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Abstract. Coupling the Weather Research and Forecasting
(WRF) model with wind farm parameterization can be effec-
tive in examining the performance of large-scale wind farms.
However, the current scheme is not suitable for floating wind
turbines. In this study, a new scheme is developed for floating
wind farm parameterization (FWFP) in the WRF model. The
impacts of the side columns of a semi-submersible floating
wind turbine on waves are first parameterized in the spectral
wave model (SWAN) where the key idea is to consider both
inertial and drag forces on side columns. A machine learning
model is trained using results from idealized high-resolution
SWAN simulations and then implemented in the WRF to
form the FWFP. The difference between our new scheme
and the original scheme in a realistic case is investigated
using a coupled atmosphere–wave model. The results show
that the original scheme has a lower power output in most
of the grids with an average of 12 % compared to the FWFP
scheme. The upstream wind speed is increased slightly com-
pared to the original scheme (< 0.4 m s−1), while the down-
stream wind speed is decreased but by a much larger magni-
tude (< 1.8 m s−1). The distribution of the difference in tur-
bulent kinetic energy (TKE) corresponds well to that of the
wind speed, and the TKE budget reveals that the difference in
TKE in the rotor region between the two schemes is mainly
due to vertical wind shear. This demonstrates that the FWFP
is necessary for both predicting the wind power and evalu-
ating the impact of floating wind farms on the surrounding
environment.

1 Introduction

Wind energy has shown great potential for development in
recent years. The number of wind farms that have been built
is enormous, and there are predictions that wind power gen-
eration will increase in the future (Pryor et al., 2020). The
pre-assessments of wind farms are not suitable to be investi-
gated with the computational fluid dynamics (CFD) models
and large-eddy simulation (LES) models due to great compu-
tational expense and feedback effects that cannot be captured
by high-resolution non-meteorological microscale models
alone. Furthermore, the relevant physical processes, which
are important for large wind farms, are also not included
in the engineering wake models (Emeis, 2010). Mesoscale
models coupled with LES can theoretically take advantage
of both, but most studies focus on one-way coupling rather
than two-way coupling and involve high computational cost
(Carvalho et al., 2013; Santoni et al., 2018; Temel et al.,
2018). Currently, an important tool for investigating large-
scale wind sources and wake interferences is a mesoscale
model with a wind farm parameterization.

There are two different methods to parameterize the wind
farm in mesoscale models: implicit and explicit methods. In
implicit parameterization, it is common to modify the sur-
face roughness to characterize the effect of wind farms. The
explicit methods parameterize the wind farm effect as a mo-
mentum sink on the mean flow. Previous results have shown
that explicit methods present a more physically consistent
representation of wind farm effects and result in more realis-
tic simulations (Fitch et al., 2013; Fitch, 2015). The explicit
methods also have the advantage of taking into account how
wind speeds interact with the lower surface (Du et al., 2017;
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Vanderwende and Lundquist, 2016). Most wind farm param-
eterizations are conducted in the free, open-source Weather
Research and Forecasting (WRF) model, which already in-
cludes the Fitch wind farm parameterization in its release
(Fitch et al., 2012). The original Fitch scheme has been the
subject of a number of recent developments and modifica-
tions. Most studies have focused on sub-grid effects of wind
turbines (Abkar and Porte-Agel, 2015; Ma et al., 2022a, b;
Pan and Archer, 2018; Redfern et al., 2019), and a few stud-
ies have focused on turbulent kinetic energy (TKE) treatment
in wind farm parameterization (Archer et al., 2020; Volker et
al., 2015).

Global offshore wind power development is moving from
nearshore to deeper waters, where floating offshore wind tur-
bines have advantage over bottom-fixed offshore wind tur-
bines in water depths greater than 50 m (Diaz and Guedes
Soares, 2020; Roddier et al., 2010). Floating wind turbines
are divided into many categories, among which the semi-
submersible floating wind turbine is a popular type of float-
ing wind turbine structure in the industry. However, semi-
submersible floating offshore wind turbines can have a sub-
stantial impact on waves due to floating platforms, which in
turn leads to major changes in the roughness length of the
ocean surface. Changes in the roughness length in turn affect
the wind field through momentum transfer between the atmo-
sphere and the waves. And the effect of the wave field on the
wind field can reach up to the height of the turbine, according
to previous studies (AlSam et al., 2015; Jenkins et al., 2012;
Kalvig et al., 2014; Paskyabi et al., 2014; Porchetta et al.,
2021; Wu et al., 2020; Yang et al., 2014; Zou et al., 2018).
This suggests that the current wind farm parameterization
is not suitable for semi-submersible floating wind farms be-
cause it does not account for the change in roughness length
caused by large floating platforms.

In contrast to studies investigating the influence of off-
shore wind farm wakes on waves, few studies have investi-
gated the influence of wind farm structures (piles) on waves
through the effects of drag dissipation. Ponce de Leon et
al. (2011) used a wave model to study the impact of an off-
shore wind farm on nearby waves. They represented each
monopile foundation as a dry point (land) in the model. They
found that the method blocked the propagation of the wave
energy and caused a slight change in the direction of the
wave. Alari and Raudsepp (2012) found that the impact of
the wind turbine on the significant wave height (SWH) was
very marginal, with changes in the SWH smaller than 1 %
at areas shallower than 10 m depth. Molen et al. (2014) con-
ducted sensitivity experiments to study the influence of tur-
bine spacing and size of a wind farm on the SWH and found
that the SWH could be reduced by up to 9.58 %. McCombs et
al. (2014) evaluated the impact of an offshore wind farm on
waves in Lake Ontario using a coupled wave–hydrodynamic
model. In contrast to previous studies, they simulated the off-
shore wind farm with the application of a transmission coef-
ficient in the wave model. The results indicated that changes

in SWH were predicted to be less than 3 %. These previous
studies simulate the wind turbine in the model as a dry grid
point, which has two limitations: (1) the model resolution
is too high to implement for large-scale offshore wind farm
scenarios, and (2) it can only represent the diffraction effects;
however, wave forces include drag and inertial forces (Isaac-
son, 1979; Morison et al., 1950). By parameterizing both the
drag and the inertial forces in the numerical model, the im-
pact of the offshore wind turbine and farm on the waves can
be analyzed more accurately.

