Articles | Volume 17, issue 12
https://doi.org/10.5194/gmd-17-4755-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-4755-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Calibrating and validating the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) urban cooling model: case studies in France and the United States
Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
Earth Observatory of Singapore, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
Martí Bosch
Urban and Regional Planning Community, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Léa Tardieu
TETIS, INRAE, AgroParisTech, CIRAD, CNRS, Université de Montpellier, Montpellier, France
CIRED, Ecole des Ponts ParisTech, AgroParisTech, Cirad, CNRS, EHESS, Université Paris-Saclay, 94736, Nogent-sur-Marne, France
Aude Lemonsu
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Cécile de Munck
CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
Chris Nootenboom
Ecognosis, Warwick, NY 10990, USA
Vincent Viguié
CIRED, Ecole des Ponts ParisTech, AgroParisTech, Cirad, CNRS, EHESS, Université Paris-Saclay, 94736, Nogent-sur-Marne, France
Eric Lonsdorf
Department of Environmental Sciences, Emory College, Atlanta, GA 30322, USA
James A. Douglass
Natural Capital Project, Dept. of Biology and Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
Richard P. Sharp
Spring, 5455 Shafter Avenue, Oakland, CA 94618, USA
Related authors
Martí Bosch, Maxence Locatelli, Perrine Hamel, Roy P. Remme, Jérôme Chenal, and Stéphane Joost
Geosci. Model Dev., 14, 3521–3537, https://doi.org/10.5194/gmd-14-3521-2021, https://doi.org/10.5194/gmd-14-3521-2021, 2021
Short summary
Short summary
The article presents a novel approach to simulate urban heat mitigation from land use/land cover data based on three biophysical mechanisms: tree shade, evapotranspiration and albedo. An automated procedure is proposed to calibrate the model parameters to best fit temperature observations from monitoring stations. A case study in Lausanne, Switzerland, shows that the approach outperforms regressions based on satellite data and provides valuable insights into design heat mitigation policies.
Aurélien Mirebeau, Cécile de Munck, Bertrand Bonan, Christine Delire, Aude Lemonsu, Valéry Masson, and Stephan Weber
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-233, https://doi.org/10.5194/gmd-2024-233, 2025
Preprint under review for GMD
Short summary
Short summary
The greening of cities is recommended to limit the effects of climate change. In particular, green roofs can provide numerous environmental benefits, such as urban cooling, water retention and carbon sequestration. The aim of this research is to develop a new module for calculating green roof CO2 fluxes within a model that can already simulate hydrological and thermal processes of such roofs. The calibration and evaluation of this module take advantage of long term experimental data.
Martial Haeffelin, Jean-François Ribaud, Jonnathan Céspedes, Jean-Charles Dupont, Aude Lemonsu, Valéry Masson, Tim Nagel, and Simone Kotthaus
Atmos. Chem. Phys., 24, 14101–14122, https://doi.org/10.5194/acp-24-14101-2024, https://doi.org/10.5194/acp-24-14101-2024, 2024
Short summary
Short summary
This study highlights how the state of the urban atmospheric boundary layer impacts urban park cooling effect intensity at night. Under summertime heat wave conditions, the urban atmosphere becomes stable at night, which inhibits turbulent motions. Under those specific conditions, urban parks and woods cool much more efficiently than the surrounding built-up neighbourhoods in the evening and through the night, providing cooler air temperatures by 4 to 6° C depending on park size.
Martí Bosch, Maxence Locatelli, Perrine Hamel, Roy P. Remme, Jérôme Chenal, and Stéphane Joost
Geosci. Model Dev., 14, 3521–3537, https://doi.org/10.5194/gmd-14-3521-2021, https://doi.org/10.5194/gmd-14-3521-2021, 2021
Short summary
Short summary
The article presents a novel approach to simulate urban heat mitigation from land use/land cover data based on three biophysical mechanisms: tree shade, evapotranspiration and albedo. An automated procedure is proposed to calibrate the model parameters to best fit temperature observations from monitoring stations. A case study in Lausanne, Switzerland, shows that the approach outperforms regressions based on satellite data and provides valuable insights into design heat mitigation policies.
Robert Schoetter, Yu Ting Kwok, Cécile de Munck, Kevin Ka Lun Lau, Wai Kin Wong, and Valéry Masson
Geosci. Model Dev., 13, 5609–5643, https://doi.org/10.5194/gmd-13-5609-2020, https://doi.org/10.5194/gmd-13-5609-2020, 2020
Short summary
Short summary
Cities change the local meteorological conditions, e.g. by increasing air temperature, which can negatively impact humans and infrastructure. The urban climate model TEB is able to calculate the meteorological conditions in low- and mid-rise cities since it interacts with the lowest level of an atmospheric model. Here, a multi-layer coupling of TEB is introduced to enable modelling the urban climate of cities with many skyscrapers; the new version is tested for the high-rise city of Hong Kong.
Emilie Redon, Aude Lemonsu, and Valéry Masson
Geosci. Model Dev., 13, 385–399, https://doi.org/10.5194/gmd-13-385-2020, https://doi.org/10.5194/gmd-13-385-2020, 2020
Short summary
Short summary
The TEB urban climate model simulates micrometeorological conditions from the neighborhood scale to the entire city. It has recently been improved to more realistically address the radiative effects of trees within the urban canopy. This article presents additional developments that have been made to better represent the effect of trees on heat and moisture exchange, as well as on air flow in the streets, and on thermal comfort.
Xenia Stavropulos-Laffaille, Katia Chancibault, Jean-Marc Brun, Aude Lemonsu, Valéry Masson, Aaron Boone, and Hervé Andrieu
Geosci. Model Dev., 11, 4175–4194, https://doi.org/10.5194/gmd-11-4175-2018, https://doi.org/10.5194/gmd-11-4175-2018, 2018
Short summary
Short summary
Integrating vegetation in urban planning is promoted to counter steer potential impacts of climate and demographic changes. Assessing the multiple benefits of such strategies on the urban microclimate requires a detailed coupling of both the water and energy transfers in numerical tools. In this respect, the representation of water-related processes in the urban subsoil of the existing model TEB-Veg has been improved. The new model thus allows a better evaluation of urban adaptation strategies.
