Articles | Volume 17, issue 13
https://doi.org/10.5194/gmd-17-5331-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-5331-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New routine NLTE15µmCool-E v1.0 for calculating the non-local thermodynamic equilibrium (non-LTE) CO2 15 µm cooling in general circulation models (GCMs) of Earth's atmosphere
Alexander Kutepov
CORRESPONDING AUTHOR
Physics Department, The Catholic University of America, Washington, DC, USA
Artem Feofilov
LMD/IPSL, Sorbonne Université, UPMC Univ Paris 06, CNRS, École polytechnique, Palaiseau, 91128, France
Related authors
Konstantinos S. Kalogerakis, Daniel Matsiev, Philip C. Cosby, James A. Dodd, Stefano Falcinelli, Jonas Hedin, Alexander A. Kutepov, Stefan Noll, Peter A. Panka, Constantin Romanescu, and Jérôme E. Thiebaud
Ann. Geophys., 36, 13–24, https://doi.org/10.5194/angeo-36-13-2018, https://doi.org/10.5194/angeo-36-13-2018, 2018
Short summary
Short summary
The question of whether mesospheric rotational population distributions of vibrationally excited OH are in equilibrium with the local kinetic temperature has been debated over several decades. We examine the relationship of multi-quantum relaxation pathways with the behavior exhibited by OH(v) rotational population distributions and find that the effective rotational temperatures of mesospheric OH(v) deviate from local thermodynamic equilibrium for all observed vibrational levels.
Peter A. Panka, Alexander A. Kutepov, Konstantinos S. Kalogerakis, Diego Janches, James M. Russell, Ladislav Rezac, Artem G. Feofilov, Martin G. Mlynczak, and Erdal Yiğit
Atmos. Chem. Phys., 17, 9751–9760, https://doi.org/10.5194/acp-17-9751-2017, https://doi.org/10.5194/acp-17-9751-2017, 2017
Short summary
Short summary
Recently, theoretical and laboratory studies have suggested an additional
nighttime channel of transfer of vibrational energy of OH molecules to CO2 in the
mesosphere and lower thermosphere (MLT). We show that new mechanism brings
modelled 4.3 μm emissions very close to the SABER/TIMED measurements. This
renders new opportunities for the application of the CO2 4.3 μm observations in
the study of the energetics and dynamics of the nighttime MLT.
Alexander A. Kutepov, Ladislav Rezac, and Artem G. Feofilov
Atmos. Meas. Tech., 10, 265–271, https://doi.org/10.5194/amt-10-265-2017, https://doi.org/10.5194/amt-10-265-2017, 2017
Short summary
Short summary
We show that the long-standing discrepancy between observed and calculated spectra of the PFS/MEx in the cores and wings of 4.3-micron region is explained by the non-thermal rotational distribution of molecules in the upper vibrational states of second hot (SH) CO2 bands above 90 km altitude. We
discuss the implications that accounting for this effect has for developing operational algorithms aimed at massive processing of PFS and other instrument limb observations.
Artem G. Feofilov, Hélène Chepfer, Vincent Noël, and Frederic Szczap
Atmos. Meas. Tech., 16, 3363–3390, https://doi.org/10.5194/amt-16-3363-2023, https://doi.org/10.5194/amt-16-3363-2023, 2023
Short summary
Short summary
The response of clouds to human-induced climate warming remains the largest source of uncertainty in model predictions of climate. We consider cloud retrievals from spaceborne observations, the existing CALIOP lidar and future ATLID lidar; show how they compare for the same scenes; and discuss the advantage of adding a new lidar for detecting cloud changes in the long run. We show that ATLID's advanced technology should allow for better detecting thinner clouds during daytime than before.
Marine Bonazzola, Hélène Chepfer, Po-Lun Ma, Johannes Quaas, David M. Winker, Artem Feofilov, and Nick Schutgens
Geosci. Model Dev., 16, 1359–1377, https://doi.org/10.5194/gmd-16-1359-2023, https://doi.org/10.5194/gmd-16-1359-2023, 2023
Short summary
Short summary
Aerosol has a large impact on climate. Using a lidar aerosol simulator ensures consistent comparisons between modeled and observed aerosol. We present a lidar aerosol simulator that applies a cloud masking and an aerosol detection threshold. We estimate the lidar signals that would be observed at 532 nm by the Cloud-Aerosol Lidar with Orthogonal Polarization overflying the atmosphere predicted by a climate model. Our comparison at the seasonal timescale shows a discrepancy in the Southern Ocean.
Assia Arouf, Hélène Chepfer, Thibault Vaillant de Guélis, Marjolaine Chiriaco, Matthew D. Shupe, Rodrigo Guzman, Artem Feofilov, Patrick Raberanto, Tristan S. L'Ecuyer, Seiji Kato, and Michael R. Gallagher
Atmos. Meas. Tech., 15, 3893–3923, https://doi.org/10.5194/amt-15-3893-2022, https://doi.org/10.5194/amt-15-3893-2022, 2022
Short summary
Short summary
We proposed new estimates of the surface longwave (LW) cloud radiative effect (CRE) derived from observations collected by a space-based lidar on board the CALIPSO satellite and radiative transfer computations. Our estimate appropriately captures the surface LW CRE annual variability over bright polar surfaces, and it provides a dataset more than 13 years long.
