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Abstract. As soil microbial respiration is the major compo-
nent of land CO2 emissions, differences in the functional de-
pendence of respiration on soil moisture among Earth system
models (ESMs) contributes significantly to the uncertainties
in their projections.

Using soil organic C (SOC) stocks and CO2 data from a
boreal forest–mire ecotone in Finland and Bayesian data as-
similation, we revised the original precipitation-based mono-
tonic saturation dependency of the Yasso07 soil carbon
model using the non-monotonic Ricker function based on
soil volumetric water content. We fit the revised functional
dependency of moisture to the observed microbial respira-
tion and SOC stocks and compared its performance against
the original Yasso07 model and the version used in the JS-
BACH land surface model with a reduction constant for de-
composition rates in wetlands.

The Yasso07 soil C model coupled with the calibrated uni-
modal Ricker moisture function with an optimum in well-
drained soils accurately reconstructed observed SOC stocks
and soil CO2 emissions and clearly outperformed previous
model versions on paludified organo-mineral soils in forested
peatlands and water-saturated organic soils in mires. The
best estimate of the posterior moisture response of decom-
position used both measurements of SOC stocks and CO2

data from the full range of moisture conditions (from dry
and xeric to wet and water-saturated soils). We observed un-
biased residuals of SOC and CO2 data modelled with the
moisture optimum in well-drained soils, suggesting that this
modified function accounts more precisely for the long-term
SOC change dependency according to ecosystem properties
as well as the contribution of short-term CO2 responses in-
cluding extreme events.

The optimum moisture for decomposition in boreal forests
was found in well-drained soils instead of the mid-range be-
tween dry and water-saturated conditions as is commonly
assumed among soil C and ESMs. Although the unimodal
moisture modifier with an optimum in well-drained soils im-
plicitly incorporates robust biogeochemical mechanisms of
SOC accumulation and CO2 emissions, it needs further eval-
uation with large-scale data to determine if its use in land
surface models will decrease the uncertainty in projections.

1 Introduction

Soil moisture and soil C stocks in boreal forests are higher in
forested peatlands on frequently paludified organo-mineral
soils and in peatlands on water-saturated organic soils than
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5350 B. Ťupek et al.: Modelling boreal forest’s mineral and peat soil C with the Yasso07 model

in well-drained forests on mineral soils (Weishampel et al.,
2009; Ťupek et al., 2008; Bhatti et al., 2006; Hartshorn et al.,
2003). Almost a quarter of the total terrestrial C (440 PgC)
stored in boreal moist and dry soils has accumulated since the
last glaciation (Scharlemann et al., 2014) and is expected to
create large C losses under warming climates (Hararuk et al.,
2015). Moist organic soils are crucial for modelling dynam-
ics of the global C cycle as they store 5 times more carbon
than dry mineral soils (Leifeld and Menichetti, 2018; Turet-
sky et al., 2015; Scharlemann et al., 2014). However, soil or-
ganic carbon (SOC) stocks modelled by Earth system mod-
els (ESMs) show large uncertainty due to structural model
differences (Hashimoto et al., 2017; Hararuk et al., 2014,
2015; Todd-Brown et al., 2013) and differences in environ-
mental drivers and their functional dependencies used by soil
C models (Thum et al., 2020; Ťupek et al., 2019; Falloon
et al., 2011).

Despite soil moisture being a dominant driver of variation
in C dynamics (Humphrey et al., 2021), ESMs lack con-
sensus on the response of decomposition to soil moisture
and temperature (Yan et al., 2018; Sierra et al., 2015; Fal-
loon et al., 2011). The functional forms of the temperature
and moisture modifiers of default decomposition rates among
models disagree in their representation of extreme cold–dry
and hot–wet conditions (Sierra et al., 2015). For example, the
moisture decomposition dependency in the Yasso07 soil C
model (Tuomi et al., 2011, 2009) is based on annual precipi-
tation, has a form of monotonic saturation, and is uninformed
about soil characteristics. By a monotonic saturation func-
tion, we mean a function which is entirely non-decreasing,
initially increasing rapidly and later slowly approaching a
maximum. The use of the saturation function is limited to
well-drained soils because under wet or poorly drained forest
soils such a model results in underestimation of the C stocks
(Dalsgaard et al., 2016, Ťupek et al., 2016). The soil module
of the CENTURY model (Adair et al., 2008; Parton, 1996;
Metherell et al., 1993) uses precipitation and basic soil data
(bulk density, clay, and silt contents) to calculate soil mois-
ture, which similarly to Yasso07 assumes saturation of de-
composition rates. Other functional dependencies of mois-
ture such as DayCent, DEMETER, STANDCARB, CANDY,
Gompertz, Myers, Moyano, and Skopp assume various func-
tional forms, for example, non-monotonic Gaussian increase
with an optimum and reduction in decomposition (DayCent,
STANDCARB, Moyano), linear increase until reaching an
optimum and linear reduction (Skoop), monotonic linear and
non-linear increase (DEMETER and Myers, respectively),
or monotonic saturation functions (CENTURY, CANDY)
(Sierra et al., 2015, and references therein). The wide vari-
ation in commonly used moisture functions may result from
the variety of data from different soil types and climates used
to constrain these moisture indices.

If environmental response functions were calibrated for
mineral soils only, then these functions may not adequately
represent responses in the moisture range characteristic of

organic soils. For example, default response functions of
soil C models cannot represent anoxic inhibition of decom-
position rates in paludified peatland forest soils. However,
the inhibition of decomposition can be accounted for even in
monotonic functions, e.g. by a reduction parameter such as
“anerb” in CENTURY (Methereall et al., 1993). Due to vari-
able water levels and their determination of soil oxic/anoxic
conditions and SOC accumulation in peatlands, peat SOC
stocks are typically modelled with models specifically devel-
oped for peatlands (Bona et al., 2020; Kleinen et al., 2012;
St-Hilaire et al., 2010; Frolking et al., 2010, 2001; Clymo,
1978, 1992). However, for global applications on peatlands,
the general soil models in ESMs can be modified for peat
soil by adjusting parameters such as the hydraulic conduc-
tivity, as seen in models like JULES (Chadburn et al., 2022)
and ORCHIDEE (Qiu et al., 2018), or by reducing decom-
position rates for wetlands, as in LPJ (Wania et al., 2010)
and JSBACH (Goll et al., 2015). The land surface model JS-
BACH coupled with the Yasso soil C model adopts a heuris-
tic 65 % reduction in decomposition for wetlands (Kleinen
et al., 2021; Goll et al., 2015). Using the CENTURY model
at the site level, Raich et al. (2000) opted for improvement in
modelled SOC of wetlands by modifying the environmental
function with the anoxic inhibition for sites with insufficient
drainage. This approach improved CENTURY compared to
the default Yasso07 in poorly drained forested peatlands in
Sweden, though the SOC stocks of both models were still
underestimated (on average by 10 and 13 kgCm−2, respec-
tively) (Ťupek et al., 2016). A similar magnitude of SOC
underestimation of Yasso07 model with default dependency
on precipitation was also observed for poorly drained forest
soils (e.g. Gleysols and organic soils) in Norway (Dalsgaard
et al., 2016).

We hypothesized that the SOC stocks and CO2 emissions
of mineral and organic (peat) soils can be modelled accu-
rately by revising the original precipitation-based environ-
mental modifier of a parsimonious model like Yasso07 with a
function accounting for the reduction in decomposition based
on the long-term near-surface moisture. Near-surface mois-
ture is strongly correlated with the groundwater level depth
in peatlands (Dimitrov et al., 2022), and the moisture val-
ues between mineral soil forests and peatlands are compa-
rable on the same scale, which makes soil volumetric water
content (SWC) a suitable variable for representing landscape
moisture variation. Boreal forest SWC can be either mea-
sured in situ or derived in high resolution using hydrologi-
cal models (e.g. Leppä et al., 2020; Launiainen et al., 2019)
and at larger scale by remote sensing and machine learning
(Han et al., 2023). We aimed to develop the original Yasso07
model with parameters as in Tuomi et al. (2011) by adding
a revised unimodal moisture-based environmental function.
We then optimized this function using Bayesian data assim-
ilation of measurements from a boreal forest–mire hillslope
catena of mineral, organo-mineral, and organic soils, and we
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Figure 1. Infrared areal image showing the location of nine studied forest–mire types forming a transect of approximately 450 m on a northern
hillslope in Finland (61°47′ N, 24°19′ E). A series of hemispherical images of forest stands on the top of the aerial image show the increasing
gradient in the canopy openness from upland forests (left) to mires (right). The series of soil profiles shows the increasing gradient of the
organic layer depth. The images in the series arranged from left to right mimic the site type location on the slope from the hill to depression.
Sites range from upland (1) xeric, (2) sub-xeric, (3) mesic, and (4) herb-rich forest types (CT – Calluna, VT – vitis-idaea, MT – myrtillus,
OMT – Oxalis–myrtillus) through paludified forest–mire transitions (5–7) (OMT+ – Oxalis–myrtillus paludified, KgK – myrtillus spruce
forest paludified, KR – spruce pine swamp) to sparsely forested mires and peatlands in depressions (8–9) (VSR1 and VSR2 – tall-sedge pine
fen).

tested whether we could correctly reconstruct observed SOC
stocks and CO2 emissions.