Emilie C. Redon, Aude Lemonsu, Valéry Masson, Benjamin Morille, and Marjorie Musy
Geosci. Model Dev., 10, 385–411, https://doi.org/10.5194/gmd-10-385-2017, https://doi.org/10.5194/gmd-10-385-2017, 2017
Short summary
Short summary
In order to assess the potential of cooling of urban vegetation in cities, we need to refine some processes in the microclimate models running on cities as the TEB model. The shading effects of trees on roads, low vegetation (grass), or walls are key processes impacting both air and surface temperatures in the streets by reducing them and improving the thermal comfort of inhabitants. They have been implemented into the TEB model and simulations have been evaluated by a fine-scale model, SOLENE.
C. S. de Munck, A. Lemonsu, R. Bouzouidja, V. Masson, and R. Claverie
Geosci. Model Dev., 6, 1941–1960, https://doi.org/10.5194/gmd-6-1941-2013, https://doi.org/10.5194/gmd-6-1941-2013, 2013
V. Masson, P. Le Moigne, E. Martin, S. Faroux, A. Alias, R. Alkama, S. Belamari, A. Barbu, A. Boone, F. Bouyssel, P. Brousseau, E. Brun, J.-C. Calvet, D. Carrer, B. Decharme, C. Delire, S. Donier, K. Essaouini, A.-L. Gibelin, H. Giordani, F. Habets, M. Jidane, G. Kerdraon, E. Kourzeneva, M. Lafaysse, S. Lafont, C. Lebeaupin Brossier, A. Lemonsu, J.-F. Mahfouf, P. Marguinaud, M. Mokhtari, S. Morin, G. Pigeon, R. Salgado, Y. Seity, F. Taillefer, G. Tanguy, P. Tulet, B. Vincendon, V. Vionnet, and A. Voldoire
Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, https://doi.org/10.5194/gmd-6-929-2013, 2013
Related subject area
Atmospheric sciences
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Forecasting contrail climate forcing for flight planning and air traffic management applications: the CocipGrid model in pycontrails 0.51.0
Simulation of the heat mitigation potential of unsealing measures in cities by parameterizing grass grid pavers for urban microclimate modelling with ENVI-met (V5)
AI-NAOS: an AI-based nonspherical aerosol optical scheme for the chemical weather model GRAPES_Meso5.1/CUACE
Orbital-Radar v1.0.0: a tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
The Modular and Integrated Data Assimilation System at Environment and Climate Change Canada (MIDAS v3.9.1)
Modeling of polycyclic aromatic hydrocarbons (PAHs) from global to regional scales: model development (IAP-AACM_PAH v1.0) and investigation of health risks in 2013 and 2018 in China
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
Observational operator for fair model evaluation with ground NO2 measurements
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
Assessment of object-based indices to identify convective organization
The Global Forest Fire Emissions Prediction System version 1.0
Sensitivity Studies of Four‐Dimensional Local Ensemble Transform Kalman Filter Coupled With WRF-Chem Version 3.9.1 for Improving Particulate Matter Simulation Accuracy
Development of A Fast Radiative Transfer Model for Ground-based Microwave Radiometers (ARMS-gb v1.0): Validation and Comparison to RTTOV-gb
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Knowledge-inspired fusion strategies for the inference of PM2.5 values with a Neural Network
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
Estimation of aerosol and cloud radiative heating rate in tropical stratosphere using radiative kernel method
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
Recent improvements and maximum covariance analysis of aerosol and cloud properties in the EC-Earth3-AerChem model
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0
Similarity-Based Analysis of Atmospheric Organic Compounds for Machine Learning Applications
Cell tracking -based framework for assessing nowcasting model skill in reproducing growth and decay of convective rainfall
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Improving the EnSRF in the Community Inversion Framework: a case study with ICON-ART 2024.01
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025, https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary
Short summary
We tested the capability of the flux divergence approach (FDA) to reproduce known NOx emissions using synthetic NO2 satellite column retrievals from high-resolution model simulations. The FDA accurately reproduced NOx emissions when column observations were limited to the boundary layer and when the variability of the NO2 lifetime, the NOx : NO2 ratio, and NO2 profile shapes were correctly modeled. This introduces strong model dependency, reducing the simplicity of the original FDA formulation.
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025, https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Short summary
We explore a high-level programming model for porting numerical weather prediction (NWP) model codes to graphics processing units (GPUs). We present a Python rewrite with the domain-specific library GT4Py (GridTools for Python) of two renowned cloud microphysics schemes and the associated tangent-linear and adjoint algorithms. We find excellent portability, competitive GPU performance, robust execution on diverse computing architectures, and enhanced code maintainability and user productivity.
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025, https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
Short summary
Clustering high-resolution satellite observations into superobservations improves model validation and data assimilation applications. In our paper, we derive quantitative uncertainties for satellite NO2 column observations based on knowledge of the retrievals, including a detailed analysis of spatial error correlations and representativity errors. The superobservations and uncertainty estimates are tested in a global chemical data assimilation system and are found to improve the forecasts.
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025, https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Short summary
This paper presents the Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool (ML-AMPSIT), a computationally efficient tool that uses machine learning algorithms for sensitivity analysis in atmospheric models. It is tested with the Weather Research and Forecasting (WRF) model coupled with the Noah-Multiparameterization (Noah-MP) land surface model to investigate sea breeze circulation sensitivity to vegetation-related parameters.