Artem G. Feofilov, Hélène Chepfer, Vincent Noël, Rodrigo Guzman, Cyprien Gindre, Po-Lun Ma, and Marjolaine Chiriaco
Atmos. Meas. Tech., 15, 1055–1074, https://doi.org/10.5194/amt-15-1055-2022, https://doi.org/10.5194/amt-15-1055-2022, 2022
Short summary
Short summary
Space-borne lidars have been providing invaluable information of atmospheric optical properties since 2006, and new lidar missions are on the way to ensure continuous observations. In this work, we compare the clouds estimated from space-borne ALADIN and CALIOP lidar observations. The analysis of collocated data shows that the agreement between the retrieved clouds is good up to 3 km height. Above that, ALADIN detects 40 % less clouds than CALIOP, except for polar stratospheric clouds (PSCs).
Artem G. Feofilov and Claudia J. Stubenrauch
Atmos. Chem. Phys., 19, 13957–13972, https://doi.org/10.5194/acp-19-13957-2019, https://doi.org/10.5194/acp-19-13957-2019, 2019
Short summary
Short summary
Clouds play an important role in the energy budget of the planet: optically thick clouds reflect the incoming solar radiation leading to cooling of the Earth, while thinner clouds act as
greenhouse filmspreventing escape of the Earth’s infrared radiation to space. Satellite observations provide a continuous survey of clouds over the whole globe. In this work, we use a combination of two space-borne sounders to retrieve and analyse the characteristics of diurnal variation of high-level clouds.
Konstantinos S. Kalogerakis, Daniel Matsiev, Philip C. Cosby, James A. Dodd, Stefano Falcinelli, Jonas Hedin, Alexander A. Kutepov, Stefan Noll, Peter A. Panka, Constantin Romanescu, and Jérôme E. Thiebaud
Ann. Geophys., 36, 13–24, https://doi.org/10.5194/angeo-36-13-2018, https://doi.org/10.5194/angeo-36-13-2018, 2018
Short summary
Short summary
The question of whether mesospheric rotational population distributions of vibrationally excited OH are in equilibrium with the local kinetic temperature has been debated over several decades. We examine the relationship of multi-quantum relaxation pathways with the behavior exhibited by OH(v) rotational population distributions and find that the effective rotational temperatures of mesospheric OH(v) deviate from local thermodynamic equilibrium for all observed vibrational levels.
Martin Stengel, Stefan Stapelberg, Oliver Sus, Cornelia Schlundt, Caroline Poulsen, Gareth Thomas, Matthew Christensen, Cintia Carbajal Henken, Rene Preusker, Jürgen Fischer, Abhay Devasthale, Ulrika Willén, Karl-Göran Karlsson, Gregory R. McGarragh, Simon Proud, Adam C. Povey, Roy G. Grainger, Jan Fokke Meirink, Artem Feofilov, Ralf Bennartz, Jedrzej S. Bojanowski, and Rainer Hollmann
Earth Syst. Sci. Data, 9, 881–904, https://doi.org/10.5194/essd-9-881-2017, https://doi.org/10.5194/essd-9-881-2017, 2017
Short summary
Short summary
We present new cloud property datasets based on measurements from the passive imaging satellite sensors AVHRR, MODIS, ATSR2, AATSR and MERIS. Retrieval systems were developed that include cloud detection and cloud typing followed by optimal estimation retrievals of cloud properties (e.g. cloud-top pressure, effective radius, optical thickness, water path). Special features of all datasets are spectral consistency and rigorous uncertainty propagation from pixel-level data to monthly properties.
Claudia J. Stubenrauch, Artem G. Feofilov, Sofia E. Protopapadaki, and Raymond Armante
Atmos. Chem. Phys., 17, 13625–13644, https://doi.org/10.5194/acp-17-13625-2017, https://doi.org/10.5194/acp-17-13625-2017, 2017
Short summary
Short summary
We present multi-year cloud climatologies from the advanced IR sounders AIRS and IASI. These data are particularly sensitive to cirrus. Cloud emissivity allows to distinguish between high opaque, thick cirrus and thin cirrus. By comparing tropical geographical change patterns of these cloud types with respect to changing tropical mean surface temperature, it is demonstrated that their response to climate change may be different, with potential consequences on the atmospheric circulation.
