Articles | Volume 17, issue 13
https://doi.org/10.5194/gmd-17-5331-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-5331-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New routine NLTE15µmCool-E v1.0 for calculating the non-local thermodynamic equilibrium (non-LTE) CO2 15 µm cooling in general circulation models (GCMs) of Earth's atmosphere
Alexander Kutepov
CORRESPONDING AUTHOR
Physics Department, The Catholic University of America, Washington, DC, USA
Artem Feofilov
LMD/IPSL, Sorbonne Université, UPMC Univ Paris 06, CNRS, École polytechnique, Palaiseau, 91128, France
Related authors
No articles found.
Zacharie Titus, Marine Bonazzola, Hélène Chepfer, Artem Feofilov, Marie-Laure Roussel, Benjamin Witschas, and Sophie Bastin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2065, https://doi.org/10.5194/egusphere-2025-2065, 2025
Short summary
Short summary
Aeolus spaceborne Doppler Wind Lidar observes perfectly co-located vertical profiles of clouds and vertical profiles of horizontal wind that can be used to study cloud-wind interactions. At regional scale, we show that over the Indian Ocean, high cloud fractions increase when the Tropical Easterly Jet is active. At a smaller scale, we observe for the first time from space differences in the wind profiles within the cloud and its surrounding clear sky, that can be imputed to convective motions.
Artem G. Feofilov, Hélène Chepfer, Vincent Noël, and Frederic Szczap
Atmos. Meas. Tech., 16, 3363–3390, https://doi.org/10.5194/amt-16-3363-2023, https://doi.org/10.5194/amt-16-3363-2023, 2023
Short summary
Short summary
The response of clouds to human-induced climate warming remains the largest source of uncertainty in model predictions of climate. We consider cloud retrievals from spaceborne observations, the existing CALIOP lidar and future ATLID lidar; show how they compare for the same scenes; and discuss the advantage of adding a new lidar for detecting cloud changes in the long run. We show that ATLID's advanced technology should allow for better detecting thinner clouds during daytime than before.
Marine Bonazzola, Hélène Chepfer, Po-Lun Ma, Johannes Quaas, David M. Winker, Artem Feofilov, and Nick Schutgens
Geosci. Model Dev., 16, 1359–1377, https://doi.org/10.5194/gmd-16-1359-2023, https://doi.org/10.5194/gmd-16-1359-2023, 2023
Short summary
Short summary
Aerosol has a large impact on climate. Using a lidar aerosol simulator ensures consistent comparisons between modeled and observed aerosol. We present a lidar aerosol simulator that applies a cloud masking and an aerosol detection threshold. We estimate the lidar signals that would be observed at 532 nm by the Cloud-Aerosol Lidar with Orthogonal Polarization overflying the atmosphere predicted by a climate model. Our comparison at the seasonal timescale shows a discrepancy in the Southern Ocean.
Assia Arouf, Hélène Chepfer, Thibault Vaillant de Guélis, Marjolaine Chiriaco, Matthew D. Shupe, Rodrigo Guzman, Artem Feofilov, Patrick Raberanto, Tristan S. L'Ecuyer, Seiji Kato, and Michael R. Gallagher
Atmos. Meas. Tech., 15, 3893–3923, https://doi.org/10.5194/amt-15-3893-2022, https://doi.org/10.5194/amt-15-3893-2022, 2022
Short summary
Short summary
We proposed new estimates of the surface longwave (LW) cloud radiative effect (CRE) derived from observations collected by a space-based lidar on board the CALIPSO satellite and radiative transfer computations. Our estimate appropriately captures the surface LW CRE annual variability over bright polar surfaces, and it provides a dataset more than 13 years long.
