Articles | Volume 17, issue 13
https://doi.org/10.5194/gmd-17-5349-2024
https://doi.org/10.5194/gmd-17-5349-2024
Development and technical paper
 | 
11 Jul 2024
Development and technical paper |  | 11 Jul 2024

Modelling boreal forest's mineral soil and peat C dynamics with the Yasso07 model coupled with the Ricker moisture modifier

Boris Ťupek, Aleksi Lehtonen, Alla Yurova, Rose Abramoff, Bertrand Guenet, Elisa Bruni, Samuli Launiainen, Mikko Peltoniemi, Shoji Hashimoto, Xianglin Tian, Juha Heikkinen, Kari Minkkinen, and Raisa Mäkipää

Related authors

Reduced microbial respiration sensitivity to soil moisture following long-term N fertilization enhances soil C retention in a boreal Scots pine forest
Boris Ťupek, Aleksi Lehtonen, Stefano Manzoni, Elisa Bruni, Petr Baldrian, Etienne Richy, Bartosz Adamczyk, Bertrand Guenet, and Raisa Mäkipää
EGUsphere, https://doi.org/10.5194/egusphere-2024-3813,https://doi.org/10.5194/egusphere-2024-3813, 2024
Short summary
Data-mining analysis of the global distribution of soil carbon in observational databases and Earth system models
Shoji Hashimoto, Kazuki Nanko, Boris Ťupek, and Aleksi Lehtonen
Geosci. Model Dev., 10, 1321–1337, https://doi.org/10.5194/gmd-10-1321-2017,https://doi.org/10.5194/gmd-10-1321-2017, 2017
Short summary
Forest soil carbon stock estimates in a nationwide inventory: evaluating performance of the ROMULv and Yasso07 models in Finland
Aleksi Lehtonen, Tapio Linkosalo, Mikko Peltoniemi, Risto Sievänen, Raisa Mäkipää, Pekka Tamminen, Maija Salemaa, Tiina Nieminen, Boris Ťupek, Juha Heikkinen, and Alexander Komarov
Geosci. Model Dev., 9, 4169–4183, https://doi.org/10.5194/gmd-9-4169-2016,https://doi.org/10.5194/gmd-9-4169-2016, 2016
Short summary
Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status
Boris Ťupek, Carina A. Ortiz, Shoji Hashimoto, Johan Stendahl, Jonas Dahlgren, Erik Karltun, and Aleksi Lehtonen
Biogeosciences, 13, 4439–4459, https://doi.org/10.5194/bg-13-4439-2016,https://doi.org/10.5194/bg-13-4439-2016, 2016
Short summary