Peter A. Panka, Alexander A. Kutepov, Konstantinos S. Kalogerakis, Diego Janches, James M. Russell, Ladislav Rezac, Artem G. Feofilov, Martin G. Mlynczak, and Erdal Yiğit
Atmos. Chem. Phys., 17, 9751–9760, https://doi.org/10.5194/acp-17-9751-2017, https://doi.org/10.5194/acp-17-9751-2017, 2017
Short summary
Short summary
Recently, theoretical and laboratory studies have suggested an additional
nighttime channel of transfer of vibrational energy of OH molecules to CO2 in the
mesosphere and lower thermosphere (MLT). We show that new mechanism brings
modelled 4.3 μm emissions very close to the SABER/TIMED measurements. This
renders new opportunities for the application of the CO2 4.3 μm observations in
the study of the energetics and dynamics of the nighttime MLT.
Sofia E. Protopapadaki, Claudia J. Stubenrauch, and Artem G. Feofilov
Atmos. Chem. Phys., 17, 3845–3859, https://doi.org/10.5194/acp-17-3845-2017, https://doi.org/10.5194/acp-17-3845-2017, 2017
Short summary
Short summary
Upper tropospheric clouds cover about 30 % of the Earth and play a key role in the climate system by modulating the Earth's energy budget and heat transport. In this article, we study upper tropospheric cloud systems using cloud properties deduced from infrared sounders. Our analyses show that the size of the systems as well as the fraction of thin cirrus over the total anvil area increases with increasing convective depth.
Alexander A. Kutepov, Ladislav Rezac, and Artem G. Feofilov
Atmos. Meas. Tech., 10, 265–271, https://doi.org/10.5194/amt-10-265-2017, https://doi.org/10.5194/amt-10-265-2017, 2017
Short summary
Short summary
We show that the long-standing discrepancy between observed and calculated spectra of the PFS/MEx in the cores and wings of 4.3-micron region is explained by the non-thermal rotational distribution of molecules in the upper vibrational states of second hot (SH) CO2 bands above 90 km altitude. We
discuss the implications that accounting for this effect has for developing operational algorithms aimed at massive processing of PFS and other instrument limb observations.
A. G. Feofilov, C. J. Stubenrauch, and J. Delanoë
Atmos. Chem. Phys., 15, 12327–12344, https://doi.org/10.5194/acp-15-12327-2015, https://doi.org/10.5194/acp-15-12327-2015, 2015
Short summary
Short summary
We discuss the shape of ice water content (IWC) vertical profiles in high ice clouds and its effect on radiative properties of these clouds, both in short- and in long-wave bands (SW and LW). We suggest a set of primitive shapes (rectangular, isosceles trapezoid, lower and upper triangle) and propose a statistical parameterization using ice water path (IWP) as a single parameter. We estimate and explain simulated differences in LW/SW atmospheric radiances for suggested IWC shapes.
Related subject area
Solar-terrestrial science
Physics-motivated cell-octree adaptive mesh refinement in the Vlasiator 5.3 global hybrid-Vlasov code
Daily INSOLation (DINSOL-v1.0): an intuitive tool for classrooms and specifying solar radiation boundary conditions
SSolar-GOA v1.0: a simple, fast, and accurate Spectral SOLAR radiative transfer model for clear skies
Application of CCM SOCOL-AERv2-BE to cosmogenic beryllium isotopes: description and validation for polar regions
UBER v1.0: a universal kinetic equation solver for radiation belts
Azimuthal averaging–reconstruction filtering techniques for finite-difference general circulation models in spherical geometry
Improved forecasting of thermospheric densities using multi-model ensembles
Accounting for anthropic energy flux of traffic in winter urban road surface temperature simulations with the TEB model
Calculations of the integral invariant coordinates I and L* in the magnetosphere and mapping of the regions where I is conserved, using a particle tracer (ptr3D v2.0), LANL*, SPENVIS, and IRBEM
A simple parameterization of the short-wave aerosol optical properties for surface direct and diffuse irradiances assessment in a numerical weather model
Verification of SpacePy's radial diffusion radiation belt model
LANL*V2.0: global modeling and validation
Leo Kotipalo, Markus Battarbee, Yann Pfau-Kempf, and Minna Palmroth
Geosci. Model Dev., 17, 6401–6413, https://doi.org/10.5194/gmd-17-6401-2024, https://doi.org/10.5194/gmd-17-6401-2024, 2024
Short summary
Short summary
This paper examines a method called adaptive mesh refinement in optimization of the space plasma simulation model Vlasiator. The method locally adjusts resolution in regions which are most relevant to modelling, based on the properties of the plasma. The runs testing this method show that adaptive refinement manages to highlight the desired regions with manageable performance overhead. Performance in larger-scale production runs and mitigation of overhead are avenues of further research.
Emerson D. Oliveira
Geosci. Model Dev., 16, 2371–2390, https://doi.org/10.5194/gmd-16-2371-2023, https://doi.org/10.5194/gmd-16-2371-2023, 2023
Short summary
Short summary
Based on the Milankovitch cycle theory, the Daily INSOLation (DINSOL-v1.0) program simulates the incoming solar radiation at the top of the atmosphere, such as the PMIP boundary conditions. Still, users can simulate hypothetical cases by freely setting the Earth's orbital parameters. The program is recommended for educational purposes (from a user-friendly interface) or to prepare data for simplified climate models (from command lines). The program is supported on Linux and Windows.