In this study, a floating wind farm parameterization
(FWFP) scheme is developed in the WRF model to repre-
sent the effect of the offshore wind farm on surface waves.
In Sect. 2, the wave energy dissipation due to the iner-
tial forces of waves is implemented in the spectral wave
model (SWAN). The model configuration and results of high-
resolution idealized simulations are presented in Sect. 3. In
Sect. 4, we propose a machine learning module used to fit the
effect of wave inertial forcings represented in high-resolution
SWAN simulations. Section 5 describes how the floating
wind farm parameterization scheme is implemented in the
WRF and presents the results and the analysis of the wind
speed deficit, power output, and the influence of the new
scheme on the turbulent kinetic energy. The conclusion is
given in Sect. 6.

2 Parameterization of the wave inertial force in SWAN

SWAN is a third-generation phase-averaged spectral wave
model (Booij et al., 1999). A function of SWAN is to account
for wave damping over vegetation (VEG) at variable depths.
The cylinder approach proposed by Dalrymple et al. (1984)
is a well-known method for expressing wave dissipation due
to vegetation. In this approach, the energy loss is calculated
based on the actual work done by the force of the plant on the
fluid, expressed by the Morison equation. Two modifications
convert the VEG module into the semi-submersible floating
wind turbine module. The first modification is that the mod-
ule only needs to calculate the energy dissipation in the top
layer (layer 1 in Fig. 1) and sets d (column draft depth) to a
constant (d = 20 m is used in this paper).

Another important modification of the VEG module con-
cerns the energy dissipation due to wave forces. In the VEG
module, the wave force is derived from the drag force in
a Morison-type equation with the inertial forces neglected.
Since the vegetation is assumed to be a cylinder with a small
diameter, the drag force is considered to be dominant. How-
ever, for the floating offshore wind turbine, the diameter
of the cylinder cannot be neglected compared to the wave-
length. The wave forces become more complex and require
the consideration of inertial forces. The equation for the en-
ergy dissipation due to inertial forces (Finer) can be derived
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Figure 1. Layer schematization for vegetation in SWAN. The sub-
merged part of the plant can be layered by diameter and by the
drag coefficient (layer 1, layer 2, layer 3). Each layer has a different
thickness, with d for layer 1.

from the work of Morison et al. (1950):

D =

−h∫
−(h+d)

Finerudz=

−h∫
−(h+d)

CM · ρV ·
∂u

∂t
· udz

=

−h∫
−(h+d)

ρCM
π

4
b2 ∂u

∂t
udz, (1)

where ρ is the fluid density, V is the volume, CM is the in-
ertial force coefficient, b is the cylinder diameter, h+ d is
the water depth, d is the draft depth (Fig. 1), and u is the
horizontal fluid velocity. Following Kobayashi et al. (1993),
the fluid convective accelerations and stresses are assumed
to be negligible in this region as a first approximation. The
linearized horizontal and vertical momentum equations can
be expressed as

ρ
∂u

∂t
=−

∂p

∂x
, (2)

ρ
∂w

∂t
=−

∂p

∂z
. (3)

Equations (2) and (3) are used to express u and w (vertical
fluid velocity) in terms of p (the dynamic pressure):

u=
kc

ρω
p, (4)

w =−
i

ρω

∂p

∂z
. (5)

To solve the linearized problem, it is convenient to introduce
the complex wave number kc = k+ iki , where ki is the expo-
nential decay coefficient, and k is the wave number.

The continuity equation is given by

∂u

∂x
+
∂w

∂z
= 0. (6)

Substituting Eqs. (4) and (5) into Eq. (6) and solving the re-
sulting equation with the conditions w = 0 at z=−(h+ d),
p is given by

p = ρg
H

2
[cosh(kch)−

ω2

gk
sinh(kch)]

·
cosh[α(z+h+ d)]

cosh(αd)
exp[i(kcx−ωt)], (7)

where α ∼= kc(1− iε), ω is the wave angular frequency, H is
the wave height, and ε is the dimensionless damping coeffi-
cient.

In the case of weak damping the dimensionless damping
coefficient ε and Eq. (7) with kc = k(1+ iδ) and α ∼= k[1+
i(δ− ε)] can be shown to be approximated as

p ∼= ρg
H

2
cosh[k(h+ d + z)]

cosh[k(h+ d)]
· [1+ iδc2+ i(δ− ε)c3]exp[i(kx−ωt)], (8)

with

c2 =
sinhkhsinh[k(h+ d)] − khsinhkd

coshkd
, (9)

c3 = k(h+ d + z) tanh[k(h+ d + z)] − kd tanhkd, (10)

ε =
CDbH

9π
sinh3kd + 9sinhkd

(2kd + sinh2kd)sinh[k(h+ d)]
, (11)

δ =
ki

k
∼= ε

2kd + sinh2kd
2k(h+ d)+ sinh[2k(h+ d)]

. (12)

Substitution of the real parts of Eq. (8) into Eq. (2) yields

u=
gkH

2ω
cosh[k(h+ d + z)]

cosh[k(h+ d)]
, (13)

∂u

∂t
=

k

ρω

dp
dt

=
gkH

2
cosh[k(h+ d + z)]

cosh[k(h+ d)]
[δc2+ (δ− ε)c3] . (14)

Substitution of Eqs. (13), (14), and (10) into Eq. (1) yields

D =
ρCMπb

2k(gH)2

16ω[coshk(h+ d)]2

[
δc2

sinh2kd + 2kd
4

+ (δ− ε)

·
2kd cosh2kd − sinh2kd − kd tanhkd(sinh2kd + 2kd)

8

]
. (15)

In order to simplify the derivation of the equation, ε =
CDbH

9π c5 and δ = εc4 are substituted into Eq. (15):

D =
ρCMCDb

3kg2H 3

144ω[coshk(h+ d)]2

[
c2c4c5

sinh2kd + 2kd
4

+ c5 (c4− 1)

·
2kd cosh2kd − sinh2kd − kd tanhkd(sinh2kd + 2kd)

8

]
. (16)

Waves can be described by a joint distribution of wave
height, period (or frequency), and direction. For simplicity
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of analysis, it is usually assumed that all wave heights are
related to an average peak period and mean direction. The
model developed by Mendez and Losada (2004) describes
the transformation of the wave height distribution assuming
an unmodified Rayleigh distribution, where the average en-
ergy dissipation is as follows:

〈D〉 =
ρCMCDb

3kpg
2

144ωp[coshkp(h+ d)]2

·

[
c2c4c5

sinh2kpd + 2kpd

4
+ c5 (c4− 1)

·
2kpdcosh2kpd − sinh2kpd − kpdtanhkpd(sinh2kpd + 2kpd)

8

]

·

∞∫
0

H 3p(H)dH, (17)

∞∫
0

H 3p(H)dH =
3
√
π

4
H 3

rms, (18)

where the terms with subscript p are associated with the peak
period (the subscript p is neglected in the following), p(H)
is the Rayleigh probability density function, and Hrms is the
root mean square wave height. Substitution of Eq. (18) into
Eq. (17) and dividing by the bulk density of the fluid yield

〈D〉 =
ρCMCDb

3gk

144ω[coshk(h+ d)]2
3
√
π

4
H 3

rms

·

[
c2c4c5

sinh2kd + 2kd
4

+ c5 (c4− 1)

·
2kd cosh2kd − sinh2kd − kd tanhkd(sinh2kd + 2kd)

8

]
. (19)

The root mean square wave height and the total wave energy
have the relationship H 2

rms = 8Etot, and substituting it into
Eq. (19) yields

〈D〉 =
1
8

√
π

72
CMCDb

3gk

ω[coshk(h+ d)]2
[2c2c4c5 (sinh2kd + 2kd)

+ c5 (c4− 1) [2kd cosh2kd − sinh2kd

−kd tanhkd(sinh2kd + 2kd)]]E3/2
tot . (20)

Equation (20) is the equation calculating the energy dissipa-
tion due to the inertial force. In the study, the magnitudes of
the inertial force and the drag force are calculated and com-
pared for the cylinders with diameters of 10 and 1 m.

The case is set with an incident SWH of 3 m, a drag co-
efficient of 1.2, a draft depth of 20 m, and a water depth
of 80 m. When the cylinder diameter is 10 m (Fig. 2a), the
average wavelength of the incident wave is within 1700 m,
which makes the inertial force larger than the drag force.
However, when the cylinder diameter is 1 m (Fig. 2b), the
inertial force is always smaller than the drag force. As the
wavelength increases (the scale becomes smaller), the drag
force becomes larger relative to the inertial force, which is
consistent with the assumption of the VEG module that the
inertial force could be neglected, but the inertial force cannot

be ignored for the side column of the floating offshore wind
turbine. Therefore, the VEG module in SWAN is modified
to include the inertial force to be applicable for the floating
wind turbine.

3 Idealized high-resolution simulations

As shown in Sect. 2, the floating offshore wind turbine mod-
ule is developed for SWAN, and its impact on waves is ex-
amined using high-resolution numerical experiments in this
section.

The rectangular domain of the idealized high-resolution
experiments is shown in Fig. 3, with 100× 200 cells, a hor-
izontal resolution corresponding to the column diameter of
10 m, and a water depth of 50 m. The position of the col-
umn is at the center of the computational domain. The inci-
dent SWH is 3 m; the mean wave period is 12 s, propagating
from east to west; and the shape of the spectra is from the
JONSWAP spectrum. Because of the small computational
domain, the model uses stationary computation which con-
verges after several time steps.

Two experiments are conducted, one to study the influence
of the column on the waves caused by the drag force only
(ExpDragS) and the other to examine the influence caused
by both the drag force and the inertial force (ExpInerS). It
can be noted that when the energy dissipation is caused by
the drag force only, the SWH attenuation is only ∼ 0.2 m
(Fig. 4a), and the “wake” phenomenon occurs in the wave
field. The angle of the mean wave direction is shifted by
about 1° around the column, and the horizontal distribution
is symmetric along the y = 0 axis (Fig. 4d). The mean wave
length is increased by about 10 m (Fig. 4g). When the iner-
tial forces are taken into account, the energy dissipation is
larger, which makes the SWH attenuation more significant,
which is about 1.4 m (Fig. 4b), indicating an attenuation of
50 % SWH. The mean wave direction deviation around the
column is also relatively large, reaching about 5° (Fig. 4e),
and the mean wave length is about 24 m longer (Fig. 4i) than
that of ExpDragS.

4 Machine learning parameterization

The results of the idealized high-resolution SWAN simula-
tions in Sect. 3 show the impact of the floating offshore wind
turbine’s side columns on the waves, including the SWH at-
tenuation; symmetric changes in mean wave direction; and
an increase in the mean wave length. However, it is computa-
tionally expensive to run a ∼ 10 m resolution SWAN model.

Using machine learning (ML) to better parameterize un-
resolved processes in mesoscale and climate models has re-
ceived much attention in recent years (O’Gorman and Dwyer,
2018; Gettelman et al., 2020; Seifert and Rasp, 2020). With
the rise of scientific ML and its widespread use in the geo-
sciences, the design of parameterizations using ML algo-
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Figure 2. Inertial forces (solid red line) and drag forces (solid blue line) for cylindrical diameters of (a) 10 m and (b) 1 m (incident wave
height of 3 m, drag coefficient of 1.2, draft depth of 20 m, water depth of 80 m).

Figure 3. Experimental design of high-resolution idealized simula-
tions; the blue curve on the right side represents waves (SWH of
3 m, mean wave period of 12 s, and water depth of 50 m).

rithms has become a trend in model development. To build
an appropriate model, a large amount of data is needed for
training. Nevertheless, observational data on the impact of
floating offshore wind turbines on waves are scarce. As a re-
sult, the outputs of the high-resolution SWAN simulations in
Sect. 3 are employed to train the ML model.

From the equations in Sect. 2, we can note that when the
inertial force coefficient, drag force coefficient, and cylindri-
cal diameter are determined, the energy dissipation caused
by the wave force is only related to the water depth, incident
SWH, and mean wave period (or peak period). We design a
series of ideal experiments with different water depths, inci-
dent SWH, and mean wave periods. The SWH is taken from
2 to 4 m with a 0.1 m interval. The peak wave period is taken
from 7.4 to 7.6 s, 8.4 to 8.6 s, 9.6 to 9.8 s, and 11.0 to 11.2 s
with an interval of 0.1 s, and the water depth is selected from
53 to 98 m with an interval of 5 m. This results in a total num-
ber of 2520 (21×12×10) experimental groups. We then se-
lect simulated data that do not include water depths of 58, 78,

and 98 m to train several machine learning (regression) mod-
els, since data from these three water depths would be used
as validation data. The inputs are incident SWH, water depth,
and peak wave period, and the output is SWH after energy
dissipation. These models can be classified into four main
categories: linear regression models, regression tree models,
support vector machines (SVMs), and Gaussian process re-
gression (GPR). These four categories of ML models are de-
scribed in detail in the Appendix.