2 Methods

2.1 Study sites

Nine forest and mire site types in this study were situated
along the hillslope from the Vatiharju esker to the Lakkasuo
mire in southern Finland (61°47′ N, 24°19′ E) (Fig. 1) and
formed a forest–mire ecotone, a gradient in soil moisture and
nutrient status, vegetation composition, biomass production,
and SOC stocks (Dimitrov et al., 2014). The sites were situ-
ated along a 450 m transect on a 3.3 % slope facing NE with
a relative relief of 15 m. The site typology described below
was based on the vegetation composition reflecting site wet-
ness, fertility, and location on the slope according to Finnish
forest and mire classification systems (Cajander, 1949; Laine
et al., 2004).

On the crest of the esker was a well-drained xeric Scots
pine forest (CT – Calluna type), which changed down the
slope to sub-xeric mixed Scots pine–Norway spruce forest
(VT – vitis-idaea type) and mid-slope to mesic and herb-
rich Norway-spruce-dominated forest (MT – myrtillus type,
OMT – Oxalis–myrtillus type), together referred to as min-
eral soil upland forests. On the toe of the slope were forest–
mire transitions on gleyic organo-mineral soils or mixed
spruce pine birch forests (OMT+ – Oxalis–myrtillus paludi-
fied type, KgK – myrtillus spruce forest paludified type, KR –

spruce pine swamp type). On the level were water-saturated
sparsely forested mires on Histosols (VSR1 and VSR2 – tall-
sedge pine fen types).

The understorey or forest floor vegetation along the eco-
tone changed from being dominated by Calluna and Vac-
cinium vitis-idaea dwarf shrubs and typical forest mosses on
the uppermost sites (CT, VT) to Vaccinium myrtillus dwarf
shrubs with herbs on the mid-slope (MT, OMT); Vaccinium
myrtillus dwarf shrubs with herbs and Sphagnum in the tran-
sitions (OMT+, KgK, KR); and Vaccinium oxycoccos and
Betula nana dwarf shrubs with Menyanthes trifoliata, Carex,
and Sphagnum species on the level (VSR1, VSR2) (Fig. 1).
More detailed tree stand, soil, and climate characteristics for
these sites were reported by Ťupek et al. (2015).

2.2 Auxiliary measurements

Soil temperature, water content, and CO2 emissions
(gCO2 m−2 h−1) were measured simultaneously during the
years 2004, 2005, and 2006. The measurement campaigns
were conducted weekly, and we measured each plot once
and all plots in 1 or 2 d between 07:00 and 18:00 eastern
European time (EET) during the vegetative season of 2004
(July–November), 2005 (May–November), and 2006 (May–
September) and monthly during the non-vegetative seasons
(December–April). The summer seasons of the years 2004–
2006 showed exceptionally different monthly weather pat-
terns. Data from Finnish meteorological station, located in
Juupajoki 3 km north-east of the ecotone, showed that the
summer season in 2004 was rainy and colder in compari-
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son to long-term typically mild weather, in 2005 the weather
was typical, and in summer 2006 the weather was sunny and
warm. The exceptional drought in 2006 caused by the lack of
rain and increased temperatures in June and late July–early
August (Gao et al., 2017) caused visible drying of the moss
layer along all the sites of the ecotone. The 2006 summer
drought ended with showers in mid-August and with more
frequent rain in autumn when the soil moisture recovered to
a normal level.

2.2.1 Soil temperature and moisture conditions

The soil temperature was measured at depths of 5 cm (T5,
°C) with a portable thermometer, and the soil volumetric wa-
ter content was measured at a depth of 10 cm (SWC10, %,
m3 m−3) in all sites with a portable ThetaProbe (Delta-T De-
vices Ltd.) calibrated for each site type. The SWC calibra-
tion accounted for the bulk density–porosity of forest-type-
specific soils (Ťupek et al., 2008, 2015). Because the forest–
mire variation in the soil organic layer bulk density was rela-
tively small at 0.34± 0.07 gcm−3 (porosity 74± 5 %) (Ťu-
pek et al., 2015), the SWC values of the top 10 cm were
on the same order of magnitude between the forest–mire
site types. For missing field campaigns during months with
snow cover (November 2004, February–April 2005, Decem-
ber 2005–April 2006), we interpolated the measured monthly
mean T5 and SWC10 time series with a spline function. The
SWC10 values among the forest and mire site types ranged
between 0 and 1 (or 0 % and 100 %) (Fig. 3), whereas in
comparison to water level depth, the values range from 8 cm
in tall-sedge mire to 881 cm in pine forest on the top of the
esker (Ťupek et al., 2008).

2.2.2 Soil CO2 emissions

Measurements of forest soil heterotrophic respiration (Rh,
gCO2 m−2 h−1, positive sign) were taken using opaque
cylindrical chambers (30 cm diameter, 21.2 L) placed on
metallic collars (30 cm in diameter), which were installed
permanently at 30 cm soil depth. The collar locations (3 for
each site type, 12 for mineral soil forests, 9 for transitions,
and 6 for mires, totalling 27) were selected to represent the
spatial variation of each site type and the spatial variation
along the forest–mire ecotone (e.g. dominant forest floor veg-
etation, microtopography, soil drainage, and nutrient status).

The aboveground forest floor vegetation inside each collar
was clipped at the time of collar installation, and any plant
regrowth of, for example, mosses was clipped approximately
half an hour before the flux measurements. At the time of
the collar installation, the roots of the understorey vegetation
and trees were cut with a saw along the collars’ perimeter.
The metallic collars installed to 30 cm soil depth prevented
the regrowth of the roots. Due to the vast majority of tree
and understorey roots in boreal forest occurring in the hu-
mus layer, the 30 cm depth was considered sufficient to cut

the roots and thus remove the signal of the root autotrophic
respiration from the net CO2 emissions. In transitions and
mires, the depth of peat could be more than 30 cm (in a range
from 0.15 m in OMT+ to 1.2 m in VSR2; Ťupek et al., 2008),
but the prevailing high groundwater levels (in a range from
33 cm in OMT+ to 7 cm in VSR1, Ťupek et al., 2008) limit
the root growth into the upper/sub-surface layer.

The soil CO2 emissions were measured every 4.8 s during
80 s intervals with a portable infrared CO2 analyser (EGM4,
SRC-1, PP Systems Inc.). We calculated CO2 flux rates from
the development of CO2 concentration over time inside the
chamber.

2.2.3 Soil organic carbon stocks

The soil data from the 2006 sampling up to 30 cm depth (Ťu-
pek et al., 2015) were combined with additional soil sam-
pling cores of up to 100 cm depth in October 2015 (three per
site) (Fig. S1 in the Supplement). The bulk density and C
and N concentrations for new samples were determined as in
Ťupek et al. (2015).

The SOC content (gcm−3) of separate soil layers was in-
terpolated for the whole profile with the fitted spline func-
tions and summed for each depth and each forest and mire
site (Fig. S1). The SOC content was similar in the uppermost
humus layers of all forest and mire types (below 0.3 gcm−3

in a layer 0–10 cm), but in the sub-surface level (10–30 cm),
it clearly doubled from uplands to transitions and mires (from
below 0.2 to above 0.4 gcm−3) (Fig. S1). In the soil layers
below 30 cm, the SOC content showed differences in degrees
of magnitude (around 0, 0.01, and 0.1 gcm−3 for forests,
transitions, and mires, respectively) (Fig. S1). The SOC stock
(kgCm−2) was a result of SOC content multiplied by a bulk
density.