Victoria Eugenia Cachorro, Juan Carlos Antuña-Sanchez, and Ángel Máximo de Frutos
Geosci. Model Dev., 15, 1689–1712, https://doi.org/10.5194/gmd-15-1689-2022, https://doi.org/10.5194/gmd-15-1689-2022, 2022
Short summary
Short summary
This work describes the features of a simple, fast, accurate, and physically based spectral radiative transfer model (SSolar-GOA) in the solar wavelength range under clear skies. The model is intended for a wide community of users for many different applications, was designed to be easily replicated, and has sufficient accuracy. The validation of the model was carried out through extensive comparison with simulated spectra from the LibRadtran and with direct and global spectral measurements.
Kseniia Golubenko, Eugene Rozanov, Gennady Kovaltsov, Ari-Pekka Leppänen, Timofei Sukhodolov, and Ilya Usoskin
Geosci. Model Dev., 14, 7605–7620, https://doi.org/10.5194/gmd-14-7605-2021, https://doi.org/10.5194/gmd-14-7605-2021, 2021
Short summary
Short summary
A new full 3-D time-dependent model, based on SOCOL-AERv2, of beryllium atmospheric production, transport, and deposition has been developed and validated using directly measured data. The model is recommended to be used in studies related to, e.g., atmospheric dynamical patterns, extreme solar particle storms, long-term solar activity reconstruction from cosmogenic proxy data, and solar–terrestrial relations.
Liheng Zheng, Lunjin Chen, Anthony A. Chan, Peng Wang, Zhiyang Xia, and Xu Liu
Geosci. Model Dev., 14, 5825–5842, https://doi.org/10.5194/gmd-14-5825-2021, https://doi.org/10.5194/gmd-14-5825-2021, 2021
Short summary
Short summary
Earth’s Van Allen belts are studied by solving particular kinds of equations that could be notoriously difficult when different physical processes are acting together. In this article, we describe a numerical code that can solve these equations with unprecedented freedom from the numerous restrictions of existing models, even the ones that no other can solve. The abilities of our code could mean a breakthrough in Van Allen belt studies from the diffusive into the non-diffusive transport regime.
Tong Dang, Binzheng Zhang, Jiuhou Lei, Wenbin Wang, Alan Burns, Han-li Liu, Kevin Pham, and Kareem A. Sorathia
Geosci. Model Dev., 14, 859–873, https://doi.org/10.5194/gmd-14-859-2021, https://doi.org/10.5194/gmd-14-859-2021, 2021
Short summary
Short summary
This paper describes a numerical treatment (ring average) to relax the time step in finite-difference schemes when using spherical and cylindrical coordinates with axis singularities. The ring average is used to develop a high-resolution thermosphere–ionosphere coupled community model. The technique is a significant improvement in space weather modeling capability, and it can also be adapted to more general finite-difference solvers for hyperbolic equations in spherical and polar geometries.
Sean Elvidge, Humberto C. Godinez, and Matthew J. Angling
Geosci. Model Dev., 9, 2279–2292, https://doi.org/10.5194/gmd-9-2279-2016, https://doi.org/10.5194/gmd-9-2279-2016, 2016
Short summary
Short summary
This paper presents the first known application of multi-model ensembles to the forecasting of the thermosphere. A multi-model ensemble (MME) is a method for combining different, independent models. The main advantage of using an MME is to reduce the effect of model errors and bias, since it is expected that the model errors will, at least partly, cancel. This paper shows that use of MMEs for forecasting thermospheric densities can reduce errors by 60 %.
A. Khalifa, M. Marchetti, L. Bouilloud, E. Martin, M. Bues, and K. Chancibaut
Geosci. Model Dev., 9, 547–565, https://doi.org/10.5194/gmd-9-547-2016, https://doi.org/10.5194/gmd-9-547-2016, 2016
Short summary
Short summary
An experimental study was conducted to quantify the anthropic energy flux of traffic impact on RST in the winter season. It indicated an RST increase by 1 °C to 3 °C with respect to the absence of traffic. Additional work was undertaken so as to evaluate to which extent an accurate description of traffic might improve the TEB numerical model when dedicated to RST simulations. Two approaches to traffic integration in this model were detailed and tested.
K. Konstantinidis and T. Sarris
Geosci. Model Dev., 8, 2967–2975, https://doi.org/10.5194/gmd-8-2967-2015, https://doi.org/10.5194/gmd-8-2967-2015, 2015
Short summary
Short summary
The 2nd & 3rd adiabatic invariants (in particular their proxies I & L*) are commonly used to characterize charged particle motion in a magnetic field. However care should be taken when calculating them, as the assumption of their conservation is not valid everywhere in the Earth’s magnetosphere. In this paper we compare calculations of I and L* using LANLstar, SPENVIS, IRBEM and a 3D particle tracer, and we map the areas in the Earth’s magnetosphere where I & L* can be assumed to be conserved.
