examples presented, relatively non-informative priors are
chosen since the data are simulated and represent generic
examples. The posterior distribution of each parameter and
hyper-parameter is the updated distribution after observing
and conditioning on the data. Estimates of the PDF param-
eters, φY (ŝ) and φZ(ŝ), and the corresponding bias, φB(ŝ),
at new locations away from the observation sites are then
referred to as samples from the posterior predictive distribu-
tion.

4.1 Non-hierarchical examples: results

The shared latent process model presented in this paper is fit
to the three non-hierarchical example scenarios, as discussed
in Sect. 3.1. Input data for φY (sy) and φZ(sz) are provided
and the hyper-parameters for the latent GPs that generate
the unbiased and biased components inferred. Comparisons
between the estimates of the hyper-parameters for the un-
biased process (mφY , vφY and lφY ) are made as part of the
approach of only fitting to the in situ data, referred to here
as the single-process approach since the latent process gen-
erating the bias is not modelled. The difference between the
shared- and single-process approaches is detailed further in
Appendix E. The expectation, standard deviation and 95 %
credible intervals for the prior and posterior distributions of
the hyper-parameters under the three different scenarios are
given in Table 3. Illustrations of the prior and posterior dis-
tributions for each hyper-parameter are plotted in Fig. F1 in
Appendix F.

Under all scenarios, the 95 % credible interval of the pos-
terior for every hyper-parameter bounds the value specified
when generating the data. The expectation for the posterior
distribution of the unbiased hyper-parameters is, in general,
closer to the specified value in the shared-process model
compared with the single-process model, and the range of the
credible interval is smaller. In scenarios 1 and 3, the differ-
ences between the shared- and single-process model poste-

riors are relatively insignificant for the mean constant (mφY )
and kernel variance (vφY ), although the shared-process model
shows a noticeable reduction in the uncertainty in the kernel
length scale (lφY ). In scenario 2, the difference is more signif-
icant, and clear improvement is shown for the shared-process
model in both the expectation and the uncertainty in hyper-
parameter estimates.

After applying MCMC inference to the parameters and
hyper-parameters that generate the data, posterior predictive
estimates are made for the unbiased PDF parameter values
at the simulated locations of the climate model (φY (sz)).
These estimates are presented in Fig. 6 for each scenario
and for both the shared-process and the single-process mod-
els. Additionally, estimates of the underlying bias, φB(s), are
shown for the shared-process model, since the bias is explic-
itly modelled. The relative performance of the shared- and
single-process models is quantified by computing R2 scores
between the predictions of φY (sz) and the actual values used
in generating the data (although not used in training), with
results presented in Table 4. In Fig. 6, it can be seen that
the predictions of φY (sz) in the shared-process case (Fig. 6d,
e and f) are closer to the true underlying field and have a
smaller but still realistic uncertainty compared to the single-
process model. In scenario 1, the difference between the pos-
terior predictive distributions for φY (sz) between the two ap-
proaches is not substantial, with both models performing ad-
equately, having R2 scores of 0.99 and 0.97 respectively. In
scenario 2, the difference between estimates of φY (sz) be-
tween the models is significant, with R2 scores of 0.99 and
0.68 for the shared- and single-process models respectively.
Finally, in scenario 3, the difference is again significant, with
R2 scores of 0.74 and 0.52 respectively, although it is less
significant compared with scenario 2.

4.2 Hierarchical example

The hierarchical model presented in this paper is fit to the
hierarchical example from Sect. 3.2. The expectation, stan-
dard deviation and 95 % credible intervals for the prior and
posterior distributions of each hyper-parameter of the latent
generating processes are given in Table 5. The 95 % credible
interval of the posterior for every hyper-parameter bounds
the value specified when generating the data. As expected,
the posterior distribution for each hyper-parameter is con-
centrated more closely to the value specified when generat-
ing the data than the relatively non-informative prior distri-
butions. The prior and posterior distributions for each hyper-
parameter are plotted in Fig. F2 in Appendix F.

After fitting the model, posterior predictive estimates are
made using the unbiased mean and standard deviation param-
eters at the simulated locations of the climate model (µY (sz)
and σY (sz)). Additionally, estimates of the bias in the param-
eters are made (µB(sz) and σB(sz)). These estimates, along
with the true underlying values, are shown in Fig. 7. The em-
pirical mean and standard deviation of the input data are also
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Table 2. A table showing the hyper-parameters used to generate the complete underlying realisations and the measurement data on which
inference is done for the hierarchical scenario. The number of sites where data are generated along with the number of samples for each site
is also given.

Dependent variable Model parameters Hierarchical scenario

Unbiased PDF mean (µY )
Kernel variance (vµY ) 1.0
Kernel length scale (lµY ) 3.0
Mean constant (mµY ) 1.0

Unbiased PDF transformed vari-
ance (σ̃ 2

Y
)

Kernel variance (v
σ̃ 2
Y

) 1.0

Kernel length scale (l
σ̃ 2
Y

) 3.0

Mean constant (m
σ̃ 2
Y

) 1.0

Bias PDF mean (µB )
Kernel variance (vµB ) 1.0
Kernel length scale (lµB ) 10.0
Mean constant (mµB ) −1.0

Bias PDF transformed variance
(σ̃ 2
B

)

Kernel variance (v
σ̃ 2
B

) 1.0

Kernel length scale (l
σ̃ 2
B

) 10.0

Mean constant (m
σ̃ 2
B

) −1.0

Unbiased output (Y )
No. of observation sites 40.0
No. of observations per site 20.0

Climate model output (Z)
No. of observation sites 80.0
No. of observations per site 100.0

Figure 4. Histograms for the climate model output at three locations and the corresponding data from the nearest in situ observation site. The
locations are (a) s = 11.4, (b) s = 46.8 and (c) s = 79.7. The latent normal distribution the data is generated from is illustrated as a dashed
line.

given at the locations where they are sampled. The estimates
visually appear to perform well at capturing the spatial fea-
tures of the underlying fields and at estimating a 1σ uncer-
tainty range. For example, in the range of s ∈ [28,38], where
the main data source is the biased climate model output, the
prediction accurately captures the spatial features of the unbi-
ased parameters (µY (s) and σY (s)) with an uncertainty that
bounds the true underlying value over most of the region.
Additionally, uncertainty in the unbiased parameters at the
in situ observation sites (µY (sy) and σY (sy)) due to limited
samples is clearly reflected in the estimates.

Quantile mapping is applied to the climate model output
for a single site (zsi ), and the bias-corrected time series (ẑsi )

is shown in Fig. 8. The site chosen is at s = 11.4 and is the
same as in Fig. 4a. A generic time series for the climate
model output and nearest in situ observations is generated
from the correct mean and standard deviations of the sam-
ples. Quantile mapping is performed for each posterior pre-
dictive realisation of µY (si), µZ(si), σY (si) and σZ(si). This
results in multiple realisations of bias-corrected time series
with an expectation and uncertainty.