Artem G. Feofilov, Hélène Chepfer, Vincent Noël, Rodrigo Guzman, Cyprien Gindre, Po-Lun Ma, and Marjolaine Chiriaco
Atmos. Meas. Tech., 15, 1055–1074, https://doi.org/10.5194/amt-15-1055-2022, https://doi.org/10.5194/amt-15-1055-2022, 2022
Short summary
Short summary
Space-borne lidars have been providing invaluable information of atmospheric optical properties since 2006, and new lidar missions are on the way to ensure continuous observations. In this work, we compare the clouds estimated from space-borne ALADIN and CALIOP lidar observations. The analysis of collocated data shows that the agreement between the retrieved clouds is good up to 3 km height. Above that, ALADIN detects 40 % less clouds than CALIOP, except for polar stratospheric clouds (PSCs).
Cited articles
Acuña, L., Deleuil, M., Mousis, O., Marcq, E., Levesque, M., and Aguichine, A.: Characterisation of the hydrospheres of TRAPPIST-1 planets, Astron. Astrophys., 647, A53, https://doi.org/10.1051/0004-6361/202039885, 2021. a
Akmaev, R. A. and Shved, G. M.: Parameterization of the radiative flux divergence in the 15 µm CO2 band in the 30–75 km layer, J. Atmos. Terr. Phys., 44, 993–1004, https://doi.org/10.1016/0021-9169(82)90064-2, 1982. a
Appleby, J. F.: CH4 nonlocal thermodynamic equilibrium in the atmospheres of the giant planets, ICARUS, 85, 355–379, https://doi.org/10.1016/0019-1035(90)90123-Q, 1990. a
Avrett, E. H.: Source-Function Equality in Multiplets, Astrophys. J., 144, 59, https://doi.org/10.1086/148589, 1966. a
Berger, U.: Modeling of middle atmosphere dynamics with LIMA, J. Atmos. Solar-Terr. Phys., 70, 1170–1200, https://doi.org/10.1016/j.jastp.2008.02.004, 2008. a
Bougher, S. W., Hunten, D. M., and Roble, R. G.: CO2 cooling in terrestrial planet thermospheres, J. Geophys. Res., 99, 14609–14622, https://doi.org/10.1029/94JE01088, 1994. a, b
Castle, K. J., Black, L. A., Simione, M. W., and Dodd, J. A.: Vibrational relaxation of CO2(ν2) by O(3P) in the 142–490 K temperature range, J. Geophys. Res.-Space, 117, A04310, https://doi.org/10.1029/2012JA017519, 2012. a
Curtis, A. R. and Goody, R. M.: Thermal Radiation in the Upper Atmosphere, Proc. R. Soc. Lon. Ser. A, 236, 193–206, https://doi.org/10.1098/rspa.1956.0128, 1956. a
Eckermann, D.: Matrix parameterization of the 15 µm CO2 band cooling in the middle and upper atmosphere for variable CO2 concentration, J. Geophys. Res.-Space, 128, e2022JA030956, https://doi.org/10.1029/2022JA030956, 2023. a
Feofilov, A. G., Kutepov, A. A., Pesnell, W. D., Goldberg, R. A., Marshall, B. T., Gordley, L. L., García-Comas, M., López-Puertas, M., Manuilova, R. O., Yankovsky, V. A., Petelina, S. V., and Russell III, J. M.: Daytime SABER/TIMED observations of water vapor in the mesosphere: retrieval approach and first results, Atmos. Chem. Phys., 9, 8139–8158, https://doi.org/10.5194/acp-9-8139-2009, 2009. a, b
Feofilov, A. G., Kutepov, A. A., She, C.-Y., Smith, A. K., Pesnell, W. D., and Goldberg, R. A.: CO2(ν2)-O quenching rate coefficient derived from coincidental SABER/TIMED and Fort Collins lidar observations of the mesosphere and lower thermosphere, Atmos. Chem. Phys., 12, 9013–9023, https://doi.org/10.5194/acp-12-9013-2012, 2012. a