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025, https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary
Short summary
Radiation is relevant to the atmospheric impact on people and infrastructure in cities as it can influence the urban heat island, building energy consumption, and human thermal comfort. A new urban radiation model, assuming a more realistic form of urban morphology, is coupled to the urban climate model Town Energy Balance (TEB). The new TEB is evaluated with a reference radiation model for a variety of urban morphologies, and an improvement in the simulated radiative observables is found.
Zebediah Engberg, Roger Teoh, Tristan Abbott, Thomas Dean, Marc E. J. Stettler, and Marc L. Shapiro
Geosci. Model Dev., 18, 253–286, https://doi.org/10.5194/gmd-18-253-2025, https://doi.org/10.5194/gmd-18-253-2025, 2025
Short summary
Short summary
Contrails forming in some atmospheric conditions may persist and become strongly warming cirrus, while in other conditions may be neutral or cooling. We develop a contrail forecast model to predict contrail climate forcing for any arbitrary point in space and time and explore integration into flight planning and air traffic management. This approach enables contrail interventions to target high-probability high-climate-impact regions and reduce unintended consequences of contrail management.
Nils Eingrüber, Alina Domm, Wolfgang Korres, and Karl Schneider
Geosci. Model Dev., 18, 141–160, https://doi.org/10.5194/gmd-18-141-2025, https://doi.org/10.5194/gmd-18-141-2025, 2025
Short summary
Short summary
Climate change adaptation measures like unsealings can reduce urban heat stress. As grass grid pavers have never been parameterized for microclimate model simulations with ENVI-met, a new parameterization was developed based on field measurements. To analyse the cooling potential, scenario analyses were performed for a densely developed area in Cologne. Statistically significant average cooling effects of up to −11.1 K were found for surface temperature and up to −2.9 K for 1 m air temperature.
Xuan Wang, Lei Bi, Hong Wang, Yaqiang Wang, Wei Han, Xueshun Shen, and Xiaoye Zhang
Geosci. Model Dev., 18, 117–139, https://doi.org/10.5194/gmd-18-117-2025, https://doi.org/10.5194/gmd-18-117-2025, 2025
Short summary
Short summary
The Artificial-Intelligence-based Nonspherical Aerosol Optical Scheme (AI-NAOS) was developed to improve the estimation of the aerosol direct radiation effect and was coupled online with a chemical weather model. The AI-NAOS scheme considers black carbon as fractal aggregates and soil dust as super-spheroids, encapsulated with hygroscopic aerosols. Real-case simulations emphasize the necessity of accurately representing nonspherical and inhomogeneous aerosols in chemical weather models.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev., 18, 101–115, https://doi.org/10.5194/gmd-18-101-2025, https://doi.org/10.5194/gmd-18-101-2025, 2025
Short summary
Short summary
The Python tool Orbital-Radar transfers suborbital radar data (ground-based, airborne, and forward-simulated numerical weather prediction model) into synthetic spaceborne cloud profiling radar data, mimicking platform-specific instrument characteristics, e.g. EarthCARE or CloudSat. The tool's novelty lies in simulating characteristic errors and instrument noise. Thus, existing data sets are transferred into synthetic observations and can be used for satellite calibration–validation studies.
Mark Buehner, Jean-Francois Caron, Ervig Lapalme, Alain Caya, Ping Du, Yves Rochon, Sergey Skachko, Maziar Bani Shahabadi, Sylvain Heilliette, Martin Deshaies-Jacques, Weiguang Chang, and Michael Sitwell
Geosci. Model Dev., 18, 1–18, https://doi.org/10.5194/gmd-18-1-2025, https://doi.org/10.5194/gmd-18-1-2025, 2025
Short summary
Short summary
The Modular and Integrated Data Assimilation System (MIDAS) software is described. The flexible design of MIDAS enables both deterministic and ensemble prediction applications for the atmosphere and several other Earth system components. It is currently used for all main operational weather prediction systems in Canada and also for sea ice and sea surface temperature analysis. The use of MIDAS for multiple Earth system components will facilitate future research on coupled data assimilation.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024, https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can reproduce PAH distribution well. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change in BaP is lower than that in PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although the Action Plan has been implemented.
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024, https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
Short summary
We have developed a complete two-moment version of the LIMA (Liquid Ice Multiple Aerosols) microphysics scheme. We have focused on collection processes, where the hydrometeor number transfer is often estimated in proportion to the mass transfer. The impact of these parameterizations on a convective system and the prospects for more realistic estimates of secondary parameters (reflectivity, hydrometeor size) are shown in a first test on an idealized case.
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024, https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
Short summary
A new parameterisation for dynamic anthropogenic heat and electricity consumption is described. The model reproduced the temporal variation in and spatial distributions of electricity consumption and temperature well in summer and winter. The partial air conditioning was the most critical factor, significantly affecting the value of anthropogenic heat emission.
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024, https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Short summary
To accurately characterize the spatiotemporal distribution of particulate matter <2.5 µm chemical components, we developed the Nested Air Quality Prediction Model System with the Parallel Data Assimilation Framework (NAQPMS-PDAF) v2.0 for chemical components with non-Gaussian and nonlinear properties. NAQPMS-PDAF v2.0 has better computing efficiency, excels when used with a small ensemble size, and can significantly improve the simulation performance of chemical components.
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024, https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Short summary
Chemical transport model simulations are combined with ozone observations to estimate the bias in ozone attributable to US anthropogenic sources and individual sources of US background ozone: natural sources, non-US anthropogenic sources, and stratospheric ozone. Results indicate a positive bias correlated with US anthropogenic emissions during summer in the eastern US and a negative bias correlated with stratospheric ozone during spring.
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024, https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Short summary
Model evaluations against ground observations are usually unfair. The former simulates mean status over coarse grids and the latter the surrounding atmosphere. To solve this, we proposed the new land-use-based representative (LUBR) operator that considers intra-grid variance. The LUBR operator is validated to provide insights that align with satellite measurements. The results highlight the importance of considering fine-scale urban–rural differences when comparing models and observation.