5 Discussion

The bias correction framework proposed in this paper models
the parameters of the PDFs for the in situ observations and
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Figure 5. Simulated complete realisations for the parameters µY (s?), µB (s?), µZ(s?), σ̃Y (s?), σ̃B (s?) and σ̃Z(s?), as well as the empirical
values at the observation locations for the in situ and climate model data.

climate model output across the domain using a Bayesian hi-
erarchical model. This allows for estimates to be made of the
unbiased PDF parameters at the climate model locations, and
quantile mapping can then be applied to bias-correct the cli-
mate model time series. The hierarchical model uses GPs to
model the spatial covariance structure of the PDF parameters
and assumes that each parameter of the climate model out-
put is generated using two independent GPs: one that gen-
erates an unbiased component and another that generates a
bias. The GP that generates the unbiased component is also
modelled to generate the equivalent PDF parameters for the
in situ data. This approach reflects the belief that the cli-
mate model provides skilful estimates of the PDF parameters
across the domain and that the spatial covariance structure,
generated from equations based on established physical laws,
has spatial features similar to the true unbiased PDF parame-
ter values. The climate model output, while afflicted by bias,
provides comprehensive spatiotemporal coverage and useful
information in the inference of the unbiased PDF parameters
across the domain. This is assuming the bias signal can be ad-
equately deconstructed from the climate model output with
the use of in situ observations. In Sect. 4.1 of the results, the
added value of modelling shared latent GPs between the in
situ observations and climate model output is demonstrated.
This is compared with the approach of modelling a latent GP
for the in situ observations alone and inferring the unbiased
PDF parameters without incorporating information from the

climate model output, as in Lima et al. (2021), which is here
referred to as the single-process approach.

The added value is assessed for three scenarios with a dif-
fering density of observations and spatial complexity of the
bias signal. The methods used to assess the added value in-
clude comparisons of summary statistics for the posterior dis-
tributions of the GP hyper-parameters, visual comparisons
between the expectation and standard deviation for posterior
predictive estimates of the unbiased PDF parameters across
the domain, and comparison of R2 scores for the unbiased
PDF parameter at the locations of the climate model out-
put. It is shown that across all these measures, the most
added value is provided where the in situ observations are
relatively sparse compared with the climate model output
and the underlying bias is relatively spatially smooth com-
pared with the unbiased signal, as in scenario 2. In this sce-
nario, despite sparse in situ observations, since the bias signal
varies smoothly across the domain the climate model, output
can be accurately and precisely disaggregated into its unbi-
ased and biased components. This leads to improved esti-
mates of the unbiased PDF parameters at the climate model
locations when considering shared GPs compared with the
single-process approach that uses in situ observations alone;
see Fig. 6.

As the density of in situ observations is increased to lev-
els similar to the climate model output itself, the value added
from the climate model output in inference of the unbiased
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Table 3. A table showing summary statistics for the prior and posterior distributions including the expectation (Exp.), standard deviation
(SD) and lower and upper bounds for the 95 % credible interval (LCI and UCI respectively). The posterior distributions for the shared- and
single-process models are given. The specified value for each parameter used to generate the data is also shown. In the single process model
the bias parameters and the noise are not modelled and so labelled as not applicable (“n/a”).

(a) Scenario 1

Specified Prior distribution Posterior distribution (shared-process) Posterior distribution (single process)

Dependent
variable

Model parameter Value Exp. SD LCI UCI Exp. SD LCI UCI Exp. SD LCI UCI

Unbiased PDF pa-
rameter (φY )

Kernel variance (vφY ) 1.0 0.67 0.67 0.02 2.46 1.25 0.30 0.73 1.86 1.04 0.31 0.57 1.69
Kernel length scale (lφY ) 3.0 15.00 8.66 3.09 36.12 2.96 0.06 2.85 3.08 2.73 0.20 2.32 3.10
Mean constant (mφY ) 1.0 0.00 2.00 −3.92 3.92 1.14 0.28 0.61 1.68 1.23 0.26 0.74 1.76
Noise (σφY ) 0.1 2.00 2.00 0.05 7.38 0.11 0.01 0.09 0.12 n/a n/a n/a n/a

Bias PDF parame-
ter (φB )

Kernel variance (vφB ) 1.0 15.00 8.66 3.09 36.12 2.10 1.30 0.48 4.72 n/a n/a n/a n/a
Kernel length scale (lφB ) 10.0 0.00 2.00 −3.92 3.92 11.45 1.28 9.07 14.00 n/a n/a n/a n/a
Mean constant (mφB ) −1.0 0.25 0.14 0.01 0.49 −1.00 0.64 −2.31 0.24 n/a n/a n/a n/a

(b) Scenario 2

Specified Prior distribution Posterior distribution (shared-process) Posterior distribution (single-process)

Dependent
variable

Model parameter Value Exp. SD LCI UCI Exp. SD LCI UCI Exp. SD LCI UCI

Unbiased PDF pa-
rameter (φY )

Kernel variance (vφY ) 1.0 0.67 0.67 0.02 2.46 1.13 0.28 0.66 1.66 1.49 0.53 0.65 2.55
Kernel length scale (lφY ) 3.0 15.00 8.66 3.09 36.12 2.97 0.06 2.86 3.09 3.70 0.44 2.83 4.56
Mean constant (mφY ) 1.0 0.00 2.00 −3.92 3.92 0.70 0.27 0.15 1.22 0.69 0.40 −0.14 1.44
Noise (σφY ) 0.1 2.00 2.00 0.05 7.38 0.12 0.03 0.08 0.18 n/a n/a n/a n/a

Bias PDF parame-
ter (φB )

Kernel variance (vφB ) 1.0 15.00 8.66 3.09 36.12 1.24 0.99 0.16 3.23 n/a n/a n/a n/a
Kernel length scale (lφB ) 20.0 0.00 2.00 −3.92 3.92 23.69 5.79 12.29 34.90 n/a n/a n/a n/a
Mean constant (mφB ) −1.0 0.25 0.14 0.01 0.49 −0.66 0.64 −1.87 0.62 n/a n/a n/a n/a

(c) Scenario 3

Specified Prior distribution Posterior distribution (shared-process) Posterior distribution (single-process)

Dependent
Variable

Model parameter Value Exp. SD LCI UCI Exp. SD LCI UCI Exp. SD LCI UCI

Unbiased PDF pa-
rameter (φY )

Kernel variance (vφY ) 1.0 0.67 0.67 0.02 2.46 1.18 0.33 0.62 1.83 0.85 0.33 0.30 1.50
Kernel length scale (lφY ) 3.0 15.00 8.66 3.09 36.12 3.00 0.07 2.87 3.14 3.08 0.49 2.03 3.96
Mean constant (mφY ) 1.0 0.00 2.00 −3.92 3.92 0.95 0.30 0.35 1.53 0.90 0.29 0.33 1.48
Noise (σφY ) 0.1 2.00 2.00 0.05 7.38 0.16 0.06 0.03 0.27 n/a n/a n/a n/a

Bias PDF parame-
ter (φB )

Kernel variance (vφB ) 1.0 15.00 8.66 3.09 36.12 1.50 1.02 0.28 3.56 n/a n/a n/a n/a
Kernel length scale (lφB ) 5.0 0.00 2.00 −3.92 3.92 6.34 1.71 3.23 9.20 n/a n/a n/a n/a
Mean constant (mφB ) −1.0 0.25 0.14 0.01 0.49 −1.17 0.50 −2.11 −0.10 n/a n/a n/a n/a

Table 4. A table showing the expectation and standard deviation
of R2 scores for the posterior predictive estimates of the unbiased
PDF parameter at the climate model output locations φY (sz) for the
shared- and single-process models for each scenario.