J. A. Ruiz-Arias, J. Dudhia, and C. A. Gueymard
Geosci. Model Dev., 7, 1159–1174, https://doi.org/10.5194/gmd-7-1159-2014, https://doi.org/10.5194/gmd-7-1159-2014, 2014
D. T. Welling, J. Koller, and E. Camporeale
Geosci. Model Dev., 5, 277–287, https://doi.org/10.5194/gmd-5-277-2012, https://doi.org/10.5194/gmd-5-277-2012, 2012
J. Koller and S. Zaharia
Geosci. Model Dev., 4, 669–675, https://doi.org/10.5194/gmd-4-669-2011, https://doi.org/10.5194/gmd-4-669-2011, 2011
Cited articles
Acuña, L., Deleuil, M., Mousis, O., Marcq, E., Levesque, M., and Aguichine, A.: Characterisation of the hydrospheres of TRAPPIST-1 planets, Astron. Astrophys., 647, A53, https://doi.org/10.1051/0004-6361/202039885, 2021. a
Akmaev, R. A. and Shved, G. M.: Parameterization of the radiative flux divergence in the 15 µm CO2 band in the 30–75 km layer, J. Atmos. Terr. Phys., 44, 993–1004, https://doi.org/10.1016/0021-9169(82)90064-2, 1982. a
Appleby, J. F.: CH4 nonlocal thermodynamic equilibrium in the atmospheres of the giant planets, ICARUS, 85, 355–379, https://doi.org/10.1016/0019-1035(90)90123-Q, 1990. a
Avrett, E. H.: Source-Function Equality in Multiplets, Astrophys. J., 144, 59, https://doi.org/10.1086/148589, 1966. a
Berger, U.: Modeling of middle atmosphere dynamics with LIMA, J. Atmos. Solar-Terr. Phys., 70, 1170–1200, https://doi.org/10.1016/j.jastp.2008.02.004, 2008. a
Bougher, S. W., Hunten, D. M., and Roble, R. G.: CO2 cooling in terrestrial planet thermospheres, J. Geophys. Res., 99, 14609–14622, https://doi.org/10.1029/94JE01088, 1994. a, b
Castle, K. J., Black, L. A., Simione, M. W., and Dodd, J. A.: Vibrational relaxation of CO2(ν2) by O(3P) in the 142–490 K temperature range, J. Geophys. Res.-Space, 117, A04310, https://doi.org/10.1029/2012JA017519, 2012. a
Curtis, A. R. and Goody, R. M.: Thermal Radiation in the Upper Atmosphere, Proc. R. Soc. Lon. Ser. A, 236, 193–206, https://doi.org/10.1098/rspa.1956.0128, 1956. a
Eckermann, D.: Matrix parameterization of the 15 µm CO2 band cooling in the middle and upper atmosphere for variable CO2 concentration, J. Geophys. Res.-Space, 128, e2022JA030956, https://doi.org/10.1029/2022JA030956, 2023. a
Feofilov, A. G., Kutepov, A. A., Pesnell, W. D., Goldberg, R. A., Marshall, B. T., Gordley, L. L., García-Comas, M., López-Puertas, M., Manuilova, R. O., Yankovsky, V. A., Petelina, S. V., and Russell III, J. M.: Daytime SABER/TIMED observations of water vapor in the mesosphere: retrieval approach and first results, Atmos. Chem. Phys., 9, 8139–8158, https://doi.org/10.5194/acp-9-8139-2009, 2009. a, b
Feofilov, A. G., Kutepov, A. A., She, C.-Y., Smith, A. K., Pesnell, W. D., and Goldberg, R. A.: CO2(ν2)-O quenching rate coefficient derived from coincidental SABER/TIMED and Fort Collins lidar observations of the mesosphere and lower thermosphere, Atmos. Chem. Phys., 12, 9013–9023, https://doi.org/10.5194/acp-12-9013-2012, 2012. a
Feofilov, A., Rezac, L., Kutepov, A., Vinatier, S., Rey, M., Nikitin, A., and Tyuterev, V.: Non-LTE diagnositics of infrared radiation of Titan's atmosphere, in: Titan Aeronomy and Climate, 2 pp., https://ui.adsabs.harvard.edu/abs/2016tac..confE...2F (last access: 1 July 2024)), 2016. a
Fomichev, V. I.: The radiative energy budget of the middle atmosphere and its parameterization in general circulation models, J. Atmos. Sol.-Terr. Phy., 71, 1577–1585, https://doi.org/10.1016/j.jastp.2009.04.007, 2009. a, b
Fomichev, V. I., Kutepov, A. A., Akmaev, R. A., and Shved, G. M.: Parameterization of the 15-micron CO2 band cooling in the middle atmosphere (15–115 km), J. Atmos. Terr. Phys., 55, 7–18, https://doi.org/10.1016/0021-9169(93)90149-S, 1993. a, b, c
Frisch, H.: Radiative Transfer. An Introduction to Exact and Asymptotic Methods, Springer, https://doi.org/10.1007/978-3-030-95247-1, 2022. a