2.2.4 Biomass of tree stand and understorey vegetation

The breast height diameter and height of all Scots pine (Pi-
nus sylvestris), Norway spruce (Picea abies), and silver birch
(Betula pendula) trees for each forest site type were mea-
sured in 2006. The biomass components for each species
(leaves, branches, stems, coarse roots) were estimated with
biomass conversion functions (Repola, 2008, 2009) and for
fine roots with functions by Lehtonen et al. (2016b). Forest
floor plants from three 0.07 m2 sample plots located near soil
respiration measuring collars were harvested for each forest
and mire site type in June–July 2004 (Ťupek et al., 2008).
Plants were separated into herbs, mosses, and shrubs and
dried and weighed for each category and each sample plot.
The stand density and the tree biomass increased from xeric
(CT) and mesic upland forest sites (VT and MT) towards the
herb-rich forest site (OMT) and transitions (OMT+, KgK,
and KR) and decreased to very sparse canopy in peatlands
and mires (VSR sites) (Fig. 1b). The understorey above-
ground biomass correlated negatively with the density of the
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canopy cover and thus positively with the light intercepted
on the forest floor (Ťupek et al., 2008).

2.3 Data analysis

2.3.1 Yasso07 SOC and CO2 modelling

Equilibrium SOC stocks of up to 1 m depth, SOC changes,
and soil CO2 emissions (Rh) for the forest and mire types
were modelled using the Yasso07 soil carbon model (Tuomi
et al., 2009, 2011) with specific litter input and weather data
in accordance with the method of the Finnish greenhouse
gas inventory (Statistics Finland, 2023). The temperature and
precipitation data for the weather input were from the near-
est Finnish Meteorological Institute (FMI) weather station,
located 3 km away from our study sites. We first ran the
Yasso07 model using the original formulation of the environ-
mental function with precipitation and air temperature data,
and then we ran the Yasso07 model fitted with the environ-
mental modifier function based on the SWC10 and T5 of the
forest and mire site types using the Bayesian data assimila-
tion technique.

Yasso07 is a semi-empirical process-based soil carbon
model where soil C is divided based on the organic matter
solubility into five pools (CA, CW, CE, CN, and CH) from
which three are fast (acid, A; water, W; and ethanol, E, all
soluble), one is slow (non-soluble, N), and one is almost sta-
ble (humus, H) (Tuomi et al., 2011). The rates of C decom-
position in each pool and C transfers between the pools are
affected by climate. The model can be expressed mathemat-
ically as a set of differential equations where decomposition
of the entire structural matrix of C pools CA, . . ., CH defined
by default mass flow parameters αA,W, . . ., αH and decom-
position coefficients kA, . . ., kH (AYS) is scaled by the time-
step-dependent scalar of the environmental rate modifier ξ(t)
(Eq. 1).

dc(t)
dt
=


iA
iW
iE
iN
iH

(t)

+ ξ(t)


−kA αA,WkW αA,EkE αA,NkN 0
αW,AkA −kW αW,EkE αW,NkN 0
αE,AkA αE,WkW −kE αE,NkN 0
αN,AkA αN,WkW αN,EkE −kN 0
αHkA αHkW αHkE αHkN −kH



×


cA
cW
cE
cN
cH

(t), (1)

where t is time, i defines a vector of initial carbon pools
iA, . . ., iH, and subscripts to α indicate mass transfer pools
(e.g. αA,W defines mass transfer from pool W to pool A).
The total soil respiration or CO2 efflux (Rh) is a product of a
column vector by a row vector C(t), where the elements of

the column vector are the fractions that were not transferred
among the pools (Sierra et al., 2012).

The model was originally calibrated for running on annual
time steps (Tuomi et al., 2009), but it can run on monthly
steps with monthly decomposition rates (1/12 of annual
kA, . . . , kH) and monthly litter and climate data (Ťupek et al.,
2019). Then ξ(tm) is defined by a combined function of
monthly air temperature (Tm) and 1/12 of annual precipi-
tation (Pa/12) (Eq. 2).

ξT(tm)= e
(
β1Tm+β2T

2
m
)(

1− eγ
Pa
12

)
, (2)

where β1, β2, and γ are parameters of the environmental
function and tm is the monthly time step. To test our hypoth-
esis of running the model for a catena of soils with gradually
increasing moisture content (from xeric to mesic, paludified,
and saturated), we re-defined the ξ(tm) function for use with
soil temperature based on aQ10 exponential function applied
to T5 (used by Davidson et al., 2012, as an alternative to Ar-
rhenius kinetics) and with moisture data using an adjusted
hump-shaped Ricker function (Bolker, 2008) for response to
SWC10, which limits the decomposition rate outside the op-
timum soil water content (ξAR, Eq. 3).

ξAR(tm)=Q

(
T5−10

10

)
10 aSWC10e

(
−ae−1SWC10

)
, (3)

where the Q10 parameter represents the increase in the tem-
perature function over a 10 °C difference in T5 and a con-
trols both ascending and descending slopes of the moisture
function when the peak is set to 1. In the Ricker function
with a and b parameters and an independent variable vector x
(axe−bx), the height of the peak can be inferred as (a/b)e−1

and the x value of the peak location as 1/b (Bolker, 2008).
Thus, in our formulation, by setting the peak in the Ricker
function to 1, we could substitute the b parameter with ae−1

and the SWC10 optimum (the SWC10 when decomposition
is optimum) was inferred as 1/ae−1.

The Yasso07 model versions in this study run accordingly
as follows:

1. The Yasso07.ξTW version is Yasso07 coupled with the
original ξT (Eq. 2) and with the original global param-
eter set (Tuomi et al., 2011) but with two k-rate pa-
rameter sets, (i) the original kA, . . ., kH rates for appli-
cation on mineral soils applied to mineral and organo-
mineral soil forests (CT, VT, MT, OMT, OMT+, KgK,
KR) and (ii) with an inhibitor reducing k rates by 35 %
(0.65 kA, . . ., 0.65kH) for application on wetlands (Goll
et al., 2015; Kleinen et al., 2021) applied to mire sites
(VSR1 and VSR2).

2. The Yasso07.ξW wetland version is the same as
Yasso07.ξTW but with a fine-tuned k-rate inhibitor to fit
the SOC of mire sites (VSR1 and VSR2).
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Table 1. The posterior distribution of parameters of the Yasso07 soil carbon model (parameters the same as in Table S1) coupled with the
environmental function ξAR (Eq. 3, parameters Q10 and a) optimized with observations of SOC stocks (p(θ |SOC)), SOC stocks and CO2
emissions (p(θ |SOC−CO2)), and CO2 emissions (p(θ |CO2)) from forest–mire ecotone sites using Bayesian data assimilation (Hartig et al.,
2012). PSRF stands for the Gelman–Rubin potential scale reduction factor and MAP for a maximum a posteriori probability. The SWC10
optimum (the SWC10 when the SOC decomposition in the boreal forest–mire ecotone was optimum) was inferred as 1/ae−1 and ranged
between 14 % and 27 % (for aMAPSOC, aMAPSOCCO2 , and aMAPCO2 ).

Posterior p(θ |data) ξAR parameters PSRF MAP 2.50 % 50 % 97.50 %

SOC Q10 1.001 2.239 1.157 2.503 4.72
SOC a 1.001 19.576 18.172 19.271 20.538
SOC εa1 1.002 0.099 0.032 0.077 0.099
SOC εb1 1.001 0 0 0 0.002
SOC, CO2 Q10 1.016 2.342 1.611 2.213 3.103
SOC, CO2 a 1.015 19.15 18.725 19.261 19.93
SOC, CO2 εa1 1.017 0.015 0.011 0.029 0.121
SOC, CO2 εb1 1.024 0.01 0.01 0.01 0.012
SOC, CO2 εa2 1.018 0.5 0.453 0.496 0.5
SOC, CO2 εb2 1.026 0.995 0.337 0.982 0.999
CO2 Q10 1.004 4.897 3.525 4.57 4.982
CO2 a 1.001 10.066 10.07 11.741 16.21
CO2 εa1 1.008 0.5 0.48 0.496 0.5
CO2 εb1 1.01 0.999 0.923 0.986 0.999

3. The Yasso07.ξAR version for the soil moisture gradient
from mineral to peat soils (e.g. as in the boreal forest–
mire ecotone) is the Yasso07 model coupled with ξAR
(Eq. 3), with the original global parameter set of the
structural matrix and optimized parameters of ξAR.