Feofilov, A., Rezac, L., Kutepov, A., Vinatier, S., Rey, M., Nikitin, A., and Tyuterev, V.: Non-LTE diagnositics of infrared radiation of Titan's atmosphere, in: Titan Aeronomy and Climate, 2 pp., https://ui.adsabs.harvard.edu/abs/2016tac..confE...2F (last access: 1 July 2024)), 2016. a
Fomichev, V. I.: The radiative energy budget of the middle atmosphere and its parameterization in general circulation models, J. Atmos. Sol.-Terr. Phy., 71, 1577–1585, https://doi.org/10.1016/j.jastp.2009.04.007, 2009. a, b
Fomichev, V. I., Kutepov, A. A., Akmaev, R. A., and Shved, G. M.: Parameterization of the 15-micron CO2 band cooling in the middle atmosphere (15–115 km), J. Atmos. Terr. Phys., 55, 7–18, https://doi.org/10.1016/0021-9169(93)90149-S, 1993. a, b, c
Frisch, H.: Radiative Transfer. An Introduction to Exact and Asymptotic Methods, Springer, https://doi.org/10.1007/978-3-030-95247-1, 2022. a
Frisch, U. and Frisch, H.: Non-LTE Transfer. Revisited, Mon. Not. R. Astron. Soc., 173, 167–182, https://doi.org/10.1093/mnras/173.1.167, 1975. a
Fu, Q. and Liou, K. N.: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres, J. Atmos. Sci., 49, 2139–2156, https://doi.org/10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2, 1992. a
Funke, B., López-Puertas, M., García-Comas, M., Kaufmann, M., Höpfner, M., and Stiller, G. P.: GRANADA: A Generic RAdiative traNsfer AnD non-LTE population algorithm, J. Quant. Spectrosc. Ra., 113, 1771–1817, https://doi.org/10.1016/j.jqsrt.2012.05.001, 2012. a, b
Gettelman, A., Mills, M. J., Kinnison, D. E., Garcia, R. R., Smith, A. K., Marsh, D. R., Tilmes, S., Vitt, F., Bardeen, C. G., McInerny, J., Liu, H. L., Solomon, S. C., Polvani, L. M., Emmons, L. K., Lamarque, J. F., Richter, J. H., Glanville, A. S., Bacmeister, J. T., Phillips, A. S., Neale, R. B., Simpson, I. R., DuVivier, A. K., Hodzic, A., and Randel, W. J.: The Whole Atmosphere Community Climate Model Version 6 (WACCM6), J. Geophys. Res.-Atmos., 124, 12380–12403, https://doi.org/10.1029/2019JD030943, 2019. a
Gordon, I. E., Rothman, L. S., Hill, C., Kochanov, R. V., Tan, Y., Bernath, P. F., Birk, M., Boudon, V., Campargue, A., Chance, K. V., Drouin, B. J., Flaud, J. M., Gamache, R. R., Hodges, J. T., Jacquemart, D., Perevalov, V. I., Perrin, A., Shine, K. P., Smith, M. A. H., Tennyson, J., Toon, G. C., Tran, H., Tyuterev, V. G., Barbe, A., Császár, A. G., Devi, V. M., Furtenbacher, T., Harrison, J. J., Hartmann, J. M., Jolly, A., Johnson, T. J., Karman, T., Kleiner, I., Kyuberis, A. A., Loos, J., Lyulin, O. M., Massie, S. T., Mikhailenko, S. N., Moazzen-Ahmadi, N., Müller, H. S. P., Naumenko, O. V., Nikitin, A. V., Polyansky, O. L., Rey, M., Rotger, M., Sharpe, S. W., Sung, K., Starikova, E., Tashkun, S. A., Auwera, J. V., Wagner, G., Wilzewski, J., Wcisło, P., Yu, S., and Zak, E. J.: The HITRAN2016 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 203, 3–69, https://doi.org/10.1016/j.jqsrt.2017.06.038, 2017. a