R2 scores, posterior predictive estimates of φY (sz)

Shared-process model Single-process model

Scenario Exp. SD Exp. SD

1 0.99 0.00 0.97 0.01
2 0.99 0.01 0.68 0.07
3 0.74 0.12 0.52 0.10

parameters is reduced, which is illustrated by results for sce-
nario 1. The number of in situ observations is sufficient to
adequately capture the spatial features of the underlying pro-
cess (Fig. 6a) as well as the latent spatial covariance struc-
ture, encoded through the hyper-parameter estimates of the

latent GP (Table 3). Additionally, as the complexity of the
bias signal is increased by, for example, reducing the length
scale of the latent generating process, as in scenario 3, the
added value is again reduced. The relatively more complex
bias structure compared with scenario 2 makes it more diffi-
cult to disaggregate the climate model output into its biased
and unbiased components. Despite this, while added value is
reduced for scenarios 1 and 3 relative to scenario 2, incorpo-
rating the climate model output in inference is still shown
to improve overall performance. Modelling the generating
process for the bias also explicitly provides informative in-
formation that is potentially useful for future climate model
development.

In addition to modelling shared latent processes, another
important feature of the methodology presented in this paper
is the Bayesian framework. In this framework, the parameters
and hyper-parameters of the hierarchical model are treated
as random variables with associated probability distributions.
Uncertainty is inherently propagated through the framework,
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Figure 6. Expectation and 1σ uncertainty in the posterior predictive distributions of the parameter φY (sz) and the corresponding bias φB (sz)
for three scenarios. The underlying functions (complete realisations) as well as the simulated input data are also shown.

making the code implementation flexible regarding further
development and therefore applicable to a wide range of
real-world scenarios. Additionally, a Bayesian framework al-
lows for expert knowledge to be incorporated in the infer-
ence through the choice of prior distributions, which can be
especially important where the data are sparse. In Sect. 4.2,
results for a simulated hierarchical example illustrate uncer-
tainty propagation between the PDF parameter values and
the hyper-parameters of the latent generating processes. Un-
certainty present in the different levels of the hierarchical
model is incorporated in the final posterior predictive esti-
mates of the unbiased PDF parameters at the climate model
locations; see Fig. 7. Multiple realisations from the posterior
predictive can then be used in quantile mapping to produce
multiple realisations of the final bias-corrected time series
with an expectation and uncertainty range, as illustrated in
Fig. 8. Reliable uncertainty bands in the final bias-corrected
time series are important for impact assessments and result-
ing decision-making. Additionally, having multiple realisa-

tions of the final bias-corrected time series allows for further
propagation of uncertainty in process models driven by cli-
mate model output, such as land surface models (Liu et al.,
2014).

The simulated examples presented provide an initial proof
of concept, although future studies validating the methodol-
ogy against real-world applications are important for under-
standing the remaining limitations and areas for further de-
velopment. The current primary limitation is expected to be
that the underlying spatial covariance structures are assumed
to be stationary – that is, that the covariance length scale
is assumed to be constant across the domain – whereas for
real-world applications over large and complex topographic
domains, the length scale is expected to change depending
on the specific topography of the region. Further develop-
ment of the methodology to incorporate non-stationary ker-
nels would therefore be valuable, although this is beyond
the scope of this paper. Another important limitation to con-
sider is the assumption that the bias is time-independent. In
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Table 5. A table showing summary statistics for the prior and posterior distributions including the expectation (Exp.), standard deviation (SD)
and lower and upper bounds for the 95 % credible interval (LCI and UCI). The specified value for each hyper-parameter used to generate the
data is also shown.

Specified Prior distribution Posterior distribution

PDF parameter Model hyper-parameter Value Exp. SD LCI UCI Exp. SD LCI UCI

Unbiased mean
(µY )

Kernel variance (vµY ) 1.0 0.67 0.67 0.02 2.46 1.00 0.32 0.49 1.63
Kernel length scale (lµY ) 3.0 15.00 8.66 3.09 36.12 3.00 0.22 2.56 3.43
Mean constant (mµY ) 1.0 0.00 2.00 −3.92 3.92 0.73 0.28 0.17 1.26

Unbiased trans-
formed variance
(σ̃Y )

Kernel variance (v
σ̃ 2
Y

) 1.0 0.67 0.67 0.02 2.46 0.70 0.25 0.30 1.17

Kernel length scale (l
σ̃ 2
Y

) 3.0 15.00 8.66 3.09 36.12 2.94 0.24 2.47 3.40

Mean constant (m
σ̃ 2
Y

) 1.0 0.00 2.00 −3.92 3.92 1.12 0.24 0.66 1.61

Bias mean (µB )
Kernel variance (vµB ) 1.0 0.67 0.67 0.02 2.46 1.38 0.63 0.42 2.58
Kernel length scale (lµB ) 10.0 15.00 8.66 3.09 36.12 12.02 3.59 5.08 18.50
Mean constant (mµB ) −1.0 0.00 2.00 −3.92 3.92 −0.78 0.56 −1.89 0.29

Bias transformed
variance (σ̃B )

Kernel variance (v
σ̃ 2
B

) 1.0 0.67 0.67 0.02 2.46 0.92 0.48 0.24 1.86

Kernel length scale (l
σ̃ 2
B

) 10.0 15.00 8.66 3.09 36.12 8.97 1.96 5.07 12.58

Mean constant (m
σ̃ 2
B

) −1.0 0.00 2.00 −3.92 3.92 −0.86 0.42 −1.73 −0.06

Figure 7. A figure showing the expectation and 1σ uncertainty in the posterior predictive distribution across the domain for the parameters
µY (sz), µB (sz), σY (sz) and σB (sz), as well as the true underlying functions.

situations where the bias varies gradually through time and
uniformly across the domain, the methodology can be fur-
ther developed such that the mean function of the GPs is
modelled with a time dependency. If the bias varies in time
non-uniformly across the domain, spatiotemporal GPs will
need to be considered, which is again beyond the scope of

this paper. Secondary limitations include the assumption that
the unbiased and biased components of the PDF parameter
values are independent. In situations where there is a de-
pendence between these components, the methodology pre-
sented is still expected to perform adequately, although in-
formation is lost by not modelling the dependency explicitly.
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Figure 8. Simulated time series for the climate model output at location s = 11.4 and for the nearest in situ observation site. Realisations of
the climate model bias-corrected time series are shown along with the expectation and 3σ uncertainty range.