The initial equilibrium SOC stock (Co) for each forest and
mire type for the pre-trenching period was simulated analyt-
ically (Xia et al., 2012) (Eq. 4).

Co =−ξA
−1
YSu, (4)

where ξ is the environmental modifier, AYS is a structural
matrix formulation of the Yasso07 model’s differential equa-
tions, and u is the litter input (mean annual litter sum of fo-
liage, branches, stem, stump, roots, and understorey).

The Yasso07 model source code used here was built in
R software (R Core Team, 2023) on the platform of the SoilR
package (Sierra et al., 2012) according to the mathematical
description and parameters of Tuomi et al. (2011). The model
outputs are monthly SOC stocks and soil CO2 emissions. The
model was run with data inputs of above- and belowground
litterfall (accounting for its chemical composition) and cli-
mate data (described in more detail below). Monthly model
outputs of heterotrophic soil respiration were compared to
mean monthly Rh measurements.

2.3.2 Climate and litter C input data for the Yasso07
model

Yasso07.ξTW was run with monthly air temperature and pre-
cipitation from the nearby Juupajoki weather station of the
Finnish Meteorological Institute. Yasso07.ξAR was run using
site-type-specific continuous monthly T5 and SWC10 time
series.

The litter C input of the forest and mire types (Figs. S2
and S3) used by Yasso07 was estimated as in Lehtonen et al.
(2016a) based on turnover rates of tree stand biomass com-
ponents (including fine and coarse roots, stump, branches,
and foliage) and understorey vegetation. The litter C input
was separated into Yasso07 A, W, E, and N pools accord-
ing to the component and species-specific (or species-group-
specific) A, W, E, and N ratios taken from the literature (Berg
et al., 1991a, 1b, 1993; Gholz et al., 2000; Trofymow, 1998;
Vávřová et al., 2009; Straková et al., 2010) (Table S2 in the
Supplement). The annual litter was distributed either accord-
ing to a monthly resolution by accounting for seasonal trends
in foliage, fine roots, and the understorey (Ťupek et al., 2019;
Zhiyanski, 2014) or evenly. The litter input before trenching
was assumed to represent the long-term average of the equi-
librium state forest (Figs. S2a and S3). During trenching, the
severed fine and coarse roots made up the major component
of the total litter (Fig. S2b) and resulted in a clear peak in
the monthly litterfall time series (Fig. S3). After trenching,
the monthly litter levels decreased as the sum of components
excluded the roots (Figs. S2c and S3).
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Figure 2. Observations specific to the forest or mire site type of soil organic carbon (SOC) stocks (kgCm−2, summed to 1 m) and the
mean volumetric soil water content (SWC) at 10 cm depth (%) (with error bars showing 1 standard deviation of all measured values) (a)
in comparison to their distributions of heterotrophic soil CO2 emissions/respiration measurements (Rh, gCO2 m−2 h−1) and Rh expressed
as the emitted C fraction per site-specific SOC stock (µgCg−1 SOCh−1) (b). The CT, VT, MT, and OMT types represent upland forests;
OMT+, KgK, and KR forest–mire transitions; and VSR1 and VSR2 mires. The boxplot horizontal lines show the 25th and 75th interval with
the median in between, and the 5th and 95th confidence interval is shown by whiskers.

2.3.3 Bayesian SOC and CO2 data assimilation

The Bayesian Markov chain Monte Carlo (MCMC) data as-
similation has proved useful in improving soil organic car-
bon estimates (e.g. Xu et al., 2006; Hararuk et al., 2014).
The Bayesian posterior uncertainty provides updated infor-
mation on parameter values based on pre-existing informa-
tion on the parameters and the data through the likelihood
function (Speich et al., 2021). The Q10 and parameters of
ξAR (Eq. 3) coupled with the Yasso07 model were optimized
on the level of the forest–mire ecotone using the Bayesian
data assimilation technique (Luo et al., 2011; Hartig et al.,
2012; Speich et al., 2021) with observed SOC stocks and
monthly Rh data of forest and mire types with prior informa-
tion on the best parameter values and the defined parameter
range in Table S1. During the optimization, the Yasso07.ξAR
model was run first only with observed SOC stocks, second
with both SOC stocks and CO2 data combined, and third only
with CO2 data obtaining a probability distribution of model
parameters of ξAR (the posterior uncertainty p(θ |y) condi-
tional on the observations (y) and prior knowledge on the
parameter values p(θ)). The sum of the probability density
for the target parameter set (θ ) between the model predic-
tions and observations was maximized for the best agreement
using the likelihood defined by a modified Laplace probabil-
ity density function p(y|θ) (the probability of observing the

data y with the model parameters set θ ), where we allowed
the width of the distribution to be affected by the observed
SOC and CO2 values (Eq. 5).

p(y|θ)=
∏Nj

j=1

∏Ni

i=1

1
2(εaj + εbj xj,i)

e

−|(xj,i−µj,i )|
εaj +εbj

xj,i , (5)

where µj,i is the observed j th variable (e.g. SOC, CO2, or
SOC and CO2) of ith observations, xi is the modelled predic-
tion, N is the total number of observations, and εa and εb are
parameters affecting the width of the distribution. In the com-
bined SOC–CO2 likelihood, the likelihood function p(y|θ)
was then the multiplication of the distributions of SOC and
CO2 at all observation times. We evaluated the variation in
the estimated parameters by separating data for fitting the
models and testing them with a 9-fold cross-validation tech-
nique.

The model parameters of ξAR and p(y|θ) were sampled
from an assumed uniform distribution within their prior
ranges (Table S1). Posterior probability distributions of pa-
rameters (Table 2) were derived using the differential evolu-
tion “DEzs” MCMC sampler used by the runMCMC func-
tion from the BayesianTools package in R (Hartig et al.,
2019) and by computing three chains in parallel. The con-
vergence of MCMC runs was evaluated using the Gelman–
Rubin multivariate potential scale reduction factor (PSRF)
(Brooks and Gelman, 1998). The MCMC simulation was
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Table 2. The SOC and CO2 performance statistics of Yasso07 (Y07) model versions against the measured data in the boreal forest–mire
ecotone, where MAE is the mean absolute error, MBE is the mean bias error, RMSE is the root-mean-square error, R2

adj is the adjusted

coefficient of determination, and AIC is the Akaike information criterion. The units of MAE, MBE, and RMSE are in kgCm−2 and kgCO2
per square metre per month for SOC and CO2, respectively.

Data Yasso07 model MBE MAE RMSE R2
adj AIC

SOC Y07.ξTW −54.97 54.97 76.67 0.05 87.06
SOC Y07. ξAR.SOC −1.76 7.59 9.18 0.97 65.95
SOC Y07. ξAR.SOCCO2 −6.03 7.63 10.25 0.97 66.95
SOC Y07. ξAR.CO2 −42.17 43.98 62.2 0.63 83.17
CO2 Y07.ξTW 0.01 0.11 0.16 0.6 −233.65
CO2 Y07. ξAR.SOC −0.04 0.12 0.16 0.44 −237.37
CO2 Y07. ξAR.SOCCO2 −0.06 0.12 0.16 0.44 −238.31
CO2 Y07. ξAR.CO2 0 0.1 0.13 0.63 −266.9

considered converged if PSRF was below 1.03 for all param-
eters (1.01, 1.01, and 1.016 for p(θ |SOC), p(θ |CO2), and
p(θ |SOCCO2), respectively). Trace plots of MCMC runs for
target parameters showed effective sampling and unimodal
parameter density with clearly defined peaks. The differ-
ences in parameter uncertainties (difference between 97.5 %
and 2.5 % quantiles of the 95 % confidence interval) were
not significant (p= 0.99) when evaluated with a Welch two-
sample t test between two posterior distributions p(θ |SOC)
and p(θ |SOCCO2) (Table 1).

