Articles | Volume 17, issue 12
https://doi.org/10.5194/gmd-17-4891-2024
https://doi.org/10.5194/gmd-17-4891-2024
Development and technical paper
 | 
21 Jun 2024
Development and technical paper |  | 21 Jun 2024

A parameterization scheme for the floating wind farm in a coupled atmosphere–wave model (COAWST v3.7)

Shaokun Deng, Shengmu Yang, Shengli Chen, Daoyi Chen, Xuefeng Yang, and Shanshan Cui

Related authors

Inclusion of the subgrid wake effect between turbines in the wind farm parameterization of WRF
Wei Liu, Xuefeng Yang, Shengli Chen, Shaokun Deng, Peining Yu, and Jiuxing Xing
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-174,https://doi.org/10.5194/gmd-2023-174, 2023
Revised manuscript not accepted
Short summary

Related subject area

Atmospheric sciences
Knowledge-inspired fusion strategies for the inference of PM2.5 values with a neural network
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
Geosci. Model Dev., 18, 3707–3733, https://doi.org/10.5194/gmd-18-3707-2025,https://doi.org/10.5194/gmd-18-3707-2025, 2025
Short summary
Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching
Pauline Bonnet, Lorenzo Pastori, Mierk Schwabe, Marco Giorgetta, Fernando Iglesias-Suarez, and Veronika Eyring
Geosci. Model Dev., 18, 3681–3706, https://doi.org/10.5194/gmd-18-3681-2025,https://doi.org/10.5194/gmd-18-3681-2025, 2025
Short summary
A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025,https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025,https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary
Diagnosis of winter precipitation types using the spectral bin model (version 1DSBM-19M): comparison of five methods using ICE-POP 2018 field experiment data
Wonbae Bang, Jacob T. Carlin, Kwonil Kim, Alexander V. Ryzhkov, Guosheng Liu, and GyuWon Lee
Geosci. Model Dev., 18, 3559–3581, https://doi.org/10.5194/gmd-18-3559-2025,https://doi.org/10.5194/gmd-18-3559-2025, 2025
Short summary

Cited articles

Abkar, M. and Porté-Agel, F.: A new wind-farm parameterization for large-scale atmospheric models, J. Renew. Sustain. Energ., 7, 013121, https://doi.org/10.1063/1.4907600, 2015. 
Alari, V. and Raudsepp, U.: Simulation of wave damping near coast due to offshore wind farms, J. Coast. Res., 279, 143–148, https://doi.org/10.2112/JCOASTRES-D-10-00054.1, 2012. 
AlSam, A., Szasz, R., and Revstedt, J.: The influence of sea waves on offshore wind turbine aerodynamics, J. Energ. Resour. Technol., Transactions of the ASME, 137, 1–10, https://doi.org/10.1115/1.4031005, 2015. 
Archer, C., Wu, S., Ma, Y., and Jiménez, P.: Two corrections for turbulent kinetic energy generated by wind farms in the WRF model, Mon. Weather Rev., 148, 4823–4835, https://doi.org/10.1175/MWR-D-20-0097.1, 2020. 
Battjes, J. and Janssen, J.: Energy loss and set-up due to breaking of random waves, Costal Eng. Proc., 1, 32, https://doi.org/10.9753/icce.v16.32, 1978. 
Download
Short summary
Global offshore wind power development is moving from offshore to deeper waters, where floating offshore wind turbines have an advantage over bottom-fixed turbines. However, current wind farm parameterization schemes in mesoscale models are not applicable to floating turbines. We propose a floating wind farm parameterization scheme that accounts for the attenuation of the significant wave height by floating turbines. The results indicate that it has a significant effect on the power output.
Share