Additionally, many real-world applications will necessitate
specific model adjustments, such as incorporating a mean
function dependent on factors like elevation and latitude. Fi-
nally, the computational complexity of the model is an im-
portant remaining consideration, with inference time of GPs
being the cube of the number of data points. Incorporating
techniques from the literature, such as using sparse varia-
tional GPs (SVGPs) (Hensman et al., 2015), using nearest-
neighbour GPs (NNGPs) (Datta et al., 2016) or upscaling the
climate model output, while outside the scope of this paper,
will aid computational performance under demanding real-
world scenarios and will facilitate further model develop-
ment.

6 Conclusion

Current approaches to bias prediction and correction do not
aim to preserve the spatial covariance structure of the cli-
mate model output and typically either neglect uncertainty
or inadequately model uncertainty propagation (Ehret et al.,
2012). This paper presents a novel fully Bayesian hierarchi-
cal framework for bias correction with uncertainty propaga-
tion and latent GP distributions used to capture and preserve
underlying covariance structures. In this framework, bias is
considered in the parameters of the time-independent PDF
at each site. Estimates of the unbiased PDF parameters are
made at the climate model locations, and quantile mapping
is then applied to produce the final bias-corrected time se-
ries. The novelty of the approach lies in the fully Bayesian
implementation, assuming shared latent GPs between the in
situ data and climate model output and in propagating uncer-
tainty through the quantile mapping step.

Simple simulated examples are chosen to illustrate key
features of the framework. In Sect. 4.1, results are displayed
for non-hierarchical examples where the focus is on illustrat-
ing the advantage of modelling spatial covariance in both in
situ data and climate model output, assuming shared latent
GPs. This is shown to be particularly important in the case
of sparse in situ observations and bias that varies smoothly
across the domain, where the climate model output itself pro-
vides significant added value in predictions of the unbiased
PDF parameters. In Sect. 4.2, results are presented for a hier-
archical case and focus is on illustrating how the model prop-
agates uncertainty between the different levels and to the fi-
nal unbiased PDF parameter predictions at the climate model
locations. In addition, a simulated example of propagating
this uncertainty through quantile mapping is then provided
to demonstrate how this results in a bias-corrected time se-
ries with uncertainty bands, which is desirable for use in im-
pact studies and for informing decision-making. Adequately
modelling uncertainty in the bias-corrected time series is ex-
pected to be especially important over areas where the clima-
tology is hard to model and in situ observations are sparse,
such as over Antarctica (Carter et al., 2022). The frame-
work presented provides a step towards adequately capturing
uncertainty and incorporating underlying spatial covariance
structures from the climate model in bias correction. While
initial results are promising, further studies applied to real-
world data sets are important to further validate the approach
and explore remaining limitations. The Bayesian implemen-
tation provides a flexible modelling framework, where ad-
justments to the methodology needed for specific applica-
tions can be made while inherently propagating uncertainty.
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Appendix A: Bias in climate models

Bias in climate models is defined in a number of similar
ways across different papers. In Maraun (2016), it is de-
fined as the systematic difference between any statistic de-
rived from the climate model and the real-world true value
of that statistic, while in Haerter et al. (2011), bias is de-
fined as the time-independent part of the error between the
climate model simulated values and the observed values. In
general, across the community involved with climate change
impact studies, bias is used to refer to any deviation of in-
terest between the model output and that of the true value
(Ehret et al., 2012). Deviations of interest are typically with
respect to the statistical properties of the data – for example,
the mean and variance – as well as spatial properties, such as
the covariance length scale. The methodology developed in
this paper treats bias with respect to deviations in the PDFs
of the climate model output and observations at each site.
Assuming a parametric form for the PDF, this translates to
evaluating bias of the parameters of the site-level PDFs, as
discussed in Sect. A1. In order to model bias in real-world
phenomena while considering the intrinsic spatial structure,
the parameters are allowed to vary spatially using stochas-
tic processes; see Sect. A2. After evaluating bias across the
domain, the methodology in this paper can be combined with
current approaches to correcting bias in climate models, such
as quantile mapping, which are discussed further in Sect. A3.

A1 Bias in random variables

Consider a specific in situ observation site (e.g. an auto-
matic weather station) with measurements of some vari-
able y = [y1,y2, . . .,yn], such as midday temperature, and
also comprehensive predictions from a climate model at
the same location, z= [z1,z2, . . .,zk]. In this scenario, bias
can be defined in terms of discrepancy between the PDFs
of the in situ observations and the climate model predic-
tions. In particular, assuming a parametric density function
for both random variables, bias is translated to the discrep-
ancy between the parameters of the PDFs. For example, as-
suming the observation measurements are independent and
identically distributed (i.i.d.) with normal distribution Y ∼
N (µY ,σY ) and the equivalent for the climate model out-
comes, Z ∼N (µZ,σZ), bias can then be quantified by some
discrepancy function of the mean parameters, µZ and µY
and the standard deviations, σZ and σY . This function can
be defined in different ways – for example, as the difference
b(µZ,µY )= µZ −µY or the ratio b(σZ,σY )= σZ/σY .

A2 Bias with spatially varying parameters

Real-world applications, such as impact studies, typically re-
quire bias to be evaluated over a spatial region rather than
just at a point. Consider a collection of n observational sites,
{ys1 , . . .,ysn}, where for each site i there exist m daily mea-

surements of some property, such as midday temperature,
ysi = [ysi ,1, . . .,ysi ,m]. In addition, consider gridded output
from a climate model of the same property at a set of differ-
ent locations, s∗. In this scenario, instead of defining bias in
terms of the discrepancy in the PDFs at a single point, bias
can be defined with respect to the two latent spatial processes
underlying the observed data, {Y (s)}, and the climate model
output, {Z(s)}. This allows for bias to be estimated across
the domain.

As an example, assume that observations and the climate
model output come from the spatial stochastic processes
{Y (s)∼N (µY (s),σY (s))} and {Z(s)∼N (µZ(s),σZ(s))}
respectively, where the distribution of data at each location s
is normal, with spatially varying parameters µ(s) and σ(s).
The spatial structures of the latent processes are inherited
from the spatial structures in the parameters, which are them-
selves modelled throughout the domain as spatial stochas-
tic processes {µY (s)}, {σY (s)}, {µZ(s)} and {σZ(s)}. In this
paper, GPs are used to model the spatial structures, which
explicitly capture relationships for the expectation and co-
variance between points across the domain; see Appendix B.
Bias is then defined by some discrepancy function of these
spatially varying parameters, such as b(µZ(s),µY (s))=

µZ(s)−µY (s).