2.3.4 Performance evaluation of Yasso07.ξTW and
Yasso07.ξAR

The performance of Yasso07 model versions (i) Yasso07.ξTW
and (ii) Yasso07.ξAR with ξAR parameter set θ from
three posterior distributions, p(θ |SOC), p(θ |CO2) and
p(θ |SOCCO2), was evaluated with the modelled SOC and
CO2 outputs against the observed data in the forest mire eco-
tone with the coefficient of determination (R2), the mean ab-
solute error (MAE), mean bias error (MBE), the root-mean-
square error (RMSE), and the Akaike information criterion
(AIC), considering the number of model parameters in the
error calculation as in Abramoff et al. (2022) and with the
fitted linear trends of normalized SOC and CO2 model resid-
uals with observations against T5 and SWC10 data.

3 Results

3.1 Distributions of SOC stocks and Rh in relation to
SWC

The SOC stock measurements (to a depth of 1 m) in a forest–
mire ecotone were distributed in range between 20 kgCm−2

in well-drained soils of upland forests and 125 kgCm−2

in poorly drained soils in peatlands and mires (Fig. 2).
The SOC stock values strongly correlated with the long-
term moisture levels. The median Rh values ranged be-

tween 0.4 and 0.6 gCO2 m−2 h−1 for upland forests, 0.4 and
0.5 gCO2 m−2 h−1 for forest–mire transitions, and 0.3 and
0.4 gCO2 m−2 h−1 for mires (Fig. 2). The forest and mire site
type differences in median Rh values expressed per square
metre were small and poorly correlated with the mean soil
moisture levels.

3.2 Distribution of Rh in climate space of soil T and
SWC

The site-specific time series of hourly Rh measured in the
forest–mire ecotone during the years 2004, 2005, and 2006
followed a typical seasonal pattern of temperature and was
distributed in range between 0.08 and 1.6 gCO2 m−2 h−1 de-
pending on the corresponding soil temperature and moisture
conditions (Fig. 3). The Rh values were generally larger dur-
ing wet years than during a typical year and were lowest dur-
ing dry years (Fig. 3).

The T5 and SWC10 values showed a typical seasonal vari-
ation (in a range between around 0 and 20 °C, driest in the
summer and wettest in late autumn–spring) (Figs. 2b and 3c).
T5 showed a similar magnitude among the forest and mire
sites, whereas the SWC10 increased from the driest (upland
forest) to intermediate (forest–mire transition) sites and from
upland to lowland for the wettest (mire) sites located on the
slope (Fig. 3). The volumetric SWC10 values (%) were com-
parable and on the same order of magnitude between the
forest and mire site types because the forest–mire variation
in the soil organic layer bulk density was relatively small
at 0.34± 0.07 gcm−3 (porosity 74± 5 %). The forest–mire
ecotone soil moisture at 10 cm depth ranged from 5 % to
91 %. The minimum, maximum, and mean SWC at 10 cm
depth between forests, transitions, and mires clearly differed,
showing a gradient of increasing moisture from forests to
mires (Figs. 2a and 3). Due to highly variable weather (wet,
typical, and dry years), all ecosystems experienced periods of
extremely low and high SWC10 values. The SWC10 ranged
between 5 % and 25 % in upland forest, between 17 % and
70 % in transitions, and between 49 % and 91 % in mires
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Figure 3. The 3-year time series (2004 – wet; 2005 – typical; 2006 – dry) of instantaneous measurements of (a) soil heterotrophic respiration
(Rh, gCO2 m−2 h−1, positive sign), (b) soil temperature at 5 cm depth (°C), and (c) soil moisture at 10 cm depth (%) of nine forest and mire
sites (four upland forests (CT, MT, and OMT), three forest–mire transitions (OMT+, KgK, and KR), and two mires (VSR1 and VSR2)). The
sites are arranged from left to right according to their position on the slope (see Fig. 1).

(Fig. 3). The variation in soil temperature at 5 cm depth along
the ecotone was similar among the forest and mire types and
ranged between −3 and 22 °C (Fig. 3). The Rh values during
the dry year of 2006 were, in comparison to previous years,
clearly reduced, mostly in upland forest and forest–mire tran-
sitions (Fig. 3). The spatial soil moisture gradient of forest
and mire types was not clearly reflected in the distribution
of Rh values when expressed in gCO2 m−2 h−1 (Fig. 2) (un-
less expressed as a C fraction of SOC). The short-term SWC
variation impacted the typical seasonal levels of Rh values,
mainly during the extreme events (the rainy summer period
in wet years or drought summer period in dry years) (Fig. 3).

3.3 ξAR optimized with Yasso07.ξAR

The optimization of ξAR (Eq. 3) coupled with Yasso07
showed that in the catena of mineral and organic soils of
the boreal forest–mire, the optimum moisture content for de-
composition and CO2 emissions was in well-drained mineral
soil forests (SWCopt medians between 14 % and 27 %, Ta-
ble 1, Fig. 4). The MCMC fit with CO2 data produced larger
SWCopt and a larger tail in the Ricker function (compared
to the SOC or SOCCO2 fit). The decomposition rate outside
the moisture optimum reduced decomposition similarly for
the two data sources (SOC and SOCCO2) used for calibra-

tion. However, the temperature and moisture functions were
different when only CO2 was used for calibration.

The two SOC- and SOCCO2-basedQ10 functions showed
a similar increase with T5 until 10 °C (Fig. 4a). The com-
bined non-linear temperature and moisture response in the
whole climate data range showed larger change in ξ for min-
eral soil forests compared to forest mire transitions and peat-
lands (Fig. 5). The ξAR values in Fig. 5a and b for SOC-
and SOCCO2-based ξAR are similar, showing that both SOC
parameterization and SOCCO2 parameterization are almost
the same, whereas the ξAR in Fig. 5c is different. The CO2-
based temperature sensitivity of the median ξAR Q10 value
of 4.5 resulted in a more pronounced increase in decompo-
sition rates, especially in climate space with high water sat-
uration (Figs. 4 and 5c). The SOC- and SOCCO2-based ξAR
Q10 values for the forest–mire ecotone (medians 2.3 and 2.5,
Table 1) were lower.

3.4 Performance of Yasso07.ξTW, Yasso07.ξW, and
Yasso07.ξAR

The model performance evaluation showed that the soil
water and temperature modifier ξAR coupled with the
Yasso07 model (Yasso07.ξAR) outperformed the original
Yasso07 environmental function even after a 65 % re-
duction in decomposition rates for wetlands was applied
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Figure 4. The optimized environmental modifier of default decomposition rates ξAR (Eq. 3) (coupled with the Yasso07 model) drawn with
mean posterior values of parameters and their confidence intervals (dashed lines) (Table 1) for separate responses to (a) soil temperature
at 5 cm, ξAR= f (T5) when f (SWC10)= 1 and (b) soil water content at 10 cm, ξAR= f (SWC10) when f (T5)= 1. The functions were fit
based on only CO2, SOC and CO2, or only SOC data.

Figure 5. The colours and contour lines showing the optimized environmental modifier of default decomposition rates ξAR (Eq. 3) (cou-
pled with Yasso07 model) drawn with mean posterior values of parameters (Table 1) for combined responses to soil temperature at 5 cm,
ξAR= f (T5), and to soil water content at 10 cm, ξAR= f (SWC10), based on only SOC (a), SOC and CO2 (b), or only CO2 (c) data. In the
panels of combined ξAR white circles show pairs of corresponding monthly means of T5 and SWC10, and the black circles show the annual
T5 and SWC10 means for 9 forest and mire site types.

(Yasso07.ξTW) (Table 2, Fig. 5). Although the Yasso07.ξTW
model version accurately predicted SOC stocks of mineral
soil forests (CT, . . . , OMT), it heavily underestimated the
SOC stocks of organo-mineral forested peatlands and mires
(OMT+, . . . , VSR2); thus it showed the most biased model
performance metrics (highest RMSE, MBE, MAE, and AIC
and lowest R2

adj) among the model versions compared (Ta-
ble 2). A reduction in decomposition rates of 65 % for mires
in Yasso07.ξTW was not sufficient to simulate their SOC
stocks as the simulated SOC of mires was only about 10 % of

measured values (Fig. 5a–c). The SOC simulations for VSR
mires with Yasso07.ξW would have required as much as a
96 % reduction in the decomposition rates. The optimized
Yasso07.ξAR model version accurately simulated SOC stocks
throughout the forest–mire ecotone.