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024, https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
Short summary
The ensemble Kalman filter (EnKF) improves dust storm forecasts but faces challenges with position errors. The valid time shifting EnKF (VTS-EnKF) addresses this by adjusting for position errors, enhancing accuracy in forecasting dust storms, as proven in tests on 2021 events, even with smaller ensembles and time intervals.
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Jianyu Lin, Tie Dai, Lifang Sheng, Weihang Zhang, Shangfei Hai, and Yawen Kong
EGUsphere, https://doi.org/10.5194/egusphere-2024-3321, https://doi.org/10.5194/egusphere-2024-3321, 2024
Short summary
Short summary
The effectiveness of assimilation system and its sensitivity to ensemble member size and length of assimilation window have been investigated. This study advances our understanding about the selection of basic parameters in the four-dimension local ensemble transform Kalman filter assimilation system and the performance of ensemble simulation in a particulate matter polluted environment.
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
EGUsphere, https://doi.org/10.5194/egusphere-2024-2884, https://doi.org/10.5194/egusphere-2024-2884, 2024
Short summary
Short summary
Assimilating Ground-based microwave radiometers' observations into numerical weather prediction models holds significant promise for enhancing forecast accuracy. Radiative transfer models (RTM) are crucial for direct data assimilation. We propose a new RTM capable of simulating brightness temperatures observed by GMRs and their Jacobians. Several improvements are introduced to achieve higher accuracy.The RTM align with RTTOV-gb well and can achieve smaller STD in water vapor absorption channels.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
EGUsphere, https://doi.org/10.5194/egusphere-2024-2676, https://doi.org/10.5194/egusphere-2024-2676, 2024
Short summary
Short summary
This work focuses on the prediction of aerosol concentration values at ground level, which are a strong indicator of air quality, using Artificial Neural Networks. A study of different variables and their efficiency as inputs for these models is also proposed, and reveals that the best results are obtained when using all of them. Comparison of networks architectures and information fusion methods allows the extraction of knowledge on the most efficient methods in the context of this study.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Jie Gao, Yi Huang, Jonathon S. Wright, Ke Li, Tao Geng, and Qiurun Yu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2815, https://doi.org/10.5194/egusphere-2024-2815, 2024
Short summary
Short summary
The aerosol in the upper troposphere and stratosphere is highly variable, and its radiative effect is poorly understood. To estimate that effect, the radiative kernel is constructed and applied. The results show that the kernels can reproduce aerosol radiative effects and are expected to simulate stratospheric aerosol radiative effects. This approach reduces computational expense and consists well with radiative model calculations and can be applied to atmospheric models with speed requirements.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024, https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Short summary
We use a comprehensive approach to select a subset of CMIP6 models for dynamical downscaling over Southeast Asia, taking into account model performance, model independence, data availability and the range of future climate projections. The standardised benchmarking framework is applied to assess model performance through both statistical and process-based metrics. Ultimately, we identify two independent model groups that are suitable for dynamical downscaling in the Southeast Asian region.
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024, https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
Short summary
Monitoring greenhouse gas emission reductions requires a combination of models and observations, as well as an initial emission estimate. Each component provides information with a certain level of certainty and is weighted to yield the most reliable estimate of actual emissions. We describe efforts for estimating the uncertainty in the initial emission estimate, which significantly impacts the outcome. Hence, a good uncertainty estimate is key for obtaining reliable information on emissions.
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024, https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the analog method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities for broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024, https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Short summary
We enhance the WDM6 scheme by incorporating predicted graupel density. The modification affects graupel characteristics, including fall velocity–diameter and mass–diameter relationships. Simulations highlight changes in graupel distribution and precipitation patterns, potentially influencing surface snow amounts. The study underscores the significance of integrating predicted graupel density for a more realistic portrayal of microphysical properties in weather models.
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024, https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024, https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Short summary
Using high-resolution and state-of-the-art modeling techniques we simulate five atmospheric river events for California to test the capability to represent precipitation for these events. We find that our model is able to capture the distribution of precipitation very well but suffers from overestimating the precipitation amounts over high elevation. Increasing the resolution further has no impact on reducing this bias, while increasing the domain size does have modest impacts.
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-145, https://doi.org/10.5194/gmd-2024-145, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The effect of the assumed atmospheric nucleation mechanism on particle number concentrations and size distribution was investigated. Two quite different mechanisms involving sulfuric acid and ammonia or a biogenic organic vapor gave quite similar results which were consistent with measurements in 26 measurement stations across Europe. The number of larger particles that serve as cloud condensation nuclei showed little sensitivity to the assumed nucleation mechanism.
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024, https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
Short summary
Aerosol–cloud interactions occur at a range of spatio-temporal scales. While evaluating recent developments in EC-Earth3-AerChem, this study aims to understand the extent to which the Twomey effect manifests itself at larger scales. We find a reduction in the warm bias over the Southern Ocean due to model improvements. While we see footprints of the Twomey effect at larger scales, the negative relationship between cloud droplet number and liquid water drives the shortwave radiative effect.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024, https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary
Short summary
Solar activity weakly ionises Earth's atmosphere, charging cloud droplets. Electro-coalescence is when oppositely charged droplets stick together. We introduce an analytical expression of electro-coalescence probability and use it in a warm-cumulus-cloud simulation. Results show that charge cases increase rain and droplet size, with the new method outperforming older ones. The new method requires longer computation time, but its impact on rain justifies inclusion in meteorology models.
