Articles | Volume 17, issue 14
https://doi.org/10.5194/gmd-17-5459-2024
https://doi.org/10.5194/gmd-17-5459-2024
Model description paper
 | 
22 Jul 2024
Model description paper |  | 22 Jul 2024

TorchClim v1.0: a deep-learning plugin for climate model physics

David Fuchs, Steven C. Sherwood, Abhnil Prasad, Kirill Trapeznikov, and Jim Gimlett

Related authors

Weaknesses in dust emission modelling hidden by tuning to dust in the atmosphere
Adrian Chappell, Nicholas Webb, Mark Hennen, Charles Zender, Philippe Ciais, Kerstin Schepanski, Brandon Edwards, Nancy Ziegler, Sandra Jones, Yves Balkanski, Daniel Tong, John Leys, Stephan Heidenreich, Robert Hynes, David Fuchs, Zhenzhong Zeng, Marie Ekström, Matthew Baddock, Jeffrey Lee, and Tarek Kandakji
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-337,https://doi.org/10.5194/gmd-2021-337, 2021
Revised manuscript not accepted
Short summary

Related subject area

Climate and Earth system modeling
Process-based modeling framework for sustainable irrigation management at the regional scale: integrating rice production, water use, and greenhouse gas emissions
Yan Bo, Hao Liang, Tao Li, and Feng Zhou
Geosci. Model Dev., 18, 3799–3817, https://doi.org/10.5194/gmd-18-3799-2025,https://doi.org/10.5194/gmd-18-3799-2025, 2025
Short summary
Implementing deep soil and dynamic root uptake in Noah-MP (v4.5): impact on Amazon dry-season transpiration
Carolina A. Bieri, Francina Dominguez, Gonzalo Miguez-Macho, and Ying Fan
Geosci. Model Dev., 18, 3755–3779, https://doi.org/10.5194/gmd-18-3755-2025,https://doi.org/10.5194/gmd-18-3755-2025, 2025
Short summary
Reducing time and computing costs in EC-Earth: an automatic load-balancing approach for coupled Earth system models
Sergi Palomas, Mario C. Acosta, Gladys Utrera, and Etienne Tourigny
Geosci. Model Dev., 18, 3661–3679, https://doi.org/10.5194/gmd-18-3661-2025,https://doi.org/10.5194/gmd-18-3661-2025, 2025
Short summary
FLAME 1.0: a novel approach for modelling burned area in the Brazilian biomes using the maximum entropy concept
Maria Lucia Ferreira Barbosa, Douglas I. Kelley, Chantelle A. Burton, Igor J. M. Ferreira, Renata Moura da Veiga, Anna Bradley, Paulo Guilherme Molin, and Liana O. Anderson
Geosci. Model Dev., 18, 3533–3557, https://doi.org/10.5194/gmd-18-3533-2025,https://doi.org/10.5194/gmd-18-3533-2025, 2025
Short summary
SURFER v3.0: a fast model with ice sheet tipping points and carbon cycle feedbacks for short- and long-term climate scenarios
Victor Couplet, Marina Martínez Montero, and Michel Crucifix
Geosci. Model Dev., 18, 3081–3129, https://doi.org/10.5194/gmd-18-3081-2025,https://doi.org/10.5194/gmd-18-3081-2025, 2025
Short summary

Cited articles

Beucler, T., Pritchard, M., Rasp, S., Ott, J., Baldi, P., and Gentine, P.: Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems, Phys. Rev. Lett., 126, 098302, https://doi.org/10.1103/PhysRevLett.126.098302, 2021. a, b, c
Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Accurate medium-range global weather forecasting with 3D neural networks, Nature, 619, 533–538, 2023. a
Brenowitz, N. D. and Bretherton, C. S.: Spatially Extended Tests of a Neural Network Parametrization Trained by Coarse-Graining, J. Adv. Model. Earth Sy., 11, 2728–2744, https://doi.org/10.1029/2019MS001711, 2019. a, b, c
Brenowitz, N. D., Beucler, T., Pritchard, M., and Bretherton, C. S.: Interpreting and Stabilizing Machine-Learning Parametrizations of Convection, J. Atmos. Sci., 77, 4357–4375, https://doi.org/10.1175/JAS-D-20-0082.1, 2020. a, b, c
Dunbar, O. R. A., Garbuno-Inigo, A., Schneider, T., and Stuart, A. M.: Calibration and Uncertainty Quantification of Convective Parameters in an Idealized GCM, J. Adv. Model. Earth Sy., 13, e2020MS002454, https://doi.org/10.1029/2020MS002454, 2021. a
Download
Short summary
Machine learning (ML) of unresolved processes offers many new possibilities for improving weather and climate models, but integrating ML into the models has been an engineering challenge, and there are performance issues. We present a new software plugin for this integration, TorchClim, that is scalable and flexible and thereby allows a new level of experimentation with the ML approach. We also provide guidance on ML training and demonstrate a skillful hybrid ML atmosphere model.
Share