A3 Bias correction

Bias correction involves using observational data to predict
and then reduce bias in the climate model output, with tech-
niques varying in focus and complexity. For example, the
delta change method aims to simply apply an adjustment to
the mean of the variable under study at each location (Das
et al., 2022), while quantile mapping aims to correct the
whole PDF of the climate model output (Qian and Chang,
2021). In Beyer et al. (2020), generalised additive models
(GAMs) are used to approximate transfer functions between
the climate data and the observed values. The relative per-
formance between methods is assessed in various studies
(Teutschbein and Seibert, 2012; Räty et al., 2014; Beyer
et al., 2020; Mendez et al., 2020). Different approaches typ-
ically fail to adequately capture uncertainty and to explicitly
model spatial dependencies between locations across the do-
main. The approach proposed in this paper combines the use
of a Bayesian hierarchical model for predicting bias across
the region with the established approach of quantile mapping
for applying the final correction to the climate model output.
Uncertainty is propagated through the framework, and under-
lying spatial structures are explicitly modelled using latent
spatial stochastic processes.
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Appendix B: Capturing spatial structure with Gaussian
processes

A collection of random variables, φ = [φs1 ,φs2 , . . .,φsk ], in-
dexed according to location in a domain can be modelled us-
ing a spatial stochastic process, such as {φ(s) : s ∈ S} (short-
hand {φ(s)}), where S represents the region under study.
The family of Gaussian processes (Rasmussen, 2004) has the
property that any finite subset of random variables across the
domain is modelled as a multivariate normal (MVN) distri-
bution. Consider a collection of k random variables; then,
the joint distribution between these variables is MVN, with
φ ∼Nk(µ,6), where φ is some k-dimensional random vec-
tor, µ is some k-dimensional mean vector and 6 is some
k-by-k-dimensional covariance matrix. Parameterising the
mean and covariance of the MVN distribution then gives the
GP, which provides a distribution over continuous functions
φ(s)∼ GP(m(s),k(s,s′)). The collection of parameters for
the mean and covariance functions is often referred to as
hyper-parameters.

The mean function, m(s), of a GP gives the expectation
of the parameter at the location index, allowing for global
relationships for the variable given predictors. In this paper,
the mean function is considered a constant across the domain
for simplicity and is such thatm(s)=m. In real-world appli-
cations, a more complex relationship is likely to be useful;
for example, Eq. (B1) assumes a second-order polynomial in
two predictors, where the predictors x1(s) and x2(s) could be
elevation and latitude.

m(s)= b0+ b1 · x1(s)+ b2 · x2(s)+ b3 · x1(s) · x2(s)

+ b4 · x1(s)
2
+ b5 · x2(s)

2
= x(s)T β (B1)

The kernel (covariance) function is typically some func-
tion of distance between points, d(s,s′), parameterised by a
length scale, l, and kernel variance, v; for example, Eq. (B2)
gives the well-known radial basis function (RBF) for the ker-
nel. The function of distance could be Euclidean or geodesic
and arbitrarily complex, including factors such as wind paths.
The two-dimensional Euclidean case is given in Eq. (B3),
where predictors x3(s) and x4(s) could, for example, be lati-
tude and longitude, which, for relatively small distances near
the Equator, are approximately Euclidean. In Fig. B1, an ex-
ample of how the covariance decays with distance is given for
the RBF kernel in panel (a), and realisations of a conditioned
GP with the equivalent kernel are illustrated in panel (b).

kRBF(s,s
′)= v · exp

(
−
d(s,s′)2

2l2

)
(B2)

d(s,s′)=
√
(x3(s′)− x3(s))2+ (x4(s′)− x4(s))2 (B3)

The kernel is often assumed stationary for simplicity, as
in Lima et al. (2021), meaning that the relationship between
covariance and distance is consistent across the domain of
study. This assumption is used in the simulated results pre-

sented in this paper. The validity of the stationarity assump-
tion should be assessed on an application basis, with factors
such as complex topography contributing to non-stationarity.

Gaussian processes have the property that the sum of in-
dependent GPs is also a GP. This property is utilised in this
paper as the additive relationship φZ = φY +φB is assumed,
where φY and the bias, φB , are taken to be independent and
generated from latent Gaussian processes. Note that in the
case of different supports between the parameter space and
that of the sample space of a Gaussian process, a link func-
tion is then included and the relationship φ̃Z = φ̃Y + φ̃B as-
sumed, where the parameters φ̃Y and φ̃B are modelled as in-
dependent and generated from GPs. Assuming an additive re-
lationship results in an easy-to-define distribution for φZ (or
φ̃Z), which is a GP where the mean and covariances are sim-
ply the sum of the values from the independent GPs (Eqs. B4
and B5). The additive relationship captures the belief that the
climate model output has some shared latent spatial covari-
ance structure with the in situ observations but is inflicted
by an independent bias. In order to make predictions from
the unbiased process across the domain φY (ŝ), conditioning
is then performed on both the observed in situ data, φY (sy),
and the observed climate model output, φZ(sz).

mφZ =mφY +mφB (B4)
kφZ (s,s

′)= kφY (s,s
′)+ kφB (s,s

′) (B5)

Appendix C: Posterior and posterior predictive
formulation

C1 Full hierarchical model

The in situ observations and climate model output are treated
as realisations of the stochastic processes {Y (s)} and {Z(s)}
respectively, where the random variables for a given site are
distributed as Y (s)∼ f (φY (s)) and Z(s)∼ f (φZ(s)). The
symbols φY (s) and φZ(s) represent the collection of parame-
ters that describe the PDF at the site. The collection of in situ
observation sites is given as sy = [s1, . . ., sny ] and the collec-
tion of climate model output locations as sz = [s′1, . . ., s

′
nz
];

the collection of PDF parameter values for each set of lo-
cations is then written as φY (sy)= [φY (s1), . . .,φY (sny )]

and φZ(sz)= [φZ(s
′

1), . . .,φZ(s
′
nz
)]. Each parameter of the

PDFs is modelled as generated from latent Gaussian pro-
cesses, one that generates the unbiased component and
one that generates the bias, such that φY (s)∼ GP(·, ·|θφY ),
φB(s)∼ GP(·, ·|θφB ) and φZ(s)∼ GP(·, ·|θφY ,θφB ). The
symbols θφY and θφB represent the collection of hyper-
parameters for the Gaussian processes. The posterior distri-
bution for the model can then be written as

P(φY (sy),φZ(sz),θφY ,θφB |y,z)=

P(y,z|φY (sy),φZ(sz),θφY ,θφB ) ·P(φY (sy),φZ(sz),θφY ,θφB )

P (y,z)
. (C1)

https://doi.org/10.5194/gmd-17-5733-2024 Geosci. Model Dev., 17, 5733–5757, 2024



5748 J. Carter et al.: Bayesian hierarchical model for bias correction

Figure B1. (a) Values of the RBF function with a kernel variance equal to 1 and length scale equal to 20. (b) Realisations of the GP with the
equivalent kernel as in (a) and conditioned on three data points. The expectation and uncertainty in the distribution are shown.