Hilda Sandström and Patrick Rinke
EGUsphere, https://doi.org/10.48550/arXiv.2406.18171, https://doi.org/10.48550/arXiv.2406.18171, 2024
Short summary
Short summary
Machine learning has the potential to aid the identification organic molecules involved in aerosol formation. Yet, progress is stalled by a lack of curated atmospheric molecular datasets. Here, we compared atmospheric compounds with large molecular datasets used in machine learning and found minimal overlap with similarity algorithms. Our result underlines the need for collaborative efforts to curate atmospheric molecular data to facilitate machine learning model in atmospheric sciences.
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-99, https://doi.org/10.5194/gmd-2024-99, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Nowcasting models struggle with the rapid evolution of heavy rain, and common verification methods are unable to describe how accurately the models predict the growth and decay of heavy rainfall. We propose a framework to assess model performance. In the framework, convective cells are identified and tracked in the forecasts and observations, and then the model skill is evaluated by comparing differences between forecast and observed cells. We demonstrate the framework with 4 open-source models.
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024, https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Short summary
Satellite observations provide crucial information about atmospheric constituents in a global distribution that helps to better predict the weather over sparsely observed regions like the Arctic. However, the use of satellite data is usually conservative and imperfect. In this study, a better spatial representation of satellite observations is discussed and explored by a so-called footprint function or operator, highlighting its added value through a case study and diagnostics.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024, https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Short summary
The forecast error growth of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. With a negative result, we investigate in the extended Lorenz (2005) system whether omitting these phenomena will improve predictability. A theory explaining and describing this behavior is developed.
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024, https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
Short summary
In this study, we present VERT (Vehicular Emissions from Road Traffic), an R package designed to estimate transport emissions using traffic estimates and vehicle fleet composition data. Compared to other tools available in the literature, VERT stands out for its user-friendly configuration and flexibility of user input. Case studies demonstrate its accuracy in both urban and regional contexts, making it a valuable tool for air quality management and transport scenario planning.
Joël Thanwerdas, Antoine Berchet, Lionel Constantin, Aki Tsuruta, Michael Steiner, Friedemann Reum, Stephan Henne, and Dominik Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2197, https://doi.org/10.5194/egusphere-2024-2197, 2024
Short summary
Short summary
The Community Inversion Framework (CIF) brings together methods for estimating greenhouse gas fluxes from atmospheric observations. The initial ensemble method implemented in CIF was found to be incomplete and could hardly be compared to other ensemble methods employed in the inversion community. In this paper, we present and evaluate a more efficient implementation of the serial and batch versions of the Ensemble Square Root Filter (EnSRF) algorithm in CIF.
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: FAO Irrigation and Drainage Paper No. 56. Irrigation and Drainage, 56, No. 97, Food and Agriculture Organization of the United Nations, Rome, ISBN 978-9251042199, 1998.
APUR: Atténuer les îlots de chaleur urbains – Cahier n° 5: méthodes et outils de conception des projets, https://www.apur.org/fr/nos-travaux/attenuer-ilots-chaleur-urbains-cahier-5-methodes-outils-conception-projets (last access: 30 April 2023), 2020.
Aslam, A. and Rana, I. A.: The use of local climate zones in the urban environment: A systematic review of data sources, methods, and themes, Urban Clim., 42, 101120, https://doi.org/10.1016/J.UCLIM.2022.101120, 2022.
Bartesaghi Koc, C., Osmond, P., and Peters, A.: Evaluating the cooling effects of green infrastructure: A systematic review of methods, indicators and data sources, Sol. Energy, 166, 486–508, https://doi.org/10.1016/J.SOLENER.2018.03.008, 2018.
Bolund, P. and Hunhammar, S.: Ecosystem services in urban areas, Ecol. Econ., 29, 293–301, https://doi.org/10.1016/S0921-8009(99)00013-0, 1999.
Bosch, M., Locatelli, M., Hamel, P., Remme, R. P., Chenal, J., and Joost, S.: A spatially explicit approach to simulate urban heat mitigation with InVEST (v3.8.0), Geosci. Model Dev., 14, 3521–3537, https://doi.org/10.5194/gmd-14-3521-2021, 2021.
Bosch, M., Locatelli, M., Hamel, P., Remme, R. P., Jaligot, R., Chenal, J., and Joost, S.: Evaluating urban greening scenarios for urban heat mitigation: a spatially explicit approach, R. Soc. Open Sci., 8, 202174, https://doi.org/10.1098/rsos.202174, 2022.
Bowler, D. E., Buyung-Ali, L. M., Knight, T. M., and Pullin, A. S.: A systematic review of evidence for the added benefits to health of exposure to natural environments, BMC Public Health, 10, 456, https://doi.org/10.1186/1471-2458-10-456, 2010.
Cao, X., Onishi, A., Chen, J., and Imura, H.: Quantifying the cool island intensity of urban parks using ASTER and IKONOS data, Landsc. Urban Plan., 96, 224–231, https://doi.org/10.1016/J.LANDURBPLAN.2010.03.008, 2010.
Chakraborty, T. and Lee, X.: A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability, Int. J. Appl. Earth Obs., 74, 269–280, https://doi.org/10.1016/J.JAG.2018.09.015, 2019.
Cheung, P. K., Livesley, S. J., and Nice, K. A.: Estimating the cooling potential of irrigating green spaces in 100 global cities with arid, temperate or continental climates, Sustain. Cities Soc., 71, 102974, https://doi.org/10.1016/J.SCS.2021.102974, 2021.
Corburn, J.: Cities, Climate Change and Urban Heat Island Mitigation: Localising Global Environmental Science, Urban Stud., 46, 413–427, https://doi.org/10.1177/0042098008099361, 2009.
Cortinovis, C. and Geneletti, D.: A framework to explore the effects of urban planning decisions on regulating ecosystem services in cities, Ecosyst. Serv., 38, 100946, https://doi.org/10.1016/J.ECOSER.2019.100946, 2019.