As shown in Fig. 5, after training, the GPR model with the
Matern 5/2 kernel (covariance) function fits best with a min-
imum root mean square error (RMSE) of 0.0033 m (Fig. 5d).
It may be that the advantage of GPR is mainly in dealing
with nonlinear and small sample data. The validation data are
also used to analyze the strengths and weaknesses of these
four ML models and to prevent overfitting when training the
models. Figure 6 shows that the Matern 5/2 GPR model still
performs the best, and the stepwise linear regression model
still performs the worst. On the other hand, the medium SVM
model does not necessarily outperform the fine-tree model in
some cases. The ML model can be coupled with CFD, LES
models, and mesoscale meteorological models to predict the
effect of the floating offshore wind turbine side columns on
waves without the need for high-resolution SWAN simula-
tions.

5 Parameterization in the WRF model

5.1 Implementation of parameterization in the WRF
model

The rate of kinetic energy loss in the grid cell in the origi-
nal wind farm parameterization scheme (Fitch et al., 2012) is
equal to the kinetic energy loss due to the wind turbine in the
grid,

−
1
2
Nij1x1yρCTV

3
ijkAijk =1x1y (zk+1− zk)ρVijk

∂Vijk

∂t
, (21)
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Figure 4. Significant wave height of (a) ExpDragS and (b) ExpInerS, (c) difference in significant wave height, (d) mean wave direction devi-
ation of ExpDragS and (e) ExpInerS, (f) difference in mean wave direction deviation, (g) mean wave length of ExpDragS and (h) ExpInerS,
and (i) difference in mean wave length.

Figure 5. Significant wave height scatterplot of the comparison between training data and four typical ML regression models: (a) stepwise
linear regression, (b) fine tree, (c) medium SVM, (d) Matern 5/2 GPR.
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Figure 6. Boxplots of RMSE for four typical ML regression mod-
els using validation data. The boxplots show the median (horizon-
tal line), 25th to 75th percentiles (box), and 5th to 95th percentiles
(whiskers). The whiskers extend to the most extreme data points not
considered outliers, and the outliers are plotted individually using
the “+” marker symbol.

where Vijk is the horizontal wind speed, Nij is the number
of turbines per square meter, ρ is the air density, CT is the
thrust coefficient of a wind turbine, 1x and 1y are the hor-
izontal grid size in the zonal and meridional directions re-
spectively, zk is the height at model level k, and Aijk is the
cross-sectional rotor area of one wind turbine bounded by
model levels k and k+ 1 in grid cells i and j .

For a semi-submersible floating wind turbine, the SWH
around the turbine is considerably affected. As a result, the
roughness of the ocean surface nearby is also changed. This
means that the inflow wind speed on the left side of Eq. (21)
is no longer the horizontal wind speed in grid cells i and j ,
and the two must be distinguished:

−
1
2
Nij1x1yρCTV

3
ijk|wtAijk =1x1y (zk+1− zk)ρVijk

∂Vijk

∂t
, (22)

where Vijk|wt is the recalculated inflow wind speed at the
wind turbine site, so a new equation for the momentum ten-
dency term is given as

∂Vijk

∂t
=−

NijCTV
3
ijk|wtAijk

2(zk+1− zk)Vijk
. (23)

The corresponding component forms require modification as
well:

∂uijk

∂t
=
uijk

Vijk
·
∂Vijk

∂t
=−

NijCTV
3
ijk|wtAijkuijk

2(zk+1− zk)V
2
ijk

, (24)

∂vijk

∂t
=
vijk

Vijk
·
∂Vijk

∂t
=−

NijCTV
3
ijk|wtAijkvijk

2(zk+1− zk)V
2
ijk

. (25)

The tendency of turbulent kinetic energy (TKE) and the
power generated by the wind turbine also need to be mod-
ified:

∂Pijk

∂t
=
NijCPV

3
ijk|wtAijk

2(zk+1− zk)
, (26)

∂TKEijk
∂t

=
NijCTKEV

3
ijk|wtAijk

2(zk+1− zk)
, (27)

where CP is the power coefficient, and CTKE denotes the
TKE coefficient calculated by CTKE = CT−CP.

The variables exchanged between WRF and SWAN are
shown in Fig. 7. WRF provides 10 m surface wind to SWAN,
whereas SWAN returns SWH, peak wave length, and peak
wave period to WRF. This variable exchange is implemented
in the coupled model. The trained GPR model needs wa-
ter depth as the input; thus we implement SWAN to pro-
vide water depth to WRF. Specifically, we incorporate the
GPR model into the surface layer parameterization module of
WRF. As a result, the SWH affected by the floating offshore
wind turbine can be calculated directly in the surface layer
parameterization module to obtain the roughness length, fric-
tional velocity, and other variables. The above variables are
then passed to the planetary boundary layer driver module
to calculate the three-dimensional wind speed affected by
the boundary layer. The three-dimensional wind speed at the
wind turbine location is also passed to the new wind farm
parameterization.

5.2 Model configuration

The model (COAWST; Warner et al., 2010) used to run
coupled simulations in this study activates only the atmo-
spheric model (WRFv4.2.2) and the spectral wave model
(SWANv41.31).