Related subject area

Biogeosciences
Emulating grid-based forest carbon dynamics using machine learning: an LPJ-GUESS v4.1.1 application
Carolina Natel, David Martín Belda, Peter Anthoni, Neele Haß, Sam Rabin, and Almut Arneth
Geosci. Model Dev., 18, 4317–4333, https://doi.org/10.5194/gmd-18-4317-2025,https://doi.org/10.5194/gmd-18-4317-2025, 2025
Short summary
ELM2.1-XGBfire1.0: improving wildfire prediction by integrating a machine learning fire model in a land surface model
Ye Liu, Huilin Huang, Sing-Chun Wang, Tao Zhang, Donghui Xu, and Yang Chen
Geosci. Model Dev., 18, 4103–4117, https://doi.org/10.5194/gmd-18-4103-2025,https://doi.org/10.5194/gmd-18-4103-2025, 2025
Short summary
Development and assessment of the physical–biogeochemical ocean regional model in the Northwest Pacific: NPRT v1.0 (ROMS v3.9–TOPAZ v2.0)
Daehyuk Kim, Hyun-Chae Jung, Jae-Hong Moon, and Na-Hyeon Lee
Geosci. Model Dev., 18, 3941–3964, https://doi.org/10.5194/gmd-18-3941-2025,https://doi.org/10.5194/gmd-18-3941-2025, 2025
Short summary
Estimation of above- and below-ground ecosystem parameters for DVM-DOS-TEM v0.7.0 using MADS v1.7.3
Elchin E. Jafarov, Hélène Genet, Velimir V. Vesselinov, Valeria Briones, Aiza Kabeer, Andrew L. Mullen, Benjamin Maglio, Tobey Carman, Ruth Rutter, Joy Clein, Chu-Chun Chang, Dogukan Teber, Trevor Smith, Joshua M. Rady, Christina Schädel, Jennifer D. Watts, Brendan M. Rogers, and Susan M. Natali
Geosci. Model Dev., 18, 3857–3875, https://doi.org/10.5194/gmd-18-3857-2025,https://doi.org/10.5194/gmd-18-3857-2025, 2025
Short summary
Alquimia v1.0: a generic interface to biogeochemical codes – a tool for interoperable development, prototyping and benchmarking for multiphysics simulators
Sergi Molins, Benjamin J. Andre, Jeffrey N. Johnson, Glenn E. Hammond, Benjamin N. Sulman, Konstantin Lipnikov, Marcus S. Day, James J. Beisman, Daniil Svyatsky, Hang Deng, Peter C. Lichtner, Carl I. Steefel, and J. David Moulton
Geosci. Model Dev., 18, 3241–3263, https://doi.org/10.5194/gmd-18-3241-2025,https://doi.org/10.5194/gmd-18-3241-2025, 2025
Short summary

Cited articles

Abramoff, R. Z., Guenet, B., Zhang, H., Georgiou, K., Xu, X., Viscarra Rossel, R. A., Yuan, W., and Ciais, P.: Improved global-scale predictions of soil carbon stocks with Millennial Version 2, Soil Biol. Biochem., 164, 108466, https://doi.org/10.1016/j.soilbio.2021.108466, 2022. 
Adair, E. C., Parton, W. J., Del Grosso, S. J., Silver, W. L., Harmon, M. E., Hall, S. A., Burke, I. C., and Hart, S. C.: Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates, Glob. Change Biol., 14, 2636–2660, https://doi.org/10.1111/j.1365-2486.2008.01674.x, 2008. 
Barnard, R. L., Blazewicz, S. J., and Firestone, M. K.: Rewetting of soil: Revisiting the origin of soil CO2 emissions, Soil Biol. Biochem., 147, 107819, https://doi.org/10.1016/j.soilbio.2020.107819, 2020. 
Berg, B., Booltink, H., Breymeyer, A., Ewertsson, A., Gallardo, A., Holm, B., Johansson, M.-B., Koivuoja, S., Meentemeyer, V., Nyman, P., Olofsson, J., Pettersson, A.-S., Reurslag, A., Staaf, H., Staaf, I., and Uba, L.: Data on needle litter decomposition and soil climate as well as site characteristics for some coniferous forest sites, Part I, Site characteristics, Report 41, Swedish University of Agricultural Sciences, Department of Ecology and Environmental Research, Uppsala, 1991a. 
Berg, B., Booltink, H., Breymeyer, A., Ewertsson, A., Gallardo, A., Holm, B., Johansson, M.-B., Koivuoja, S., Meentemeyer, V., Nyman, P., Olofsson, J., Pettersson, A.-S., Reurslag, A., Staaf, H., Staaf, I., and Uba, L.: Data on needle litter decomposition and soil climate as well as site characteristics for some coniferous forest sites, Part II, Decomposition data, Report 42, Swedish University of Agricultural Sciences, Department of Ecology and Environmental Research, Uppsala, 1991b. 
Download
Short summary
Updating the Yasso07 soil C model's dependency on decomposition with a hump-shaped Ricker moisture function improved modelled soil organic C (SOC) stocks in a catena of mineral and organic soils in boreal forest. The Ricker function, set to peak at a rate of 1 and calibrated against SOC and CO2 data using a Bayesian approach, showed a maximum in well-drained soils. Using SOC and CO2 data together with the moisture only from the topsoil humus was crucial for accurate model estimates.
Share