Frisch, U. and Frisch, H.: Non-LTE Transfer. Revisited, Mon. Not. R. Astron. Soc., 173, 167–182, https://doi.org/10.1093/mnras/173.1.167, 1975. a
Fu, Q. and Liou, K. N.: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres, J. Atmos. Sci., 49, 2139–2156, https://doi.org/10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2, 1992. a
Funke, B., López-Puertas, M., García-Comas, M., Kaufmann, M., Höpfner, M., and Stiller, G. P.: GRANADA: A Generic RAdiative traNsfer AnD non-LTE population algorithm, J. Quant. Spectrosc. Ra., 113, 1771–1817, https://doi.org/10.1016/j.jqsrt.2012.05.001, 2012. a, b
Gettelman, A., Mills, M. J., Kinnison, D. E., Garcia, R. R., Smith, A. K., Marsh, D. R., Tilmes, S., Vitt, F., Bardeen, C. G., McInerny, J., Liu, H. L., Solomon, S. C., Polvani, L. M., Emmons, L. K., Lamarque, J. F., Richter, J. H., Glanville, A. S., Bacmeister, J. T., Phillips, A. S., Neale, R. B., Simpson, I. R., DuVivier, A. K., Hodzic, A., and Randel, W. J.: The Whole Atmosphere Community Climate Model Version 6 (WACCM6), J. Geophys. Res.-Atmos., 124, 12380–12403, https://doi.org/10.1029/2019JD030943, 2019. a
Gordon, I. E., Rothman, L. S., Hill, C., Kochanov, R. V., Tan, Y., Bernath, P. F., Birk, M., Boudon, V., Campargue, A., Chance, K. V., Drouin, B. J., Flaud, J. M., Gamache, R. R., Hodges, J. T., Jacquemart, D., Perevalov, V. I., Perrin, A., Shine, K. P., Smith, M. A. H., Tennyson, J., Toon, G. C., Tran, H., Tyuterev, V. G., Barbe, A., Császár, A. G., Devi, V. M., Furtenbacher, T., Harrison, J. J., Hartmann, J. M., Jolly, A., Johnson, T. J., Karman, T., Kleiner, I., Kyuberis, A. A., Loos, J., Lyulin, O. M., Massie, S. T., Mikhailenko, S. N., Moazzen-Ahmadi, N., Müller, H. S. P., Naumenko, O. V., Nikitin, A. V., Polyansky, O. L., Rey, M., Rotger, M., Sharpe, S. W., Sung, K., Starikova, E., Tashkun, S. A., Auwera, J. V., Wagner, G., Wilzewski, J., Wcisło, P., Yu, S., and Zak, E. J.: The HITRAN2016 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 203, 3–69, https://doi.org/10.1016/j.jqsrt.2017.06.038, 2017. a
Hartogh, P., Medvedev, A. S., Kuroda, T., Saito, R., Villanueva, G., Feofilov, A. G., Kutepov, A. A., and Berger, U.: Description and climatology of a new general circulation model of the Martian atmosphere, J. Geophys. Res.-Planet., 110, E11008, https://doi.org/10.1029/2005JE002498, 2005. a
Hubeny, I. and Lanz, T.: Non-LTE Line-blanketed Model Atmospheres of Hot Stars. I. Hybrid Complete Linearization/Accelerated Lambda Iteration Method, Astrophys. J., 439, 875, https://doi.org/10.1086/175226, 1995. a
Kutepov, A. A.: Community Comment 1, Comment on egusphere-2023-2424, https://egusphere.copernicus.org/preprints/2023/egusphere-2023-2424/egusphere-2023-2424-CC1-supplement.pdf (last access: 1 July 2024), 2023. a
Kutepov, A. and Feofilov, A.: A new routine for calculating 15um CO2 cooling in the mesosphere and lower thermosphere (1.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.8005028, 2023. a, b
Kutepov, A. A. and Fomichev, V. I.: Application of the second-order escape probability approximation to the solution of the NLTE vibration-rotational band radiative transfer problem., J. Atmos. Terr. Phys., 55, 1–6, https://doi.org/10.1016/0021-9169(93)90148-R, 1993. a
Kutepov, A. A. and Shved, G. M.: Radiative transfer in the 15-micron CO2 band with the breakdown of local thermodynamic equilibrium in the earth's atmosphere, Academy of Sciences, USSR, Izvestiya, Atmospheric and Oceanic Physics. Translation., 14, 18–30, 1978. a
Kutepov, A. A., Kunze, D., Hummer, D. G., and Rybicki, G. B.: The solution of radiative transfer problems in molecular bands without the LTE assumption by accelerated lambda iteration methods, J. Quant. Spectrosc. Ra., 46, 347–365, https://doi.org/10.1016/0022-4073(91)90038-R, 1991. a