Initial and lateral boundary conditions for the WRF model
are derived from the National Centers for Environmental Pre-
diction Global Data Assimilation System (GDAS) final anal-
ysis with a temporal resolution of 6 h and horizontal resolu-
tion of 0.25° (NCEP, 2015). The WRF model is configured
with 47 vertical levels, where 23 levels are below 1000 m,
and 15 levels intersect the rotor region. The vertical spacing
of the grid on the levels spanned by the wind turbine rotor is
approximately 14 m. The WRF model is configured with two
nested domains with a horizontal resolution of 9 and 3 km
(Fig. 8a). The outer domain (D01) has 300× 220 grids, and
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Figure 7. Flowchart of floating offshore wind farm parameterization implemented in the coupled model (significant wave height – HWAVE,
peak wave period – LWAVEP, peak wave length – PWAVE, water depth – DEPTH, zonal wind at 10 m – U10, meridional wind at 10 m – V10,
frictional velocity – UST, frictional velocity at the wind turbine – USTWT, roughness length – ZNT, roughness length at the wind turbine
– ZNTWT, three-dimensional zonal winds – U3D, three-dimensional meridional winds – V3D, three-dimensional zonal winds at the wind
turbine – U3DWT, three-dimensional meridional winds at the wind turbine – V3DWT, turbulent kinetic energy – TKE, zonal momentum
increment – du, meridional momentum increment – dv).

the inner domain (D02) has 250×163 grids. The major physi-
cal parameterization schemes are summarized in Table 1. The
wind farm is located in the northern South China Sea where
the water depths range from 50 to 63 m (Fig. 8a). The dis-
tance between the turbines is approximately 1 km. The thrust
and power coefficients of the LEANWIND 8 MW reference
turbine (LW) are presented in Fig. 8b. This floating wind tur-
bine is rated at 8 MW, with a rotor diameter of 164 m, a hub
height of 110 m, a cut-in wind speed of 4 m s−1, and a cut-out
wind speed of 25 m s−1 (Desmond et al., 2016).

SWAN uses a single domain with 8 km horizontal reso-
lution, which is smaller than the WRF outer domain in this
study (Fig. 8a). The corresponding parameterization schemes
are shown in Table 1. The spectrum is discretized using 24
logarithmically spaced frequency bins from 0.04 to 1.00 Hz
and 36 directional bins with 10° spacing. The boundary con-
ditions are taken from the WaveWatch III (WW3) model
(WW3DG, 2019). The nonstationary mode of SWAN is used.
The WRF model is coupled with the SWAN model every
10 min. The simulations are integrated first for 12 h with-
out the turbines to reach a steady state and then run for an-
other 6 h for comparison (i.e., from 00:00 UTC on 1 January
to 18:00 UTC on 1 January 2019). A reference simulation
(control run, referred to as WRF-CTL) is performed without
the wind farm. Another simulation (WRF-Fitch) is conducted
with the Fitch wind farm parameterization. A third simula-

tion (WRF-FWFP) is performed with the new proposed float-
ing wind farm parameterization.

5.3 Model validation

To validate the SWAN results, the simulated SWH is com-
pared with observations of the Jason-3 satellite data (Lil-
libridge, 2019) (Fig. 9). The model is also run for an addi-
tional 126 h for further validation (18:00 UTC on 1 January
to 00:00 UTC on 7 January). It is evident that the model gen-
erally performs well in the wave simulation for the satellite
tracks (Pass 38 and Pass 88). The SWH in the model is a bit
underestimated on the Pass 12 track and overestimated on the
Pass 51 track. Generally, the model results have a reasonable
performance.

5.4 Simulation results

In this section, the differences in power output, wind speed
deficits, and turbulent kinetic energy (TKE) between the
FWFP and Fitch schemes are analyzed in a realistic case us-
ing the fully coupled atmosphere–wave model. The last 6 h
(12:00 UTC on 1 January to 18:00 UTC on 1 January) of sim-
ulations are averaged for all results shown below.
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Table 1. Physical parameterization schemes used in the coupled model.

Physics process Parameterization scheme

WRF Microphysics Single-moment 6-class microphysics scheme (Hong and Lim, 2006; Hong et al., 2006)
Longwave radiation Rapid Radiative Transfer Model (Mlawer et al., 1997)
Shortwave radiation Dudhia (Dudhia, 1989)
Surface layer MYNN (Nakanishi and Niino, 2009)
Land surface Thermal diffusion (Dudhia, 1996)
Planetary boundary layer Mellor–Yamada–Nakanishi–Niino 2.5 level (Nakanishi and Niino, 2009)
Cumulus Grell–Freitas ensemble (Grell and Freitas, 2014)
Roughness COARE–Taylor–Yelland (Taylor and Yelland, 2001)

SWAN Depth-induced wave breaking Constant (1.0, 0.73) (Battjes and Janssen, 1978)
Bottom friction Madsen (0.05) (Madsen et al., 1988)
Wind input Komen (Komen et al., 1984)
Whitecapping Komen (Komen et al., 1984)

Figure 8. (a) The model domain used in COAWST; the solid red line indicates the outer boundary of the wind farm. (b) The thrust and power
coefficient curves of the LW 8 MW wind turbine.

5.4.1 Power output and wind speed deficits

For the majority of wind turbines (93.2 % of the number of
grids), the power output of WRF-Fitch is smaller than that
of WRF-FWFP. This is most likely due to the fact that the
FWFP scheme takes into account that the frictional velocity
is lower (the inflow wind speed is higher). The difference in
power output of a grid cell can reach a maximum of 18 MW
(Fig. 10a), which means that the difference in power output
of a single turbine can reach a maximum of 2 MW (about
nine turbines in a grid cell). In a small area (6.8 % of the
number of grids, Fig. 10c), the power output of WRF-Fitch is
greater than that of WRF-FWFP, but the difference in power
output can only reach a maximum of 0.06 MW (3 %), and
most of the positive differences are located in the upstream
grid cells (Fig. 10b). On average, the power prediction in
the FWFP scheme increases by 12 % compared to the Fitch
scheme (Fig. 10d).

The maximum value of momentum reduction at hub height
for the FWFP scheme is 8 m s−1 (Fig. 12a). Downstream of
the wind farm, the wind speed deficit extends into a long
wake. The length of the wake reaches 70 km for a wind speed
deficit of 1 m s−1 (Fig. 13a). Previous studies have found
that roughness lengths and turbulence intensity are lower
when the subsurface of the atmosphere is oceanic. There-
fore, the wake behind offshore wind farms is expected to
be much longer than onshore (∼ 50 km) (Emeis et al., 2016;
Lundquist et al., 2019). The difference in wind speed at hub
height between the two schemes has both positive and nega-
tive values. The negative values are mainly distributed on the
upstream side of the wind farm and in the middle of the wind
farm, with a minimum value of about −0.4 m s−1. The pos-
itive value areas show a more pronounced difference, up to
a maximum of 1.8 m s−1. These effects are also propagated
to the wind farm wake (Fig. 12b). The largest uncertainty
comes from the surface parameterization scheme in the WRF
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Figure 9. (a) Jason-3 ground track in the study area, where the solid red lines representing the tracks are in the period from 00:00 UTC
on 1 January to 00:00 UTC on 7 January 2019. SWH comparison between model results and Jason-3 data at (b) 22:00 UTC on 3 January,
(c) 22:00 UTC on 4 January, (d) 11:00 UTC on 5 January, and (e) 21:00 UTC on 6 January 2019.

model. Semi-submersible floating wind turbines weaken the
significant wave height, which leads to changes in frictional
velocity and roughness length at the wind turbine site. In ad-
dition, the atmospheric stability ϕ( z

L
) at this location also

changes according to the Monin–Obukhov similarity theory
(Fig. 11). These factors together lead to a change in the in-
flow wind speed.