The first part of the numerator for the fraction can be bro-
ken down into

P(y,z|φY (sy),φZ(sz),θφY ,θφB )

= P(y|φY (sy)) ·P(z|φZ(sz)). (C2)

The second part of the numerator for the fraction can be
broken down into

P(φY (sy),φZ(sz),θφY ,θφB )

= P(φY (sy)|φZ(sz),θφY ,θφB )

·P(φZ(sz)|θφY ,θφB ) ·P(θφY ) ·P(θφB ). (C3)

The above equations are inherently incorporated into the
code implementation through the model definition using the
NumPyro Python package (Phan et al., 2019). The posterior
distribution is approximated using MCMC, which returns re-
alisations of φY (sy), φZ(sz), θφY and θφB of the posterior.
The posterior predictive estimates of, for example, φY (ŝ), at
any set of new locations ŝ across the domain, are then given
by the following:

P(φY (ŝ)|y,z)=∫
P(φY (ŝ),φY (sy),φZ(sz),θφY ,θφB |y,z)

dφY (sy)dφY (sz)dφB(sz)dθφY dθφB , (C4)

where the integrand can be broken down into

P(φY (ŝ),φY (sy),φZ(sz),θφY ,θφB |y,z)=

P(φY (ŝ)|φY (sy),φZ(sz),θφY ,θφB )

·P(φY (sy),φZ(sz),θφY ,θφB |y,z). (C5)

The second part of this expression is equivalent to the
posterior distribution defined earlier. The realisations from
the posterior provided through the MCMC inference can
be used as parameter values in the first part of the ex-
pression above to give a distribution that, when sampled
from, provides posterior predictive realisations for φY (ŝ).

In the case of Gaussian processes, the distribution of
P(φY (ŝ)|φY (sy),φZ(sz),θφY ,θφB ) can be formulated in the
following way, where, to start, one can take the joint distri-
bution: φY (ŝ)φY (sy)

φZ(sz)

∼N

 mφY (ŝ)mφY (sy)

mφZ (sz)

 ,
 KφY (ŝ, ŝ) KφY (ŝ,sy) KφY (ŝ,sz)

KφY (sy, ŝ) KφY (sy,sy) KφY (sy,sz)

KφY (sz, ŝ) KφY (sz,sy) KφZ (sz,sz)

 . (C6)

Note that since φY (s) and φB(s) are independent
and φZ(s)= φY (s)+φB(s) applies, the covariance
between the parameters φY (s) and φZ(s) is simply
COV

(
φY (s),φZ(s

′)
)
= COV

(
φY (s),φY (s

′)
)
=KφY (s,s

′).
Additionally, the mean and covariance terms for the
process that generates φZ(s) are computed as mφZ (s)=
mφY (s)+mφB (s) and KφZ (s,s

′)=KφY (s,s
′)+KφB (s,s

′).
Then, after defining the following:

U1 =
[
φY (ŝ)

]
,U2 =

[
φY (sy)

φZ(sz)

]
,U =

[
U1
U2

]
,

M1 =
[
mφY (ŝ)

]
,M2 =

[
mφY (sy)

mφZ (sz)

]
,

M =

[
mφY (sy)

mφZ (sz)

]
, (C7)

K11 =
[
KφY (ŝ, ŝ)

]
,K12 =

[
KφY (ŝ,sy) KφY (ŝ,sz)

]
(C8)

K21 =

[
KφY (sy, ŝ)

KφY (sz, ŝ)

]
,

K22 =

[
KφY (sy,sy) KφY (sy,sz)

KφY (sz,sy) KφZ (sz,sz)

]
, (C9)

the distribution can be written as

[
U1
U2

]
∼N

([
mφY (sy)

mφZ (sz)

]
,

[
K11 K12
K21 K22

])
, (C10)

Geosci. Model Dev., 17, 5733–5757, 2024 https://doi.org/10.5194/gmd-17-5733-2024



J. Carter et al.: Bayesian hierarchical model for bias correction 5749

where the conditional distribution P(U1|U2) is well
known for Gaussian distributions and is given as

P(U1|U2)=N (M1|2,K1|2), (C11)

with parameter values

M1|2 =M1+K12K
−1
22 (U2−M2), (C12)

K1|2 =K11−K12K
−1
22 K21. (C13)

This provides the distribution P(U1|U2), which is equiva-
lent to the distribution P(φY (ŝ)|φY (sy),φY (sz),θφY ) that is
needed to compute the posterior predictive.

C2 Non-hierarchical case

In the non-hierarchical case used in Sect. 4.1, direct obser-
vations are assumed for φY (sy) and φZ(sz). In this case, the
posterior for the model can be written out as

P(θφY ,θφB |φY (sy),φZ(sz))=

P(φY (sy),φZ(sz)|θφY ,θφB ) ·P(θφY ,θφB )

P (φY (sy),φZ(sz))
, (C14)

where the first expression of the numerator can be broken
down into

P(φY (sy),φZ(sz)|θφY ,θφB )=

P(φY (sy)|φZ(sz),θφY ,θφB )

·P(φZ(sz)|θφY ,θφB ), (C15)

while the second part of the numerator can be split due to
independence between the generating processes as follows:

P(θφY ,θφB )= P(θφY ) ·P(θφB ). (C16)

As with the full hierarchical model, the above equations
are inherently incorporated into the non-hierarchical code
implementation, with the posterior distribution approximated
using MCMC, which returns realisations of θφY and θφB
from the posterior. The posterior predictive estimates of, for
example, φY (ŝ) at any set of new locations ŝ across the do-
main are then given by the following:

P(φY (ŝ)|φY (sy),φZ(sz))=∫
P(φY (ŝ),θφY ,θφB |φY (sy),φZ(sz))dθφY dθφB , (C17)

where the integrand can be broken down into

P(φY (ŝ),θφY ,θφB |φY (sy),φZ(sz))=

P(φY (ŝ)|θφY ,θφB ,φY (sy),φZ(sz))

·P(θφY ,θφB |φY (sy),φZ(sz)). (C18)

The second part of this expression is equivalent to the pos-
terior distribution defined earlier. The realisations from the
posterior provided through the MCMC inference can be used
as parameter values in the first part of the expression above to
give a distribution that, when sampled from, provides poste-
rior predictive realisations for φY (ŝ). The distribution in the
first part of the expression can be formulated in the same way
as presented in Sect. C1.

Appendix D: Specific example with temperature

Take the case of evaluating bias in the output of near-surface
temperature from a climate model relative to some in situ ob-
servations. The output from the in situ observations and the
climate model are each considered realisations from latent
spatiotemporal stochastic processes {Y (s, t) : s ∈ S, t ∈ T }
and {Z(s, t) : s ∈ S, t ∈ T } respectively. To evaluate bias, the
time-independent marginal distributions are taken along with
the data treated as realisations from the spatial stochastic
processes {Y (s) : s ∈ S} and {Z(s) : s ∈ S}. Temperature is
known to have diurnal and seasonal dependency, and there-
fore, for the in situ observation measurements to be repre-
sentative of the time-independent marginal distribution, there
must be an equal spread of the data over the time of day
and season. To reduce this requirement, the data can be fil-
tered to just midday January values. Filtering the data has
the added benefit of simplifying the marginal distribution
and therefore also the interpretation of bias, allowing for
the bias to be evaluated for different seasons individually.
In the case of January midday temperature, the site-level
marginal distributions can be approximated as normal, such
that Y (s)∼N (µY (s),σY (s)) and Z(s)∼N (µY (s),σY (s)).