The Yasso07.ξAR,p(θ |SOC) version outperformed
Yasso07.ξAR,p(θ |SOCCO2) when evaluated against SOC
data, and both models were similar when evaluated against
CO2 data (Table 2, Fig. 5). Yasso07.ξAR,p(θ |CO2) outper-
formed the functions based on SOC or SOCCO2 against
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measured CO2 data but failed when evaluated against
measured SOC values. The Ricker function improved the
representation of decomposition for drier soils and the
representation of optimal SWC for decomposition.

The SWC optimum was derived from the fitted ascending
slope parameter, and its values were between 14 % and 27 %
(depending on the data used for fitting; 14 % for SOC and
CO2 and 27 % for CO2). The MCMC fit with CO2 data pro-
duced larger SWCopt and a larger tail in the Ricker function
(compared to the SOC or SOCCO2 fit). However, the CO2-
only fit also underestimated SOC stocks of forested peat-
lands (Fig. 5a). The normalized SOC residuals of the two
Yasso07.ξAR models based on SOC or SOC and CO2 did not
show any large T5 or SWC10 trends (Fig. 5a–c), although
measured Rh fluxes during the cold season may be slightly
overestimated.

The soil CO2 emissions simulated with the orig-
inal Yasso07.ξTW agreed unexpectedly well with ob-
served Rh values (Table 2, Fig. 6d–f), outperforming the
Yasso07.ξAR,p(θ |SOC) version (Table 2, Fig. 6e). On the
other hand, the Rh simulated with Yasso07.ξAR,p(θ |SOC) per-
formed similarly to Yasso07.ξTW in terms of RMSE (the
same RMSE of 0.16 gCO2 m−2 h−1 for both models). The
performance statistics for Yasso07.ξAR based on SOC and
SOCCO2 were better compared with those of Yasso07.ξTW
for SOC and about the same for Rh (Table 2). The perfor-
mance statistics for Yasso07.ξAR based on CO2 were best
among the models for CO2 but failed for SOC in a similar
fashion to Yasso07.ξTW. The normalized modelled residuals
showed that both Yasso07 model versions (Yasso07.ξTW and
Yasso07.ξAR,p(θ |SOC)) showed small Rh biases in extreme,
very cold and very warm, temperatures (Fig. 6e). The nor-
malized CO2 residuals of the Yasso07.ξAR,p(θ |CO2) showed
no bias among the functions (0 MBE, Table 2). The normal-
ized CO2 residuals evaluated against SWC10 did not show
any bias for any of the models (Fig. 6f).

4 Discussion

The Yasso07 model (Tuomi et al., 2011), coupled with a
revised and optimized empirical Q10 soil temperature and
Ricker moisture function ξAR (Eq. 3, Fig. 4), successfully
reconstructed observed variation in SOC stocks and soil
heterotrophic CO2 emissions with increasing soil wetness
in mineral, organo-mineral, and peat soils in boreal forest
(Fig. 6). The original Yasso07 monotonic precipitation func-
tion is effective due to easily available data on upper bound-
ary conditions, but it is also flawed in the case of a shallow
water table when the lower boundary is equally important in
defining the water content on the soil. Therefore, the usage
of soil water content as a variable is structurally superior,
and this can be proved by inductive reasoning, e.g. from the
test model runs. Separating the effect of structure from cali-

bration would require more test runs with data from a larger
number of study sites.

Our application of Yasso07 models on the hillslope ac-
counted for the continuity in moisture conditions, which was
reflected in the modelled gradient of mineral and peat soil
carbon stocks. The Yasso07 model initially developed for
mineral soils was improved for application in peatlands by
accounting for the soil temperature and volumetric moisture,
as these are better predictors of heterotrophic respiration than
air temperature and precipitation (Jian et al., 2022). Although
the empirical Ricker function ξAR used here was heuristic, its
form implicitly accounted for prevailing intrinsic micro-scale
processes on the hillslope controllingRh and SOC accumula-
tion, e.g. plant and microbial communities and the long-term
and short-term limitation of oxygen and substrate with mois-
ture (Davidson et al., 2012; Moyano et al., 2012; Ghezzehei
et al., 2019).
ξAR being able to simulate gradually increasing SOC

stocks from mineral to organic soils makes it a preferable
rate modifier for the Yasso07 model, instead of simply ad-
justing decomposition with a reduction constant for wetlands
(e.g. Goll et al., 2015; Kleinen et al., 2021), which underesti-
mated the SOC stocks of peatlands (Yasso07.ξTW in Fig. 5).
In this study, a constant 96 % reduction (0.04× k rates) was
proposed for the existing Yasso07.ξTW model for more accu-
rate SOC modelling in mires, a value comparable to rates of
anaerobic decomposition (Schuur et al., 2015). The 96 % re-
duction is comparable to JULES, which accounts for oxygen
inhibition with a gradual reduction in decomposition from
the maximum rate of 1 at the moisture optimum (30 %–75 %
SWC) to a reduced rate of 0.2 in water-saturated peat soils
(Chadburn et al., 2022).

4.1 The moisture response

The use of gradually changing near-surface soil moisture
avoids biases in land surface modelling related to ignoring
high SOC stocks of organo-mineral soils of forested peat-
lands (Dalsgaard et al., 2016, Ťupek et al., 2016), e.g. forest–
mire transitions (Figs. 1 and 2). The accurate modelling of
decomposition rates with diffusion-based moisture functions
accounting for microbial processes requires the correct rep-
resentation of the drivers of heterotrophic respiration (Yan
et al., 2018; Moyano et al., 2012, 2013; Manzoni et al.,
2012; Ghezzehei et al., 2019). However, there is uncertainty
in functional moisture – soil respiration dependencies are
high (Sierra et al., 2015; Falloon et al., 2011) and depen-
dencies vary with the soil properties; e.g. the SWC optimum
increases for soils with higher organic C content (from 30 %
to 75 % SWC; Moyano et al., 2012, 2013). The ξAR func-
tion’s SWCopt found in dry and well-drained conditions and
the reduction in default decomposition rates (k) with increas-
ing soil wetness contrasted responses from short-term lab-
oratory incubation soil respiration studies (weeks, months)
that showed an increase in decomposition from dry condi-
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Figure 6. Scatterplots between observed SOC (kgCm−2) and Rh (gCO2 m−2 h−1) from the forest–mire ecotone against modelled values
with the two versions of Yasso07 model: (i) Y07.ξTW – Yasso07 coupled with the default environmental modifier (ξT, Eq. 3) based on air T
and precipitation with a global parameter set (Tuomi et al., 2011) (applied for CT, . . . , KR mineral and organo-mineral soil forest sites) and
with a reduction in decomposition rates by 65 % for wetlands (Goll et al., 2015; Kleinen et al., 2021) (applied to VSR1 and VSR2 mires sites)
– and (ii) Y07.ξAR – Yasso07 coupled with an environmental modifier (ξAR, Eq. 3) based on SOC, SOC–CO2, or CO2 data (a, d) compared
with the 1 : 1 line (dashed red line). The normalized model residuals (residuals divided by observations) are plotted against T5 and SWC10
with the trend lines of the linear fits and with their confidence intervals (dashed lines) (b, c, e, and f).

tions until reduction in very wet conditions (Sierra et al.,
2017; Moyano et al., 2012, 2013; Kelly et al., 2000; Skopp
et al., 1990; Yan et al., 2018). The ξAR optimized with SOC
and CO2 data showed that the optimum/maximum decom-
position rate in the forest–mire ecotone in dry, well-drained
conditions was around 14 % of mean long-term near-surface
SWC (around 20 % water-filled pore space (WFPS), corre-
sponding to sub-xeric and mesic forest site types) (SWCopt
parameters inferred from a parameter in Table 1, Fig. 4b),
whereas the moisture optimum of studies based only on res-
piration from laboratory soil incubations was around 40 %–
60 % (Fairbairn et al., 2023; Moyano et al., 2013; Kelly et al.,
2000; Skopp et al., 1990; Yan et al., 2018).