Hartogh, P., Medvedev, A. S., Kuroda, T., Saito, R., Villanueva, G., Feofilov, A. G., Kutepov, A. A., and Berger, U.: Description and climatology of a new general circulation model of the Martian atmosphere, J. Geophys. Res.-Planet., 110, E11008, https://doi.org/10.1029/2005JE002498, 2005. a
Hubeny, I. and Lanz, T.: Non-LTE Line-blanketed Model Atmospheres of Hot Stars. I. Hybrid Complete Linearization/Accelerated Lambda Iteration Method, Astrophys. J., 439, 875, https://doi.org/10.1086/175226, 1995. a
Kutepov, A. A.: Community Comment 1, Comment on egusphere-2023-2424, https://egusphere.copernicus.org/preprints/2023/egusphere-2023-2424/egusphere-2023-2424-CC1-supplement.pdf (last access: 1 July 2024), 2023. a
Kutepov, A. and Feofilov, A.: A new routine for calculating 15um CO2 cooling in the mesosphere and lower thermosphere (1.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.8005028, 2023. a, b
Kutepov, A. A. and Fomichev, V. I.: Application of the second-order escape probability approximation to the solution of the NLTE vibration-rotational band radiative transfer problem., J. Atmos. Terr. Phys., 55, 1–6, https://doi.org/10.1016/0021-9169(93)90148-R, 1993. a
Kutepov, A. A. and Shved, G. M.: Radiative transfer in the 15-micron CO2 band with the breakdown of local thermodynamic equilibrium in the earth's atmosphere, Academy of Sciences, USSR, Izvestiya, Atmospheric and Oceanic Physics. Translation., 14, 18–30, 1978. a
Kutepov, A. A., Kunze, D., Hummer, D. G., and Rybicki, G. B.: The solution of radiative transfer problems in molecular bands without the LTE assumption by accelerated lambda iteration methods, J. Quant. Spectrosc. Ra., 46, 347–365, https://doi.org/10.1016/0022-4073(91)90038-R, 1991. a
Kutepov, A. A., Oelhaf, H., and Fischer, H.: Non-LTE radiative transfer in the 4.7 and 2.3 µm bands of CO: Vibration-rotational non-LTE and its effects on limb radiance , J. Quant. Spectrosc. Ra., 57, 317–339, https://doi.org/10.1016/S0022-4073(96)00142-2, 1997. a
Kutepov, A. A., Gusev, O. A., and Ogibalov, V. P.: Solution of the non-LTE problem for molecular gas in planetary atmospheres: superiority of accelerated lambda iteration., J. Quant. Spectrosc. Ra., 60, 199–220, https://doi.org/10.1016/S0022-4073(97)00167-2, 1998. a, b, c, d, e, f, g, h, i, j, k, l, m
Kutepov, A. A., Feofilov, A. G., Marshall, B. T., Gordley, L. L., Pesnell, W. D., Goldberg, R. A., and Russell, J. M.: SABER temperature observations in the summer polar mesosphere and lower thermosphere: Importance of accounting for the CO2 ν2 quanta V-V exchange, Geophys. Res. Lett., 33, L21809, https://doi.org/10.1029/2006GL026591, 2006. a, b
Kutepov, A. A., Feofilov, A. G., Medvedev, A. S., Pauldrach, A. W. A., and Hartogh, P.: Small-scale temperature fluctuations associated with gravity waves cause additional radiative cooling of mesopause the region, Geophys. Res. Lett., 34, L24807, https://doi.org/10.1029/2007GL032392, 2007. a
Kutepov, A., Vinatier, S., Feofilov, A., Nixon, C., and Boursier, C.: Non-LTE diagnostics of CIRS observations of the Titan's mesosphere, in: AAS/Division for Planetary Sciences Meeting Abstracts #45, vol. 45 of AAS/Division for Planetary Sciences Meeting Abstracts, p. 72, abstract 207.05, https://aas.org/sites/default/files/2020-02/DPS_45_Abstract_Book.pdf (last access: 1 July 2024), 2013a. a