Cortinovis, C., Olsson, P., Boke-Olén, N., and Hedlund, K.: Scaling up nature-based solutions for climate-change adaptation: Potential and benefits in three European cities, Urban For Urban Green, 67, 127450, https://doi.org/10.1016/J.UFUG.2021.127450, 2022.
de Munck, C., Lemonsu, A., Masson, V., Le Bras, J., and Bonhomme, M.: Evaluating the impacts of greening scenarios on thermal comfort and energy and water consumptions for adapting Paris city to climate change, Urban Clim., 23, 260–286, https://doi.org/10.1016/J.UCLIM.2017.01.003, 2018.
Derkzen, M. L., van Teeffelen, A. J. A., and Verburg, P. H.: Review: Quantifying urban ecosystem services based on high-resolution data of urban green space: an assessment for Rotterdam, the Netherlands, J. Appl. Ecol., 52, 1020–1032, https://doi.org/10.1111/1365-2664.12469, 2015.
Eliasson, I.: Urban nocturnal temperatures, street geometry and land use, Atmos. Environ., 30, 379–392, https://doi.org/10.1016/1352-2310(95)00033-X, 1996.
Eumorfopoulou, E. A. and Kontoleon, K. J.: Experimental approach to the contribution of plant-covered walls to the thermal behaviour of building envelopes, Build. Environ., 44, 1024–1038, https://doi.org/10.1016/J.BUILDENV.2008.07.004, 2009.
Farrugia, S., Hudson, M. D., and McCulloch, L.: An evaluation of flood control and urban cooling ecosystem services delivered by urban green infrastructure, International Journal of Biodiversity Science, Ecosystem Services & Management, 9, 136–145, https://doi.org/10.1080/21513732.2013.782342, 2013.
github-actions[bot]: martibosch/invest-ucm-calibration: Release v0.6.0 (v0.6.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.8081822, 2023.
Gosling, S. N., Lowe, J. A., McGregor, G. R., Pelling, M., and Malamud, B. D.: Associations between elevated atmospheric temperature and human mortality: A critical review of the literature, Climatic Change, 92, 299–341, https://doi.org/10.1007/S10584-008-9441-X, 2009.
Hamel, P., Guerry, A. D., Polasky, S., Han, B., Douglass, J. A., Hamann, M., Janke, B., Kuiper, J. J., Levrel, H., Liu, H., Lonsdorf, E., McDonald, R. I., Nootenboom, C., Ouyang, Z., Remme, R. P., Sharp, R. P., Tardieu, L., Viguié, V., Xu, D., Zheng, H., and Daily, G. C.: Mapping the benefits of nature in cities with the InVEST software, npj Urban Sustainability, 1, 25, https://doi.org/10.1038/s42949-021-00027-9, 2021.
Hémon, D. and Jougla, E.: Surmortalité liée à la canicule d'août 2003, Rapport remis au Ministre de la Santé et de la protection sociale, https://www.inserm.fr/wp-content/uploads/2017-11/inserm-rapportthematique-surmortalitecaniculeaout2003-rapportfinal.pdf (last access: 20 March 2024), 2004.
Homer, C., Dewitz, J., Jin, S., Xian, G., Costello, C., Danielson, P., Gass, L., Funk, M., Wickham, J., Stehman, S., Auch, R., and Riitters, K.: Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database, ISPRS J. Photogramm., 162, 184–199, https://doi.org/10.1016/j.isprsjprs.2020.02.019, 2020.
Jauregui, E.: Influence of a large urban park on temperature and convective precipitation in a tropical city, Energy Build., 15, 457–463, https://doi.org/10.1016/0378-7788(90)90021-A, 1990.
Kadaverugu, R., Gurav, C., Rai, A., Sharma, A., Matli, C., and Biniwale, R.: Quantification of heat mitigation by urban green spaces using InVEST model – a scenario analysis of Nagpur City, India, Arab. J. Geosci., 14, 82, https://doi.org/10.1007/S12517-020-06380-W, 2021.
Kroeger, T., McDonald, R. I., Boucher, T., Zhang, P., and Wang, L.: Where the people are: Current trends and future potential targeted investments in urban trees for PM10 and temperature mitigation in 27 U.S. Cities, Landsc. Urban Plan., 177, 227–240, https://doi.org/10.1016/j.landurbplan.2018.05.014, 2018.
Kunapo, J., Fletcher, T. D., Ladson, A. R., Cunningham, L., and Burns, M. J.: A spatially explicit framework for climate adaptation, 15, 159–166, https://doi.org/10.1080/1573062X.2018.1424216, 2018.
Lai, L. W. and Cheng, W. L.: Air quality influenced by urban heat island coupled with synoptic weather patterns, Sci. Total Environ., 407, 2724–2733, https://doi.org/10.1016/j.scitotenv.2008.12.002, 2009.
Larondelle, N. and Haase, D.: Urban ecosystem services assessment along a rural–urban gradient: A cross-analysis of European cities, Ecol. Indic., 29, 179–190, https://doi.org/10.1016/J.ECOLIND.2012.12.022, 2013.
Lavigne, P., Brejon, P., and Fernandez, P.: Architecture Climatique: Une Contribution Au Développement Durable, Edisud, ISBN 978-2857447504, 1994.
Lehmann, S.: Low carbon districts: Mitigating the urban heat island with green roof infrastructure, City, Culture and Society, 5, 1–18, https://doi.org/10.1016/j.ccs.2014.02.002, 2014.
Lemonsu, A., Masson, V., Shashua-Bar, L., Erell, E., and Pearlmutter, D.: Inclusion of vegetation in the Town Energy Balance model for modelling urban green areas, Geosci. Model Dev., 5, 1377–1393, https://doi.org/10.5194/gmd-5-1377-2012, 2012.
Le Roy, B., Lemonsu, A., Kounkou-Arnaud, R., Brion, D., and Masson, V.: Long time series spatialized data for urban climatological studies: A case study of Paris, France, Int. J. Climatol., 40, 3567–3584, https://doi.org/10.1002/JOC.6414, 2020.