Kutepov, A. A., Oelhaf, H., and Fischer, H.: Non-LTE radiative transfer in the 4.7 and 2.3 µm bands of CO: Vibration-rotational non-LTE and its effects on limb radiance , J. Quant. Spectrosc. Ra., 57, 317–339, https://doi.org/10.1016/S0022-4073(96)00142-2, 1997. a
Kutepov, A. A., Gusev, O. A., and Ogibalov, V. P.: Solution of the non-LTE problem for molecular gas in planetary atmospheres: superiority of accelerated lambda iteration., J. Quant. Spectrosc. Ra., 60, 199–220, https://doi.org/10.1016/S0022-4073(97)00167-2, 1998. a, b, c, d, e, f, g, h, i, j, k, l, m
Kutepov, A. A., Feofilov, A. G., Marshall, B. T., Gordley, L. L., Pesnell, W. D., Goldberg, R. A., and Russell, J. M.: SABER temperature observations in the summer polar mesosphere and lower thermosphere: Importance of accounting for the CO2 ν2 quanta V-V exchange, Geophys. Res. Lett., 33, L21809, https://doi.org/10.1029/2006GL026591, 2006. a, b
Kutepov, A. A., Feofilov, A. G., Medvedev, A. S., Pauldrach, A. W. A., and Hartogh, P.: Small-scale temperature fluctuations associated with gravity waves cause additional radiative cooling of mesopause the region, Geophys. Res. Lett., 34, L24807, https://doi.org/10.1029/2007GL032392, 2007. a
Kutepov, A., Vinatier, S., Feofilov, A., Nixon, C., and Boursier, C.: Non-LTE diagnostics of CIRS observations of the Titan's mesosphere, in: AAS/Division for Planetary Sciences Meeting Abstracts #45, vol. 45 of AAS/Division for Planetary Sciences Meeting Abstracts, p. 72, abstract 207.05, https://aas.org/sites/default/files/2020-02/DPS_45_Abstract_Book.pdf (last access: 1 July 2024), 2013a. a
Kutepov, A. A., Feofilov, A. G., Medvedev, A. S., Berger, U., Kaufmann, M., and Pauldrach, A. W. A.: Infra-red Radiative Cooling/Heating of the Mesosphere and Lower Thermosphere Due to the Small-Scale Temperature Fluctuations Associated with Gravity Waves, Springer Netherlands, Dordrecht, 429–442, ISBN 978-94-007-4348-9, https://doi.org/10.1007/978-94-007-4348-9_23, 2013b. a, b
Kutepov, A. A., Rezac, L., and Feofilov, A. G.: Evidence of a significant rotational non-LTE effect in the CO2 4.3 µm PFS-MEX limb spectra, Atmos. Meas. Tech., 10, 265–271, https://doi.org/10.5194/amt-10-265-2017, 2017. a
Manuilova, R. O., Gusev, O. A., Kutepov, A. A., von Clarmann, T., Oelhaf, H., Stiller, G. P., Wegner, A., López Puertas, M., Martín-Torres, F. J., Zaragoza, G., and Flaud, J. M.: Modelling of non-LTE limb radiance spectra of IR ozone bands for the MIPAS space experiment, J. Quant. Spectrosc. Ra., 59, 405–422, https://doi.org/10.1016/S0022-4073(97)00120-9, 1998. a
Medvedev, A. S., González-Galindo, F., Yiǧit, E., Feofilov, A. G., Forget, F., and Hartogh, P.: Cooling of the Martian thermosphere by CO2 radiation and gravity waves: An intercomparison study with two general circulation models, J. Geophys. Res.-Planet., 120, 913–927, https://doi.org/10.1002/2015JE004802, 2015. a
Ogibalov, V. P. and Fomichev, V. I.: Parameterization of solar heating by the near IR CO2 bands in the mesosphere, Adv. Space Res., 32, 759–764, https://doi.org/10.1016/S0273-1177(03)80069-8, 2003. a, b, c
Ogibalov, V. P., Kutepov, A. A., and Shved, G. M.: Non-local thermodynamic equilibrium in CO2 in the middle atmosphere. II. Populations in the ν1ν2 mode manifold states, J. Atmos. Sol.-Terr. Phy., 60, 315–329, https://doi.org/10.1016/S1364-6826(97)00077-1, 1998. a
Panka, P. A., Kutepov, A. A., Kalogerakis, K. S., Janches, D., Russell, J. M., Rezac, L., Feofilov, A. G., Mlynczak, M. G., and Yiğit, E.: Resolving the mesospheric nighttime 4.3 µm emission puzzle: comparison of the CO2(ν3) and OH(ν) emission models, Atmos. Chem. Phys., 17, 9751–9760, https://doi.org/10.5194/acp-17-9751-2017, 2017. a
Panka, P. A., Kutepov, A. A., Rezac, L., Kalogerakis, K. S., Feofilov, A. G., Marsh, D., Janches, D., and Yiğit, Erdal: Atomic Oxygen Retrieved From the SABER 2.0- and 1.6 µm Radiances Using New First-Principles Nighttime OH(ν) Model, Geophys. Res. Lett., 45, 5798–5803, https://doi.org/10.1029/2018GL077677, 2018. a