The moisture optimum derived from the field site soil res-
piration datasets from a larger moisture range was found for
50 % WFPS and corresponded to around 31 % SWC assum-
ing a mean porosity of 62 % (Hashimoto et al., 2011). Our
SWCopt between 14 % and 27 % SWC (Table 1) was compa-
rable to the optimum derived from the field site data, which

was lower compared to laboratory incubations. The SWCopt
discrepancy of the ξAR function highlights the difference be-
tween (1) the responses from the field-based or long-term
soil respiration measurements reflecting moisture responses
of older, stabilized, and slowly decomposing SOC and (2) the
short-term incubation-based soil respiration studies which
predominantly capture the decomposition of the newly avail-
able, labile, and rapidly decomposing SOC pool (González-
Domínguez et al., 2019; Huang and Hall, 2017). Over longer
periods of incubation, highQ10 can be observed (Zhou et al.,
2014). The enhanced C mineralization can occur during peri-
ods of elevated moisture under Fe reduction when microbes
can access previously protected labile C (Huang and Hall,
2017). The incubations are short term (from a few days to a
few months) and are useful to identify short-term processes.
Moreover, they are performed on disturbed soils (sometimes
even sieved), and therefore the soil structure is not represen-
tative of the field.
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The ecosystem-scale application of moisture reduction
functions obtained in the laboratory can be hindered by sev-
eral factors. There are a number of feedback mechanisms
which modify the response obtained on a limited size soil
sample. Among them is a change in microbial community
composition, the texture- and structure-dependent effect of
pore-scale connectedness of soil solutions, and competition
between plants and microorganism for resources under dif-
ferent environmental stress conditions. Under a changing cli-
mate, these feedback mechanisms may lead to the system be-
having unpredictably in relation to extrapolation. Therefore,
the validation of the models at the site level with a series of
various in situ stress levels is necessary for reliable future
predictions.

In their impact on decomposition, the ξAR functions (cali-
brated with SOC, SOCCO2, and CO2 data) incorporated into
the Yasso07 soil C model were comparable (e.g. all found
the moisture optimum in well-drained soils of the forest–
mire ecotone). Although the soil temperature and moisture
functions showed relatively small differences inQ10 between
the model fits, the a parameter of the moisture functions of
the CO2-based fit was larger than those from the SOC and
SOCCO2 fits (Table 1). In terms of the Yasso07 model con-
stants, if temperature and moisture conditions are favourable
for organic matter stabilization, then ξAR is reduced (Figs. 4
and 5), which in turn reduces decomposition rates of fast and
slow C pools, reduces their CO2 emissions, and increases C
storage. The forest–mire sites’ heterotrophic respiration per
unit of area did not show a clear difference between well-
drained and water-saturated soils, whereas the C mineral-
ization per unit of SOC was clearly reduced in soils with
mean long-term field soil moisture (Fig. 2). A reduction in
decomposition rates in the environmental gradient from low
to higher field moisture indicates a possible difference in
the soil C stabilization mechanisms under low and high wa-
ter content (Das et al., 2019). Ghezzehei et al. (2019) sug-
gested that empirical moisture sensitivity curves should be
calibrated individually for each soil type. However, our study
shows that the common modifier function, based on the SWC
of the topsoil humus layer, which has comparable proper-
ties across the soil types, could provide insights into a more
generalizable moisture sensitivity function. The mechanistic
diffusion-based moisture functions (e.g. by Ghezzehei et al.,
2019; Yan et al., 2018) could, in follow-up studies, be com-
pared against deterministic moisture functions to evaluate
their applicability and interpretation.

The ξAR function with its reduction with increasing wet-
ness from dry soils was based on a large range of forest and
mire soil C stocks (between 11 and 134 kgCm−2), reflect-
ing a spatial long-term moisture gradient between forests and
mires (Fig. 2) and short-term moisture and CO2 dynamics
over years with contrasting climate (Fig. 3). The soil respira-
tion data from 3 years covered exceptionally contrasting wet
and dry summers and likely captured a full range dependency
on the soil moisture induced by short-term weather varia-

tion in a spatial long-term forest–mire gradient for soil mois-
ture, soil C pools, vegetation litter input dynamics (Figs. S2
and S3), and microbial composition. The short-term de-
viations in respiration indicative of wetting–drying cycles
(Barnard et al., 2020; Patel et al., 2021) could be seen by
the respiration increases in wet summers or during and after
a period of drought (Fig. 3). Thus, the ξAR,p(θ |SOC-CO2) curve
calibrated with highly variable SOC and CO2 data from
a forest–mire ecotone represented a mean robust moisture
decomposition dependency smoothing short-term weather-
dependent fluctuations with the spatial variation in organic
matter decomposition across ecological gradients. This func-
tion could meet the land surface modelling criteria for not
only spatial accuracy on small scales but also cost efficiency
for running or forecasting the C dynamics at large scales
(Luo and Schuur, 2020).

Including SOC data or a combination of SOC and CO2
data in model fitting resulted in lower SWCopt, and the model
fitting based only on CO2 showed larger SWCopt and a larger
tail (descending slope) of the Ricker moisture function. Thus,
in comparison to other studies, whose dependencies were
limited to relatively short-term responses of only soil het-
erotrophic CO2 respiration from mainly mineral soils in lab-
oratory conditions, the differences in SWCopt observed in our
studies could be expected from differences in the data source
used in model calibration. Unlike the data from controlled
laboratory conditions, we used data from field measurements
(mineral soil and peat SOC stocks, litter input, soil CO2 res-
piration, T5, and SWC10 measured under extreme weather
variability for 3 years). In optimizing model performance
with a multi-variable dataset, Keenan et al. (2013) found that
a combination of data with fast and slow turnover (e.g. soil
respiration and soil carbon stocks) leads to the largest im-
provement in model performance. Yasso07.ξAR based only
on slow turnover (SOC) was as good as that constraining with
SOC and CO2, as both approaches accurately observed soil
CO2 emissions and SOC stocks across the site types of the
forest–mire ecotone with no clear bias in residuals (Fig. 6).
Thus, in a catena of mineral and peat soils of the forest–
mire ecotone and in the combined measured SOC and CO2
data assimilation in ξAR (9 and 2369, respectively), the rel-
atively small number of SOC stocks (nine forest and mire
types) largely determined the SWC response form, reflecting
both a spatial moisture gradient and its temporal variation.
Whether the deterministic modifier rate was estimated cor-
rectly or not for the drained peatlands as well should be tested
in follow-up studies, as our data did not include drained peat-
lands. The Ricker functional dependency has performed well
for the drier region, but the performance in soils with high
water status could still be improved. This could be deduced
from the better statistical performance of the CO2-only fit
with CO2 data (compared to the SOC or SOCCO2 fit), which
produced a larger tail of the Ricker function. The CO2-only
fit also underestimated SOC stocks of forested peatlands.
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Although the moisture representation of the ξAR envi-
ronmental function was accurate at the forest–mire ecotone
level, at the forest site level, the contrasting respiration re-
sponses to moisture (i.e. either respiration reduction during
soil drying or increased CO2 emissions with rewetting for
dry soils or the opposite for wet soils; Barnard et al., 2020;
Patel et al., 2021) were likely not captured sufficiently. Soil
C modelling might be further improved using a moisture re-
sponse that accounts separately for microbial respiration with
increased water availability and for oxygen limitation in soil
reaching water saturation (Sierra et al., 2015). However, as
the aim of the environmental modifier used in this study was
to apply the above concepts in a cost-efficient way using an
empirical function with easily interpretable parameters (Q10
and a which informs us about the SWC optimum) (Davidson
et al., 2012), the mathematical representation of the moisture
function with increased complexity still needs to be evalu-
ated in further studies testing different functional forms with
larger regional data availability. Ghezzehei et al. (2019) sug-
gested that empirical moisture sensitivity curves should be
calibrated individually for each soil type. The mechanistic
diffusion-based moisture functions (e.g. by Moyano et al.,
2013; Yan et al., 2018; Ghezzehei et al., 2019) could, in
follow-up studies, be tested against deterministic moisture
functions (e.g. as in Davidson et al., 2012) to evaluate their
applicability and interpretation. However, our study shows
that the common modifier function, based on the SWC of the
topsoil humus layer, which has comparable properties across
the soil types, could provide insights into a more generaliz-
able moisture sensitivity function.