Li, X., Zhou, Y., Asrar, G. R., Imhoff, M., and Li, X.: The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States, Sci. Total Environ., 605–606, 426–435, https://doi.org/10.1016/J.SCITOTENV.2017.06.229, 2017.
Lonsdorf, E. V., Nootenboom, C., Janke, B., and Horgan, B. P.: Assessing urban ecosystem services provided by green infrastructure: Golf courses in the Minneapolis-St. Paul metro area, Landsc. Urban Plan., 208, 104022, https://doi.org/10.1016/J.LANDURBPLAN.2020.104022, 2021.
Manoli, G., Fatichi, S., Schläpfer, M., Yu, K., Crowther, T. W., Meili, N., Burlando, P., Katul, G. G., and Bou-Zeid, E.: Magnitude of urban heat islands largely explained by climate and population, Nature, 573, 573, 55–60, https://doi.org/10.1038/s41586-019-1512-9, 2019.
Martilli, A., Roth, M., Chow, W. T. L., Demuzere, M., Lipson, M., Krayenhoff, E. S., Sailor, D., Nazarian, N., Voogt, J., Wouters, H., Middel, A., Stewart, I. D., Bechtel, B., Christen, A., and Hart, M. A.: Summer average urban-rural surface temperature differences do not indicate the need for urban heat reduction, Research Collection School of Social Sciences, Paper 3391, https://ink.library.smu.edu.sg/soss_research/3391 (last access: 20 March 2024), 2020.
Masson, V.: A physically-based scheme for the urban energy budget in atmospheric models, Bound.-Lay. Meteorol., 94, 357–397, https://doi.org/10.1023/A:1002463829265, 2000.
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013.
McDonald, R., Kroeger, T., Boucher, T., LongZhu, W., and Salem, R.: Planting healthy air: a global analysis of the role of urban trees in addressing particulate matter pollution and extreme heat. The Nature Conservancy, https://www.nature.org/content/dam/tnc/nature/en/documents/20160825_PHA_Report_Final.pdf (last access: 20 March 2024), 2016.
Meili, N., Manoli, G., Burlando, P., Bou-Zeid, E., Chow, W. T. L., Coutts, A. M., Daly, E., Nice, K. A., Roth, M., Tapper, N. J., Velasco, E., Vivoni, E. R., and Fatichi, S.: An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1.0), Geosci. Model Dev., 13, 335–362, https://doi.org/10.5194/gmd-13-335-2020, 2020.
Natural Capital Project: InVEST 3.13.0 User's Guide, Stanford University, University of Minnesota, Chinese Academy of Sciences, The Nature Conservancy, World Wildlife Fund, and Stockholm Resilience Centre, https://naturalcapitalproject.stanford.edu/software/invest (last access: 20 March 2024), 2022.
Nedkov, S., Zhiyanski, M., Dimitrov, S., Borisova, B., Popov, A., Ihtimanski, I., Yaneva, R., Nikolov, P., and Bratanova-Doncheva, S.: Mapping and assessment of urban ecosystem condition and services using integrated index of spatial structure, One Ecosystem, 2, e14499, https://doi.org/10.3897/oneeco.2.e14499, 2017.
NOAA: National Oceanic and Atmospheric Administration’s Online Weather Data (NOWData), Minneapolis-St Paul Area monthly summarized data, mean of monthly average temperatures 1981–2010, https://www.weather.gov/climateservices/nowdatafaq (last access: 20 March 2024), 2020.
Oke, T. R.: The energetic basis of the urban heat island, Q. J. Roy. Meteor. Soc., 108, 1–24, https://doi.org/10.1002/qj.49710845502, 1982.
Phelan, P. E., Kaloush, K., Miner, M., Golden, J., Phelan, B., Silva, H., and Taylor, R. A.: Urban Heat Island: Mechanisms, Implications, and Possible Remedies, Annu. Rev. Environ. Resour., 40, 285–307, https://doi.org/10.1146/annurev-environ-102014-021155, 2015.
Potchter, O., Cohen, P., and Bitan, A.: Climatic behavior of various urban parks during hot and humid summer in the mediterranean city of Tel Aviv, Israel, Int. J. Climatol., 26, 1695–1711, https://doi.org/10.1002/joc.1330, 2006.
Reid, C. E., Snowden, J. M., Kontgis, C., and Tager, I. B.: The Role of Ambient Ozone in Epidemiologic Studies of Heat-Related Mortality, Environ. Health Perspect., 120, 1627–1630, https://doi.org/10.1289/EHP.1205251, 2012.
Rosenzweig, C., Solecki, W., and Slosberg, R.: Mitigating New York City’s heat island with urban forestry, living roofs, and light surfaces, A report to the New York State Energy Research and Development Authority, http://usclimateandhealthalliance.org/post_resource/mitigating-new-york-citys-heat-island-with-urban-forestry-living-roofs-and-light-surfaces/ (last access: 20 March 2024), 2006.
Santamouris, M.: Regulating the damaged thermostat of the cities – Status, impacts and mitigation challenges, Energy Build., 91, 43–56, https://doi.org/10.1016/J.ENBUILD.2015.01.027, 2015.
Santamouris, M.: Innovating to zero the building sector in Europe: Minimising the energy consumption, eradication of the energy poverty and mitigating the local climate change, Sol. Energy, 128, 61–94, https://doi.org/10.1016/J.SOLENER.2016.01.021, 2016.
Santamouris, M.: Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change, Energy Build., 207, 109482, https://doi.org/10.1016/J.ENBUILD.2019.109482, 2020.
Schatz, J. and Kucharik, C. J.: Seasonality of the Urban Heat Island Effect in Madison, Wisconsin, J. Appl. Meteorol. Climatol., 53, 2371–2386, https://doi.org/10.1175/JAMC-D-14-0107.1, 2014.