Panka, P. A., Kutepov, A. A., Zhu, Y., Kaufmann, M., Kalogerakis, K. S., Rezac, L., Feofilov, A. G., Marsh, D. R., and Janches, D.: Simultaneous Retrievals of Nighttime O(3P) and Total OH Densities From Satellite Observations of Meinel Band Emissions, Geophys. Res. Lett., 48, e91053, https://doi.org/10.1029/2020GL091053, 2020. a
Pollock, D. S., Scott, G. B. I., and Phillips, L. F.: Rate constant for quenching of CO2(010) by atomic oxygen, Geophys. Res. Lett., 20, 727–729, https://doi.org/10.1029/93GL01016, 1993. a
Press, W. H., Teukolsky, S. A., Vetterling, W. T., , and Flannery, B. P.: Numerical Recipes: The Art of Scientific Coputing, Cambridge University Press, ISBN 978-0-521-88407-5, https://doi.org/10.1142/S0218196799000199, 2002. a
Rezac, L., Kutepov, A., Russell, J. M., Feofilov, A. G., Yue, J., and Goldberg, R. A.: Simultaneous retrieval of T(p) and CO2 VMR from two-channel non-LTE limb radiances and application to daytime SABER/TIMED measurements, J. Atmos. Sol.-Terr. Phy., 130, 23–42, https://doi.org/10.1016/j.jastp.2015.05.004, 2015. a
Rybicki, G. B. and Hummer, D. G.: An accelerated lambda iteration method for multilevel radiative transfer. II. Overlapping transitions with full continuum., Astron. Astrophys., 262, 209–215, 1992. a
Sharma, R. D. and Wintersteiner, P. P.: Role of carbon dioxide in cooling planetary thermospheres, Geophys. Res. Lett., 17, 2201–2204, https://doi.org/10.1029/GL017i012p02201, 1990. a
Shved, G. M., Kutepov, A. A., and Ogibalov, V. P.: Non-local thermodynamic equilibrium in CO2 in the middle atmosphere. I. Input data and populations of the ν3 mode manifold states , J. Atmos. Sol.-Terr. Phy., 60, 289–314, https://doi.org/10.1016/S1364-6826(97)00076-X, 1998. a, b, c
Unsöld, A.: Physik der Sternatmosphären, Springer, Berlin, ISBN 978-3-642-50445-7, https://doi.org/10.1007/978-3-642-50754-0, 1938. a
Valencia, D., Sasselov, D. D., and O'Connell, R. J.: Radius and Structure Models of the First Super-Earth Planet, Astrophys. J., 656, 545–551, https://doi.org/10.1086/509800, 2007. a
Wintersteiner, P. P., Picard, R. H., Sharma, R. D., Winick, J. R., and Joseph, R. A.: Line-by-Line Radiative Excitation Model for the Non-Equilibrium Atmosphere: Application to CO2 15-µm Emission, J. Geophys. Res.-Atmos., 97, 18083–18117, https://doi.org/10.1029/92JD01494, 1992. a
Yudin, V., Goncharenko, L., Karol, S., and Harvey, L.: Perturbations of Global Wave Dynamics During Stratospheric Warming Events of the Solar Cycle 24, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6009, https://doi.org/10.5194/egusphere-egu2020-6009, 2020. a
Yudin, V., Goncharenko, L., Karol, S., Lieberman, R., Liu, H., McInerney, J., and Pedatella, N.: Global Teleconnections between QBO Dynamics and ITM Anomalies, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3552, https://doi.org/10.5194/egusphere-egu22-3552, 2022. a, b
Zhu, X.: Carbon dioxide 15-micron band cooling rates in the upper middle atmosphere calculated by Curtis matrix interpolation, J. Atmos. Sci., 47, 755–774, https://doi.org/10.1175/1520-0469(1990)047<0755:CDBCRI>2.0.CO;2, 1990. a
Short summary
Infrared CO2 cooling of the middle and upper atmosphere is increasing. We developed a new routine for very fast and accurate calculations of this cooling in general circulation models. The new algorithm accounts for non-local thermodynamic equilibrium and is about 1000 times faster than the standard matrix algorithms. It is based on advanced techniques for non-equilibrium emission calculations in stellar atmospheres, which so far have not been used in Earth’s and planetary atmospheres.
Infrared CO2 cooling of the middle and upper atmosphere is increasing. We developed a new...