Vertical profiles of wind speed deficits in the WRF-FWFP
case also show similar characteristics to the WRF-Fitch case.
The atmospheric boundary layer (ABL; including down-
stream) is affected by the wind speed deficit caused by wind
farms (Fig. 13a). A wind speed deficit of 1 m s−1 can extend
up to the top of the ABL. Figure 13b shows that the reduction
in the momentum of the FWFP scheme also spreads through-
out the ABL, which is most pronounced in the rotor area with
a maximum value of 1.5 m s−1. The top of the turbine to the
top of the ABL and the wind farm wakes also have an effect

with values of 0.1 to 0.8 m s−1. The maximum value of the
vertical gradient of the wind speed difference is between the
hub height and the top of the turbine (163 m).

5.4.2 TKE

Despite the advection of TKE, it decays rapidly downstream.
TKE generated within the wind farm is largely localized
within the wind farm area. The maximum increase in TKE
at the top of the turbines within the wind farm is 3.5 m2 s−2

(Fig. 14a). The distribution of horizontal TKE differences is
highly similar to that of horizontal wind speed differences
(Fig. 12b), indicating that the wind shear may dominate the
TKE distribution. The reduction in the TKE caused by the
wind farm continues to extend more than 100 km down-
stream near the surface (Fig. 14c). In contrast, there are two
localized areas within the wind farm where the TKE rises
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Figure 10. (a, b) Power output of the WRF-Fitch case minus the WRF-FWFP case, but only positive values are shown in panel (b). The
dashed line indicates the outer boundary of the wind farm, and the black arrow indicates the wind direction. (c) Histogram of the relative
difference between the power output of the WRF-Fitch case and the power output of the WRF-FWFP case. (d) Boxplot of the relative
difference in the power output, as in Fig. 6.

Figure 11. Flowchart of the computation of surface layer variables
in the WRF model.

obviously, corresponding to the two areas with the greatest
increase in TKE at the top of the turbine (Fig. 14c). There
is little difference in TKE between WRF-Fitch and WRF-
FWFP near the surface downstream (Fig. 14d), with most
of the differences occurring only within the wind farm. The
distribution of differences in TKE near the ground is almost
identical to that at the top of the turbine, except that the value
is smaller, by about 0.9 m2 s−2 (60 %), which is most likely
due to the vertical transport of TKE. The reduction in TKE
near the surface in the downstream (Fig. 14c) is due to a wind
speed deficit and corresponding decrease in wind shear in the
lower levels of the wake, resulting in a decrease in shear pro-
duction in TKE, and the reduction in the TKE is not higher
than at the top of the turbine (Fitch et al., 2012).

As the wind speeds decrease, the increase in TKE extends
to the top of the ABL, which is above the wind farm, with
an increase of 1 m2 s−2, reaching a height of nearly 709 m
(Fig. 15a). At the top of the turbine, the maximum increase
in TKE is 3.6 m2 s−2. On the other hand, the TKE below the
bottom of the turbine blades decreases more and more as
it approaches the sea surface. Figure 14b indicates that the
largest effects of the FWFP scheme on the TKE also appear
at the top of the turbine (−1.4–0.6 m2 s−2). It is evident that
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Figure 12. Horizontal wind speed of (a) the WRF-FWFP case minus the WRF-CTL case and (b) the WRF-Fitch case minus the WRF-FWFP
case at the hub height level. The solid red line indicates the outer boundary of the wind farm, and the solid green line indicates a cross section
analyzed further.

Figure 13. Vertical transect of the wind speed of (a) the WRF-
FWFP case minus the WRF-CTL case and (b) the WRF-Fitch case
minus the WRF-FWFP case along the solid green line in Fig. 12b.
The turbine hub height is indicated by the solid horizontal line, and
the turbine blade bottom and top are indicated by the dashed lines.

these results are not influenced by advection but by vertical
transport, spreading throughout the ABL.

The changes in TKE generation due to the new wind farm
parameterization are mainly due to variation in wind shear
and vertical transport, which are further analyzed and quan-
tified using the TKE budget. In the planetary boundary layer

scheme (MYNN 2.5), the TKE is expressed as

∂TKE
∂t
= Ps+Pb+Pv+Pd, (28)

where Ps is the shear production term, Pb is the buoyancy
production term, Pv is the vertical transport term, and Pd is
the dissipation term. Details about the equations can be found
in Janjic (2001).

The largest sources of the difference in TKE between the
two cases are shear generation and vertical transport, with the
dissipation term almost negligible (Fig. 16). Vertical trans-
port clearly affects the TKE from the bottom of the turbine
blade to the sea surface and from the hub height to a height of
248 m. The TKE from above the turbine increases the TKE
from the hub height to the top of the turbine due to downward
vertical transport (Fig. 16a). The intensification in TKE due
to shear generation appears at the top of the turbine, while the
reduction appears below the top of the turbine (150 to 194 m)
(Fig. 16b). In addition, the impacts of shear generation and
vertical transport on the TKE in the rotor region are almost
exactly opposite, but the effect of shear generation is slightly
larger. This also corresponds well with the distribution of the
differences in TKE (Fig. 15b).