Treating the site-level distributions as normal results in
bias being defined in terms of disparities in the mean
and standard deviation parameters between in situ ob-
servations and climate model output, such that µB(s)=
b1(µY (s),µZ(s)) and σB(s)= b2(σY (s),σZ(s)). Bias in
the climate model output and the parameters of the in
situ observations is considered independent and is in both
cases generated by separate spatial stochastic processes.
For example, the bias in the mean, µB(s), is consid-
ered independent of the mean of the in situ observations,
µY (s), and both are modelled as generated by separate
GPs: µY (s)∼ GP(mµY ,kRBF(s,s

′
|vµY , lµY )) and µB(s)∼

GP(mµB ,kRBF(s,s
′
|vµB , lµB )). In this example, the mean

function of the GP is considered a constant, and the ker-
nel/covariance function is considered a radial basis func-
tion parameterised by kernel variance and length scale.
Defining the relationship µZ(s)= µY (s)+µB(s) allows
for taking advantage of the property that the sum of
two independent GPs is itself a GP such that µZ(s)∼
GP(mµY +mµB ,kRBF(s,s

′
|vµY , lµY )+kRBF(s,s

′
|vµB , lµB )).

See Appendix B.
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In the case of the standard deviation, the parameter space
(σ(s) ∈ R>0) is not the same as the sample space of a GP (R),
and therefore, a link function is applied log(σ (s))= σ̃ (s) ∈
R. The transformed parameters are then modelled as being
generated from GPs: σ̃Y (s)∼ GP(mσ̃Y ,kRBF(s,s

′
|vσ̃Y , lσ̃Y ))

and σ̃B(s)∼ GP(mσ̃B ,kRBF(s,s
′
|vσ̃B , lσ̃B )). To again take

advantage of the property that the sum of two inde-
pendent GPs is itself a GP, the relationship σ̃Z(s)=

σ̃Y (s)+ σ̃B(s) is defined. The parameter σ̃Z(s) is then
distributed as σ̃Z(s)∼ GP(mσ̃Y +mσ̃B ,kRBF(s,s

′
|vσ̃Y , lσ̃Y )+

kRBF(s,s
′
|vσ̃B , lσ̃B )). After predictions of the transformed pa-

rameter across the domain are made, the inverse link function
can be applied to get estimates of the non-transformed pa-
rameter.

The diagram in Fig. D1 gives a representation of this full
model in a hierarchical framework. Applying MCMC infer-
ence provides posterior realisations of the parameters of the
model. This includes realisations from the posterior distri-
bution of µY and σ̃Y at all in situ observation locations as
well as realisations from the posterior of µZ and σ̃Z at all
the climate model output locations. These realisations, in ad-
dition to those of the parameters from the generating GPs,
can be used to compute the posterior predictive distribution
of the parameters µY , σ̃Y , µB , σ̃B , µZ and σ̃Z everywhere in
the domain. For the purpose of applying bias correction, the
posterior predictive distribution for these parameters can be
evaluated at the locations of the climate model output. Quan-
tile mapping is then applied to transform the predicted distri-
bution of the climate model output into that of the predicted
distribution for in situ observations. Applying quantile map-
ping or alternative methods for multiple realisations of the
parameters provides an expectation and uncertainty band for
the bias-corrected output.

Figure D1. Plate diagram with a directed acyclic graph showing the full hierarchical model for the case where the site-level distributions are
assumed normal, with parameters µ and σ . The distribution of these parameters across the domain is modelled with Gaussian processes.
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Appendix E: Shared- and single-process model
comparison

In the main paper, comparisons are made between the shared-
process and single-process models. The shared-process
model is the hierarchical model proposed in this paper, while
the single-process model represents a similar approach taken
from the literature; see Lima et al. (2021). The two mod-
els are shown in Fig. E1. In both models, the random vari-
ables for the in situ observations, Y (s), and climate model
output, Z(s), have PDFs, with the collection of parameters
being φY (s) and φZ(s) respectively. In the case of the shared-
process model, φZ(s) is modelled as the sum of φY (s) and
some independent bias, φB(s). The parameter φY (s) and
the corresponding bias φB(s) are each themselves modelled
over the domain as generated from Gaussian processes with
hyper-parameters θY and θB . The unbiased parameter φY (s)
and hyper-parameter θY are inferred from both in situ data
and climate model output. Posterior predictive estimates of
φY (sz) are made by conditioning on both sets of data. In the
case of the single-process model, the PDF parameters for the
climate model output and in situ observations are treated as
independent. Only one latent GP is considered with the unbi-
ased parameter φY (s) and hyper-parameter θY inferred from
in situ observations alone. Posterior predictive estimates of
φY (sz) are also made by conditioning on just in situ observa-
tions.

Figure E1. Plate diagram illustrating the difference between the shared-process hierarchical model presented in this paper and the single-
process model that comparisons are made against.
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Appendix F: Prior and posterior hyper-parameter
distributions

A Bayesian framework considers the parameters of the
model as random variables with probability distributions.
The prior is the assumed distribution before observing any
data and the posterior is the updated distribution after observ-
ing data. Figures F1 and F2 illustrate the prior and posterior
distributions for the non-hierarchical and hierarchical simu-
lated examples respectively. The parameter value specified
when generating the data is also shown.

Figure F1. A figure illustrating the prior and posterior distributions
for the parameters of the model in the case of scenario 1. The value
that was specified when generating the data is also shown.

Figure F2. A figure illustrating the prior and posterior distributions
for the parameters of the model in the case of the one-dimensional
hierarchical example. The value that was specified when generating
the data is also shown.
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Appendix G: Complex scenarios

Real-world scenarios are expected to have more complex
spatial features than the simulated examples presented in
Sect. 4.1, with the expectation that some of the assumptions
of the model will partially broken, such as stationarity and
independence of the latent processes. To explore the perfor-
mance of the methodology under scenarios with more com-
plex spatial features, as in real-world problems, results for
several additional simulated examples (A–D) are presented
in Fig. G1. The hyper-parameter values used to generate the
data are presented in Table G1, while the summary statistics
for the posterior distributions after fitting the model proposed
in this paper are presented in Table G2.

Scenario A represents a potential real-world scenario
where the covariance length scale changes across the domain.
This could be due to topographic features and a shift from
relatively smooth topography to sharp mountainous terrain.
For this scenario, the length scale of the latent unbiased pro-
cess changes abruptly at x = 50, with a length scale of 5 for
x < 50 and a length scale of 1 for x > 50. The length scale
of the biased process remains constant across the domain in
scenario A, although in scenario B it is made to also change
abruptly at x = 50 to simulate a case where the latent spatial
structure of the bias is also dependent on an extra factor, such
as topography.

Scenario C represents the potential real-world scenario
where there are multiple sources of variation in the cli-
mate with different covariance length scales. An example of
this could be the combined influence of large-scale upper-
atmosphere circulation patterns and small-scale topographic
changes over the domain. The data are generated from the
unbiased process after defining the kernel as the sum of two
independent components, one with a variance of 1 and length
scale of 3 and the other with a variance of 0.2 and length
scale of 0.6. Finally, scenario D represents a potential real-
world case where the bias in the studied parameter is depen-
dent on the parameter value itself, as might be the case if, for
example, the output from temperature sensors were skewed
by overheating. This correlation is induced between the bias
and the unbiased process by generating the data for the bias
as the sum φB(s)= 0.2 ·φY (s)+φBind.(s), where φBind.(s) is
an independent bias, as generated in the other examples.