In this study, we constrained the soil carbon model us-
ing both SOC (stock) and CO2 (flow) data. Few studies
have constrained the soil carbon model to both SOC and
CO2 data. Our study demonstrates the importance of exten-
sive constraints on the soil carbon model to obtain a reliable
model output. The SOC constraint improved the model per-
formance; at the same time, the intensive SOC and CO2 con-
straint did not result in the improvement of model perfor-
mance, which implies the need for further model develop-
ment and testing. One potential improvement in modelling
could be to account for the different responses to the envi-
ronment (e.g. soil moisture) among different pools, like the
temperature dependency separated between the soil layers
and soil C fractions in more recent versions of the Yasso
model, e.g. Yasso15 and Yasso20 (Viskari et al., 2020, 2022).
The Yasso07 model adapts one common response function
among different pools for simplicity; however, the fresh plant
litter moisture limitation of decomposition may be expected
to differ from the moisture limitation on older stabilized C
in the humus horizon and mineral-associated C. Another fac-
tor could be the vertical process. The SOC is vertically dis-
tributed in the soil, and soil C fractions differ among soil
depths. Accounting for the depth of the soil layer with the
largest proportion of net CO2 emissions (Davidson et al.,
2006, 2012), which is expected to vary with fluctuating wa-

ter levels in forested peatlands, may further improve the soil
respiration estimates for organic soils. On a process level,
the key to understanding the difference in the moisture re-
duction function at different soil depths may lie in the nature
of the physical and biochemical availability of substrate to
enzymes released by microbial decomposers (Sainte-Marie
et al., 2021).

4.2 The temperature response

The original air-temperature-based modifier in Yasso07 was
replaced by theQ10-type temperature function driven by soil
temperature (Davidson et al., 2012). This function was found
to best represent the enzyme kinetics under unconstrained
substrate and oxygen (Sierra et al., 2017). The optimized
temperature function with SOC and combined SOC–CO2
data produced slightly more biased Rh estimates than the
modifier based on CO2 data with Q10 around 4.5 (Table 1,
Fig. 6). TheQ10 values around 4.0 were comparable with the
well-drained, moderately drained, and poorly drained forest
soils for similar climates (Chen et al., 2020; Davidson et al.,
1998; Karhu et al., 2010; Pumpanen et al., 2008). However,
the optimization of the Q10-type temperature response only
with SOC data and with SOC and CO2 (Table 1) showed
lower R2

adj values than for the Gaussian type of temperature
dependency in Yasso07.ξTW (Fig. 5). Thus, due to the com-
parable predictive power when using soil and air temperature
(Jian et al., 2022), the original Gaussian air temperature de-
pendency could be more accurate than the Q10 response for
the optimization with soil temperature (Tuomi et al., 2008).

Discrepancies in modelled respiration during winter
(Fig. 6) could also be caused by a scarcity of winter field CO2
measurements, potentially resulting in larger random errors
(e.g. due to difficulties of measuring relatively small respi-
ration fluxes during soil freezing–thawing cycles, measure-
ments on soil covered by a snow layer, and reduced precision
of gas analysers during measurements in a lower temperature
range). The density of CO2, temperature, and SWC measure-
ments can be seen in Fig. 3. The less frequent measurements
during periods of near-zero soil temperature might have af-
fected the fit of the temperature function. However, our main
emphasis was on the moisture, which in near-zero tempera-
ture conditions plays only a minor role in controlling respi-
ration.

5 Conclusions

The Yasso07 soil carbon model was developed and param-
eterized at a global scale for mineral soils; however, it has
also been applied to land surface modelling coupled with the
JSBACH model with a 65 % reduction in default decomposi-
tion for wetlands. In this study we emphasized the improving
representation of the response of soil organic C stock change
and respiration to soil moisture in the Yasso07 model for
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forest–mire ecosystems. At the forest site level, we evalu-
ated the performance of the Yasso07 model with an original
climate modifier based on air temperature and precipitation
against the model coupled with a revised environmental mod-
ifier based on soil temperature and moisture. We found that
the Yasso07 model coupled with revised climate dependen-
cies performed similarly for mineral soils but outperformed
the original configuration with the JSBACH modification for
undrained peatland soils.

The optimization of moisture dependency conducted in
this study accounted for both a spatial moisture gradient and
its temporal variation. The moisture optimum for dry soils
has not changed depending on whether the function was op-
timized using both slow (SOC) and fast (CO2) turnover data
(combined SOC and CO2 data) or only slow (SOC) data.

The SOC stocks in peatland forests were an order of mag-
nitude larger in comparison to forests on mineral soil. On a
landscape level, these peatland SOC stocks had the largest in-
fluence on calibrating the moisture optimum, when they were
included along with fluxes in optimization. This could be in-
ferred from the same calibrated moisture optimum when us-
ing calibration with only SOC or SOCCO2 as the data source,
whereas for only CO2-based calibration, the optimum dif-
fers. The function implicitly accounted for a relative contri-
bution of C fluxes from short-term biogeochemical processes
in long-term SOC accumulation. For accurate estimates of
the boreal forest soil carbon pools with the Yasso07 model,
the SOC accumulation related to inhibition of decomposition
with increasing wetness was more pronounced than the one
related to dryness.

This study illustrated the limitation of the default moisture
functions used for peatland forest soil C modelling. Also,
the non-monotonic Ricker function with a moisture optimum
in well-drained mineral soils needs further evaluation with
regional boreal forest data. The exact representation of the
functional form of the soil moisture dependency is character-
istic of conditions of our study, e.g. the distribution of organic
and mineral soil forests in the data. Broader extrapolation of
the conclusions, e.g. regarding climate change or forest man-
agement on drained peatlands, would require more model
testing with spatially larger data and lower water levels in
forests on organic soils. However, if the soil moisture opti-
mum of litter decomposition in forests on well-drained min-
eral soils of boreal landscapes proves to be robust, then in the
future warmer and drier climates, the boreal forest could be
expected to enhance soil C emissions to the atmosphere due
to water level drawdown of presently water-saturated peat
soils with large C stocks. In contrast, rewetting of previously
drained peatlands could be expected to reduce soil C emis-
sions, turning SOC loss to long-term C sequestration.
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nen, J., and Komarov, A.: Forest soil carbon stock estimates in a
nationwide inventory: evaluating performance of the ROMULv
and Yasso07 models in Finland, Geosci. Model Dev., 9, 4169–
4183, https://doi.org/10.5194/gmd-9-4169-2016, 2016a.

Lehtonen, A., Palviainen, M., Ojanen, P., Kalliokoski, T., Nöjd, P.,
Kukkola, M., Penttilä, T., Mäkipää, R., Leppälammi-Kujansuu,

https://doi.org/10.5194/gmd-17-5349-2024 Geosci. Model Dev., 17, 5349–5367, 2024

https://doi.org/10.5194/esd-1-1-2010
https://doi.org/10.5194/bg-14-4409-2017
https://doi.org/10.5194/bg-14-4409-2017
https://doi.org/10.5194/bg-16-1187-2019
https://doi.org/10.1046/j.1365-2486.2000.00349.x
https://doi.org/10.1002/2014GB004988
https://doi.org/10.1038/s41598-019-42629-5
https://doi.org/10.1038/s41597-023-02011-7
https://doi.org/10.1002/2013JG002535
https://doi.org/10.1111/gcb.12827
https://doi.org/10.1111/j.1365-2699.2012.02745.x
https://CRAN.R-project.org/package=BayesianTools
https://CRAN.R-project.org/package=BayesianTools
https://doi.org/10.2136/sssaj2003.1572
https://doi.org/10.1016/j.ecolmodel.2011.01.013
https://doi.org/10.5194/gmd-10-1321-2017
https://doi.org/10.5194/gmd-10-1321-2017
https://doi.org/10.1038/s41467-017-01998-z
https://doi.org/10.1038/s41467-017-01998-z
https://doi.org/10.1038/s41586-021-03325-5
https://doi.org/10.1038/s41586-021-03325-5
https://doi.org/10.1111/ejss.13149
https://www.jstor.org/stable/25661063
https://www.jstor.org/stable/25661063
https://doi.org/10.1890/12-0747.1
https://doi.org/10.1029/2000JD900259
https://doi.org/10.5194/bg-9-235-2012
https://doi.org/10.5194/bg-9-235-2012
https://doi.org/10.1088/1748-9326/ac1814
https://doi.org/10.1088/1748-9326/ac1814
https://doi.org/10.5194/hess-23-3457-2019
https://doi.org/10.5194/hess-23-3457-2019
https://doi.org/10.5194/gmd-9-4169-2016
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