Subsequently, the positive and negative areas of the TKE
on the cross section are analyzed separately. In the region
where the TKE decreases (the wind speed increases), the
FWFP scheme results in a greater wind speed deficit, which
increases the vertical wind shear in the region from the hub
height to the top of the wind turbine, thus increasing the TKE
(Fig. 17a). In the region where the difference in TKE is posi-
tive (and the difference in wind speed is negative), the result
is the opposite (Fig. 17b). And in these regions, the FWFP
scheme recovers only a small increase in wind speed, which
also results in a limited reduction in TKE.
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Figure 14. Horizontal TKE of (a) the WRF-FWFP case minus the WRF-CTL case and (b) the WRF-Fitch case minus the WRF-FWFP case
at the top of the turbine. Horizontal TKE of (c) the WRF-FWFP case minus the WRF-CTL case and (d) the WRF-Fitch case minus the
WRF-FWFP case near the sea surface. The solid red line shows the outer boundary of the wind farm, and the solid pink line indicates a cross
section analyzed further.

6 Conclusions

Floating wind turbines are essential as the offshore wind in-
dustry moves into deeper-ocean regions. However, current
wind farm parameterizations can only be applied to fixed tur-
bines. In this study, we develop a floating wind farm param-
eterization (FWFP) in a coupled model.

Parameters of the column are modified in the VEG module
of SWAN to include the effect of the inertial force to make
it suitable for the application of the side column of a floating
offshore wind turbine. At the same time, a series of ideal-
ized high-resolution SWAN simulations is conducted to in-
vestigate the dissipation of wave energy induced by the side
columns of floating turbines. It is found that under certain
conditions, the side columns of floating turbines can atten-
uate more than 50 % of the significant wave height (SWH),
and a wave wake phenomenon occurs with a recovery length
of ∼ 1 km. The mean wave direction is also affected, with
a symmetric change of about 5° around the side columns,
and the mean wave length increases by more than 20 m. The
idealized SWAN simulations and theoretical analyses show
that the attenuation of the SWH decreases with increasing
water depth and is enhanced with increasing peak wave pe-

riod. A total of 2520 groups of experiments consisting of dif-
ferent incident SWHs, water depths, and peak wave periods
are conducted, and the results of these idealized simulations
are used to train a Gaussian process regression (GPR) model
with the Matern 5/2 kernel. This model can predict the atten-
uated SWH due to the side columns of the floating turbine
with a given water depth, peak wave period, and incident
SWH.

The GPR model is implemented in the surface parame-
terization module of the WRF to calculate the frictional ve-
locity, roughness length, and other relevant variables at the
wind turbine site. These variables are then passed to the plan-
etary boundary layer driver module to calculate the new in-
flow wind speeds for the Fitch wind farm parameterization
to form the FWFP. The difference in the results between the
original Fitch scheme and our new FWFP scheme is analyzed
in a realistic simulation using a coupled atmosphere–wave
model. The results indicate that the FWFP scheme results
in higher power output for most of the grid cells in the wind
farm (93.2 %) compared to the Fitch scheme, with an average
of 12 % higher. This is most likely due to the fact that float-
ing wind farms weaken the SWH and also reduce the rough-
ness length and frictional velocity, which ultimately leads to
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Figure 15. Vertical transect of the TKE of (a) the WRF-FWFP case minus the WRF-CTL case and (b) the WRF-Fitch case minus the WRF-
FWFP case along the solid pink line in Fig. 14b. The turbine hub height is indicated by the solid horizontal line, and the turbine blade bottom
and top are indicated by the dashed lines.

an increase in the inflow wind speed. There is also a signif-
icant difference in the wind speed deficit caused by the two
schemes. As a result of the FWFP modification of the inflow
wind speed, the wind speed in the upstream region increases
(< 0.4 m s−1) compared to the Fitch scheme. Wind speeds in
the downstream region are reduced, but to a greater extent, to
within 1.8 m s−1. The distribution of the differences in TKE
corresponds well to the distribution of the differences in wind
speed. Compared to the Fitch scheme, the FWFP scheme
generates less TKE in the upstream region (< 0.6 m2 s−2)
and more TKE in the downstream region (< 1.4 m2 s−2). The
TKE budget demonstrates that shear generation dominates
the difference in TKE between the two schemes in the rotor
region. Vertical transport is also an important source of TKE
variation, and FWFP reduces TKE transport from above the
top of the turbine to the lower levels.

Appendix A: Linear regression

Linear regression models are the simplest and most basic
class of supervised learning models in machine learning.
Stepwise linear regression is an effective method when there
are more independent variables. The idea of stepwise linear
regression is to introduce the independent variables one by
one, and for each independent variable introduced, F tests

are performed one by one. When the originally introduced
variable becomes insignificant due to the introduction of the
later introduced variable, it is dropped, and the process is re-
peated until the regression equation contains only significant
regression variables.

1. Create a one-way regression equation for each indepen-
dent variable with the dependent variable.

y = aiXi + bi i = 1,2, . . .,m (A1)

2. Calculate the test statistic F for the regression co-
efficients in each regression equation separately and
find the maximum value F 1

k1
=maxF 1

1 F
1
2 F

1
m. If F 1

k1
≤

Fα(1,n− 2), stop filtering; otherwise select xk1 in the
set of variables, and at this point consider xk1 to be x1,
and proceed to step (3).

3. Separately, calculate the set of independent variables,
(x1x2), (x1x3), . . . , (x1xm), with the dependent vari-
able to create a binary regression equation. Return to
step (2), and process the m− 1 regression equations.
This iterative process results in the optimal regression
equation.
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Figure 16. Vertical transect of the TKE budget components of the WRF-Fitch case minus the WRF-FWFP case: (a) vertical transport,
(b) shear generation, (c) and dissipation along the solid pink line in Fig. 14b. The turbine hub height is indicated by the solid horizontal line,
and the turbine blade bottom and top are indicated by the dashed lines.