The result of fitting the model presented in this paper to
each scenario is displayed in Table G2 and Fig. G1. From Ta-
ble G2 it is clear that, in cases where multiple length scales
are used in generating the data, the expected value of the
assumed single length scale is in between the true values,
tending more to the smallest length scale. The reason the ex-
pectation of the single length scale tends towards the shorter
values present in generating the data is hypothesised to be
the result of more spatial features (peaks and troughs) being
present for the shorter length scale component. The model is
able to explain the data observed better with a length scale
closer to the shortest value present and the 95 % credible in-

terval for the single length scale does not necessarily cover
the multiple values used in generating the data.

In Fig. G1, it can be seen that, despite the additional com-
plexities, the predictions of the unbiased parameter and of
the bias are reasonable and capture the main spatial patterns.
This demonstrates the flexibility of GPs and the robustness
of the methodology proposed when attempting to fit differ-
ent types of real-world data where some of the assumptions
made in the model partially do not hold. Some features of the
results are described here due to not fully capturing the de-
pendencies involved in generating the data. In scenario A, the
length scale of the unbiased process is estimated to be close
to the value used in generating the data for x > 50, which
results in greater uncertainty than expected between nearby
observations in the region of x < 50, where the length scale is
greater. For example, in the extrapolation range of x < 0, the
prediction in the unbiased parameter values returns sharply to
the mean, with uncertainty independent of observed points,
whereas if the length scale was correctly estimated in this
region, the predictions would remain dependent on the data
observed at x = 0–10 for longer. The same is true in scenario
B, with the addition of the estimates of the bias being ef-
fected, making disaggregating the climate model output into
an unbiased and biased component more challenging, as seen
at x = 30. In scenario C, again, by only modelling a single
length scale for the unbiased process, disaggregating the cli-
mate model output into its two components is effected and
the longer length scale peak present at x = 20 is attributed
to the bias incorrectly. Finally, in scenario D, not accounting
for the correlation between the unbiased values and the bias
results in a slightly greater uncertainty in predictions than
could be achieved by incorporating this relationship.

Overall, the model is shown to perform adequately and not
be overly sensitive to some of the assumptions being par-
tially broken, which supports the notion that the methodol-
ogy is useful for real-world applications. In addition, other
methodologies currently applied to bias correction are likely
more affected in these complex scenarios. It is noted that the
purpose of this paper is not to provide a final fixed model,
however, instead aiming to provide a framework where addi-
tional complexities present in real-world applications can be
assessed on a case-by-case basis and further model adjust-
ments made where needed to account for specific features of
the real-world data set. The model could be modified for each
scenario to take into account the extra complexity, which is
something that a fixed-type model for bias correction would
not be able to handle.
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Table G1. A table showing the hyper-parameters of the latent Gaussian processes used to generate the complete underlying realisations of
φY (s

?), φB (s?) and hence φZ(s?), as well as observations of φY (sy) and φZ(sz), on which inference is done for the additional scenarios.
The number of observations representing in situ data and climate model output is also given.

Dependent variable Model parameters Scenario A Scenario B Scenario C Scenario D

Unbiased PDF parameter (φY )

Kernel variance (vφY ) 1.0 1.0 1.0, 0.2 1.0
Kernel length scale (lφY ) 5.0 (x < 50), 1.0 (x > 50) 5.0 (x < 50), 1.0 (x > 50) 3.0, 0.6 3.0
Mean constant (mφY ) 1.0 1.0 1.0 1.0
Noise (σφY ) 0.1 0.1 0.1 0.1
No. of observations 40.0 40.0 40.0 40.0

Bias PDF parameter (φB )
Kernel variance (vφB ) 1.0 1.0 1.0 1.0
Kernel length scale (lφB ) 10.0 10.0 (x < 50), 2.0 (x > 50) 10.0 10.0
Mean constant (mφB ) −1.0 −1.0 −1.0 −1.0

Climate model PDF parameter (φZ) No. of observations 80.0 80.0 80.0 80.0

Table G2. Tables showing summary statistics for the posterior distributions including the expectation (Exp.), standard deviation (SD), and
lower and upper bounds for the 95 % credible interval (LCI and UCI). The prior distributions are the same non-informative distributions
given in Table 3.

(a) Scenarios A
and B

Scenario A posterior distribution Scenario B posterior distribution

Dependent
variable

Model parameter Exp. SD LCI UCI Exp. SD LCI UCI

Unbiased PDF pa-
rameter (φY )

Kernel variance (vφY ) 0.87 0.17 0.55 1.18 0.85 0.18 0.53 1.20
Kernel length scale (lφY ) 1.06 0.06 0.94 1.19 1.12 0.07 0.99 1.24
Mean constant (mφY ) 0.78 0.15 0.48 1.07 1.42 0.17 1.09 1.77
Noise (σφY ) 0.12 0.03 0.06 0.17 0.15 0.05 0.05 0.24

Bias PDF parame-
ter (φB )

Kernel variance (vφB ) 1.15 0.86 0.19 2.87 0.85 0.39 0.32 1.60
Kernel length scale (lφB ) 10.34 1.93 6.86 14.32 3.50 0.82 2.21 5.05
Mean constant (mφB ) −0.68 0.49 −1.59 0.34 −0.79 0.27 −1.33 −0.25

(b) Scenarios C
and D

Scenario C posterior distribution Scenario D posterior distribution

Dependent
variable

Model parameter Exp. SD LCI UCI Exp. SD LCI UCI

Unbiased PDF pa-
rameter (φY )

Kernel variance (vφY ) 0.52 0.10 0.34 0.72 0.88 0.23 0.49 1.33
Kernel length scale (lφY ) 0.75 0.08 0.61 0.92 2.95 0.06 2.82 3.07
Mean constant (mφY ) 1.03 0.11 0.81 1.25 0.93 0.26 0.42 1.44
Noise (σφY ) 0.18 0.06 0.09 0.30 0.10 0.02 0.07 0.13

Bias PDF parame-
ter (φB )

Kernel variance (vφB ) 0.57 0.44 0.11 1.38 0.42 0.22 0.14 0.84
Kernel length scale (lφB ) 6.71 2.11 3.19 10.84 4.31 0.53 3.26 5.33
Mean constant (mφB ) −0.12 0.30 −0.73 0.44 −0.02 0.21 −0.46 0.38

Geosci. Model Dev., 17, 5733–5757, 2024 https://doi.org/10.5194/gmd-17-5733-2024



J. Carter et al.: Bayesian hierarchical model for bias correction 5755

Figure G1. Expectation and 1σ uncertainty in the posterior predictive distributions of the parameter φY (sz) and the corresponding bias,
φB (sz), for three scenarios. The underlying functions (complete realisations) as well as the simulated input data are also shown.
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