Kutepov, A. A., Feofilov, A. G., Medvedev, A. S., Berger, U., Kaufmann, M., and Pauldrach, A. W. A.: Infra-red Radiative Cooling/Heating of the Mesosphere and Lower Thermosphere Due to the Small-Scale Temperature Fluctuations Associated with Gravity Waves, Springer Netherlands, Dordrecht, 429–442, ISBN 978-94-007-4348-9, https://doi.org/10.1007/978-94-007-4348-9_23, 2013b. a, b
Kutepov, A. A., Rezac, L., and Feofilov, A. G.: Evidence of a significant rotational non-LTE effect in the CO2 4.3 µm PFS-MEX limb spectra, Atmos. Meas. Tech., 10, 265–271, https://doi.org/10.5194/amt-10-265-2017, 2017. a
Manuilova, R. O., Gusev, O. A., Kutepov, A. A., von Clarmann, T., Oelhaf, H., Stiller, G. P., Wegner, A., López Puertas, M., Martín-Torres, F. J., Zaragoza, G., and Flaud, J. M.: Modelling of non-LTE limb radiance spectra of IR ozone bands for the MIPAS space experiment, J. Quant. Spectrosc. Ra., 59, 405–422, https://doi.org/10.1016/S0022-4073(97)00120-9, 1998. a
Medvedev, A. S., González-Galindo, F., Yiǧit, E., Feofilov, A. G., Forget, F., and Hartogh, P.: Cooling of the Martian thermosphere by CO2 radiation and gravity waves: An intercomparison study with two general circulation models, J. Geophys. Res.-Planet., 120, 913–927, https://doi.org/10.1002/2015JE004802, 2015. a
Ogibalov, V. P. and Fomichev, V. I.: Parameterization of solar heating by the near IR CO2 bands in the mesosphere, Adv. Space Res., 32, 759–764, https://doi.org/10.1016/S0273-1177(03)80069-8, 2003. a, b, c
Ogibalov, V. P., Kutepov, A. A., and Shved, G. M.: Non-local thermodynamic equilibrium in CO2 in the middle atmosphere. II. Populations in the ν1ν2 mode manifold states, J. Atmos. Sol.-Terr. Phy., 60, 315–329, https://doi.org/10.1016/S1364-6826(97)00077-1, 1998. a
Panka, P. A., Kutepov, A. A., Kalogerakis, K. S., Janches, D., Russell, J. M., Rezac, L., Feofilov, A. G., Mlynczak, M. G., and Yiğit, E.: Resolving the mesospheric nighttime 4.3 µm emission puzzle: comparison of the CO2(ν3) and OH(ν) emission models, Atmos. Chem. Phys., 17, 9751–9760, https://doi.org/10.5194/acp-17-9751-2017, 2017. a
Panka, P. A., Kutepov, A. A., Rezac, L., Kalogerakis, K. S., Feofilov, A. G., Marsh, D., Janches, D., and Yiğit, Erdal: Atomic Oxygen Retrieved From the SABER 2.0- and 1.6 µm Radiances Using New First-Principles Nighttime OH(ν) Model, Geophys. Res. Lett., 45, 5798–5803, https://doi.org/10.1029/2018GL077677, 2018. a
Panka, P. A., Kutepov, A. A., Zhu, Y., Kaufmann, M., Kalogerakis, K. S., Rezac, L., Feofilov, A. G., Marsh, D. R., and Janches, D.: Simultaneous Retrievals of Nighttime O(3P) and Total OH Densities From Satellite Observations of Meinel Band Emissions, Geophys. Res. Lett., 48, e91053, https://doi.org/10.1029/2020GL091053, 2020. a
Pollock, D. S., Scott, G. B. I., and Phillips, L. F.: Rate constant for quenching of CO2(010) by atomic oxygen, Geophys. Res. Lett., 20, 727–729, https://doi.org/10.1029/93GL01016, 1993. a