Shashua-Bar, L. and Hoffman, M. E.: Vegetation as a climatic component in the design of an urban street: An empirical model for predicting the cooling effect of urban green areas with trees, Energy Build., 31, 221–235, https://doi.org/10.1016/S0378-7788(99)00018-3, 2000.
Smoliak, B. V., Snyder, P. K., Twine, T. E., Mykleby, P. M., and Hertel, W. F.: Dense network observations of the Twin Cities Canopy-Layer urban heat island, J. Appl. Meteorol. Climatol., 54, 1899–1917, https://doi.org/10.1175/JAMC-D-14-0239.1, 2015.
Spronken-Smith, R. A. and Oke, T. R.: Scale Modelling of Nocturnal Cooling in Urban Parks, Bound.-Lay. Meteorol., 93, 287–312, https://doi.org/10.1023/A:1002001408973, 1999.
Stéfanon, M., Martin-StPaul, N. K., Leadley, P., Bastin, S., Dell'Aquila, A., Drobinski, P., and Gallardo, C.: Testing climate models using an impact model: what are the advantages?, Climatic Change, 131, 649–661, https://doi.org/10.1007/s10584-015-1412-4, 2015.
Stewart, I. D.: A systematic review and scientific critique of methodology in modern urban heat island literature, Int. J. Climatol., 31, 200–217, https://doi.org/10.1002/JOC.2141, 2011.
Stewart, I. D. and Oke, T. R.: Local Climate Zones for Urban Temperature Studies, B. Am. Meteorol. Soc., 93, 1879–1900, 2012.
Tan, P. Y., Wong, N. H., Tan, C. L., Jusuf, S. K., Chang, M. F., and Chiam, Z. Q.: A method to partition the relative effects of evaporative cooling and shading on air temperature within vegetation canopy, Journal of Urban Ecology, 4, juy012, https://doi.org/10.1093/JUE/JUY012, 2018.
Tardieu, L., Hamel, P., Viguié, V., Coste, L., and Levrel, H.: Are soil sealing indicators sufficient to guide urban planning? Insights from an ecosystem services assessment in the Paris metropolitan area, Environ. Res. Lett., 16, 104019, https://doi.org/10.1088/1748-9326/ac24d0, 2021.
Velasco, E.: Go to field, look around, measure and then run models, Urban Clim., 24, 231–236, https://doi.org/10.1016/J.UCLIM.2018.04.001, 2018.
Venter, Z. S., Chakraborty, T., and Lee, X.: Crowdsourced air temperatures contrast satellite measures of the urban heat island and its mechanisms, Sci. Adv., 7, eabb9569, https://doi.org/10.1126/SCIADV.ABB9569, 2021.
Viguié, V., Lemonsu, A., Hallegatte, S., Beaulant, A. L., Marchadier, C., Masson, V., Pigeon, G., and Salagnac, J. L.: Early adaptation to heat waves and future reduction of air-conditioning energy use in Paris, Environ. Res. Lett., 15, 075006, https://doi.org/10.1088/1748-9326/ab6a24, 2020.
Villanueva-Solis, J.: Urban Heat Island Mitigation and Urban Planning: The Case of the Mexicali, B. C. Mexico, Am. J. Clim. Change, 6, 22–39, https://doi.org/10.4236/ajcc.2017.61002, 2017.
Wan, Z.: Collection-6 MODIS Land Surface Temperature Products Users' Guide, https://lpdaac.usgs.gov/documents/118/MOD11_User_Guide_V6.pdf (last access: 20 March 2024), 2013.
Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.: Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects, Sci. Total Environ., 575, 1582–1596, https://doi.org/10.1016/j.scitotenv.2016.10.081, 2017.
Wong, N. H., Tan, C. L., Kolokotsa, D. D., and Takebayashi, H.: Greenery as a mitigation and adaptation strategy to urban heat, Nature Reviews Earth & Environment, 2, 166–181, https://doi.org/10.1038/s43017-020-00129-5, 2021.
Yu, Z., Yang, G., Zuo, S., Jørgensen, G., Koga, M., and Vejre, H.: Critical review on the cooling effect of urban blue-green space: A threshold-size perspective, Urban For Urban Green, 49, 126630, https://doi.org/10.1016/J.UFUG.2020.126630, 2020.
Zardo, L., Geneletti, D., Pérez-Soba, M., and Van Eupen, M.: Estimating the cooling capacity of green infrastructures to support urban planning, Ecosyst. Serv., 26, 225–235, https://doi.org/10.1016/J.ECOSER.2017.06.016, 2017.
Zawadzka, J. E., Harris, J. A., and Corstanje, R.: Assessment of heat mitigation capacity of urban greenspaces with the use of InVEST urban cooling model, verified with day-time land surface temperature data, Landsc. Urban Plan., 214, 104163, https://doi.org/10.1016/J.LANDURBPLAN.2021.104163, 2021.
Zhao, L., Lee, X., Smith, R. B., and Oleson, K.: Strong contributions of local background climate to urban heat islands, Nature, 511, 216–219, https://doi.org/10.1038/nature13462, 2014.
Ziter, C. D., Pedersen, E. J., Kucharik, C. J., and Turner, M. G.: Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer, P. Natl. Acad. Sci. USA, 116, 7575–7580, https://doi.org/10.1073/pnas.1817561116, 2019.
Short summary
The InVEST Urban Cooling model estimates the cooling effect of vegetation in cities. We further developed an algorithm to facilitate model calibration and evaluation. Applying the algorithm to case studies in France and in the United States, we found that nighttime air temperature estimates compare well with reference datasets. Estimated change in temperature from a land cover scenario compares well with an alternative model estimate, supporting the use of the model for urban planning decisions.
The InVEST Urban Cooling model estimates the cooling effect of vegetation in cities. We further...