Appendix B: Regression tree

Decision trees are a non-parametric supervised learning
method for classification and regression. The goal is to create
a model that predicts the value of a target variable by learning
simple decision rules derived from data features. Depending
on the type of data being processed, decision trees fall into
two categories: classification decision trees, which can be
used to process discrete data, and regression decision trees,
which can be used to process continuous data. In the input
space where the training data set is located, binary decision
trees are constructed by recursively dividing each region into
two sub-regions and determining the output values on each
sub-region. Suppose that the input space has been divided
into M cells (R1R2RM ) and that each cell Rm has a fixed
output value cm:

1. Select the optimal cutoff variable j and cutoff point s so
that Eq. (B1) is minimized.

min[min
∑

xi∈R1(j,s)

(yi − c1)
2
+min

∑
xi∈R2(j,s)

(yi − c2)
2
] (B1)

2. Divide the region with the selected pair (js), and decide
the output value of the response.

R1(is)= {x

∣∣∣xj ≤ s, R2(is)= {x

∣∣∣xj > s, (B2)

ĉm =
1
Nm

∑
xi∈Rm(j,s)

yi, x ∈ Rm, m= 1, 2 (B3)

3. Repeat steps (1) and (2) for both sub-regions until the
condition is satisfied.

4. The input space is divided intoM regions (R1R2RM ) to
generate a decision tree.

f (x)=
∑M

m−1
ĉmI (x ∈ Rm) (B4)

Appendix C: Support vector machines

Support vector regression (SVR) is a regression algorithm
based on the support vector machine (SVM) for solving re-
gression problems. Unlike traditional regression algorithms,
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Figure 17. Profile of the vertical wind shear along the solid pink line (within the wind farm) in Fig. 14b. (a) Areas where the difference (the
WRF-Fitch case minus the WRF-FWFP case) in TKE is negative; (b) areas where the difference (the WRF-Fitch case minus the WRF-FWFP
case) in TKE is positive. The turbine hub height is indicated by the solid horizontal line, and the turbine blade bottom and top are indicated
by the dashed lines.

the goal of SVR is to minimize the difference between pre-
dicted and actual values by constructing a prediction func-
tion. In addition, unlike general regression, SVR allows the
model to have a certain amount of deviation, and the points
within the deviation range are not considered problematic by
the model, while the points outside the deviation range are
counted as losses.

For SVR, the prediction model is as follows:

f (x)= wT x+ b. (C1)

The optimization objective function is as follows:

minJ =
1
2
‖w‖2 (C2)

subject to
∣∣yi −wT xi − b∣∣≤ εi = 1,2, . . .,N .

To eliminate the influence of possible singular-value data
on the performance of the SVR model, a slack variable δ is
introduced, and Eq. (C2) is transformed into

minJ (wδδ∗i )=
1
2
‖w‖2+ c

∑N

i=1
(δi + δ

∗

i ) (C3)

subject to yi −wT xi − b ≤ ε+ δ∗i ,

wT xi + b− yi ≤ ε+ δi,

δiδ
∗

i ≥ 0.

Among them, c is the penalty parameter, and the larger the
value of c, the less adaptive the SVR regression model; a

small value of c will lead to a decrease in the sensitivity
of δ, increasing the training error. The penalty parameter c
is a balanced compromise between the complexity and the
adaptability of the SVR model and has to be set in the appli-
cation. It can be seen that the original objective function is
a quadratic programming problem. To facilitate the solution,
the Lagrange function is introduced:

minLp =
1
2
‖w‖2+ c

∑N

i=1
αi(ε+ δi − yi +w

T xi + b)

−

∑N

i=1
α∗i (ε+ δ

∗

i + yi −w
T xi − b)

−

∑N

i=1
(βiδi +β

∗

i δ
∗

i ), (C4)

where αi , α∗i , βi , and β∗i ≥ 0 are Lagrange multipliers. The
optimization problem (Eq. C4) for the original objective
function is transformed into a saddle-point problem to solve
the Lagrange function:

maxLD =−
1
2

N∑
i=1

N∑
j=1
(αi −α

∗

i )(αj −α
∗

j )〈ϕ(xi),ϕ(xj )〉

− ε
∑N

i=1
(αi +α

∗

i )+
∑N

i=1
yi(αi −α

∗

i ) (C5)

subject to
∑N
i=1(αi −α

∗

i )= 0, αi ≥, α∗i ≤ c.
The corresponding regression estimation function is ob-

tained.

f (x)=
∑N

i=1
(αi −α

∗

i )〈ϕ(xi),ϕ(xj )〉+ b (C6)
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In practice, it is often difficult to define feature mappings,
which is why kernel functions K(xixj ) are introduced.

f (x)=
∑N

i=1
(αi −α

∗

i )K(xi,xj )+ b (C7)

Appendix D: Gaussian process regression

Gaussian process regression (GPR) is a non-parametric
model for regression analysis of data using a Gaussian pro-
cess prior. GPR is usually used for low-dimensional and
small-sample regression problems. In regression prediction,
it usually predicts the value of a single point, but GPR can
be interpreted as probabilistic prediction, which can predict
the exact point as well as the upper and lower bounds, adding
more reference value to the prediction. The model assump-
tions of GPR consist of two parts: the noise (regression resid-
uals) and the Gaussian process prior, and its solution is based
on Bayesian inference. The GPR can be expressed as

f (x)∼N(µ(x),k(xixj )), (D1)

where µ(x) denotes the mean function, and k(xixj ) denotes
the kernel (covariance) function, showing that determining
the mean and covariance functions is sufficient to determine
a GPR. Kernel functions are at the core of GPR, and there
are many different kernel functions. For example, the Matern
5/2 covariance function is defined as

k(xixj )= σ
2
f

(
1+

√
5r
σl
+

5r2

3σ 2
l

)
exp

(
−

√
5r
σl

)
, (D2)

where r =
√
(xi − xj )T ((xi − xj )). The kernel parameters

are based on the signal standard deviation σf and the charac-
teristic length scale σl .

The given discrete data are (xoyo). Suppose yo and f (x)
have a joint Gaussian distribution. The joint probability den-
sity formula is then

f (x)

yo
∼N

(
µf Kff Kfy
µy KT

fy Kyy

)
, (D3)

where Kff = k(xx), Kfy = k(xxo), and Kyy = k(xoxo).
The mean of the prediction is then

ymean =K
T
fyK

−1
yy y

o. (D4)

Code and data availability. The NCEP FNL data (NECP, 2015)
can be download from https://rda.ucar.edu/datasets/ds083.3/, wave
data (WW3) can be download from https://www.ncei.noaa.gov/
thredds-ocean/catalog/ncep/nww3/catalog.html (WW3DG, 2019),
and the satellite data (Jason-3) can be obtained from https://www.
ncei.noaa.gov/products/jason-satellite-products (Lillibridge, 2019).
The coupled model is freely available online (https://github.com/
DOI-USGS/COAWST, Warner et al., 2010). Fortran files related to
the offshore wind farm parameterization are available in a public
repository (https://doi.org/10.5281/zenodo.12180181, Deng, 2024).
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