Press, W. H., Teukolsky, S. A., Vetterling, W. T., , and Flannery, B. P.: Numerical Recipes: The Art of Scientific Coputing, Cambridge University Press, ISBN 978-0-521-88407-5, https://doi.org/10.1142/S0218196799000199, 2002. a
Rezac, L., Kutepov, A., Russell, J. M., Feofilov, A. G., Yue, J., and Goldberg, R. A.: Simultaneous retrieval of T(p) and CO2 VMR from two-channel non-LTE limb radiances and application to daytime SABER/TIMED measurements, J. Atmos. Sol.-Terr. Phy., 130, 23–42, https://doi.org/10.1016/j.jastp.2015.05.004, 2015. a
Rybicki, G. B. and Hummer, D. G.: An accelerated lambda iteration method for multilevel radiative transfer. II. Overlapping transitions with full continuum., Astron. Astrophys., 262, 209–215, 1992. a
Sharma, R. D. and Wintersteiner, P. P.: Role of carbon dioxide in cooling planetary thermospheres, Geophys. Res. Lett., 17, 2201–2204, https://doi.org/10.1029/GL017i012p02201, 1990. a
Shved, G. M., Kutepov, A. A., and Ogibalov, V. P.: Non-local thermodynamic equilibrium in CO2 in the middle atmosphere. I. Input data and populations of the ν3 mode manifold states , J. Atmos. Sol.-Terr. Phy., 60, 289–314, https://doi.org/10.1016/S1364-6826(97)00076-X, 1998. a, b, c
Unsöld, A.: Physik der Sternatmosphären, Springer, Berlin, ISBN 978-3-642-50445-7, https://doi.org/10.1007/978-3-642-50754-0, 1938. a
Valencia, D., Sasselov, D. D., and O'Connell, R. J.: Radius and Structure Models of the First Super-Earth Planet, Astrophys. J., 656, 545–551, https://doi.org/10.1086/509800, 2007. a
Wintersteiner, P. P., Picard, R. H., Sharma, R. D., Winick, J. R., and Joseph, R. A.: Line-by-Line Radiative Excitation Model for the Non-Equilibrium Atmosphere: Application to CO2 15-µm Emission, J. Geophys. Res.-Atmos., 97, 18083–18117, https://doi.org/10.1029/92JD01494, 1992. a
Yudin, V., Goncharenko, L., Karol, S., and Harvey, L.: Perturbations of Global Wave Dynamics During Stratospheric Warming Events of the Solar Cycle 24, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6009, https://doi.org/10.5194/egusphere-egu2020-6009, 2020. a
Yudin, V., Goncharenko, L., Karol, S., Lieberman, R., Liu, H., McInerney, J., and Pedatella, N.: Global Teleconnections between QBO Dynamics and ITM Anomalies, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-3552, https://doi.org/10.5194/egusphere-egu22-3552, 2022. a, b
Zhu, X.: Carbon dioxide 15-micron band cooling rates in the upper middle atmosphere calculated by Curtis matrix interpolation, J. Atmos. Sci., 47, 755–774, https://doi.org/10.1175/1520-0469(1990)047<0755:CDBCRI>2.0.CO;2, 1990. a
Short summary
Infrared CO2 cooling of the middle and upper atmosphere is increasing. We developed a new routine for very fast and accurate calculations of this cooling in general circulation models. The new algorithm accounts for non-local thermodynamic equilibrium and is about 1000 times faster than the standard matrix algorithms. It is based on advanced techniques for non-equilibrium emission calculations in stellar atmospheres, which so far have not been used in Earth’s and planetary atmospheres.
Infrared CO2 cooling of the middle and upper atmosphere is increasing. We developed a new...