Articles | Volume 17, issue 9
https://doi.org/10.5194/gmd-17-3839-2024
https://doi.org/10.5194/gmd-17-3839-2024
Model description paper
 | 
14 May 2024
Model description paper |  | 14 May 2024

DEUCE v1.0: a neural network for probabilistic precipitation nowcasting with aleatoric and epistemic uncertainties

Bent Harnist, Seppo Pulkkinen, and Terhi Mäkinen

Related authors

Benchmarking KDP in Rainfall: A Quantitative Assessment of Estimation Algorithms Using C-Band Weather Radar Observations
Miguel Aldana, Seppo Pulkkinen, Annakaisa von Lerber, Matthew R. Kumjian, and Dmitri Moisseev
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-155,https://doi.org/10.5194/amt-2024-155, 2024
Revised manuscript accepted for AMT
Short summary
Cell tracking -based framework for assessing nowcasting model skill in reproducing growth and decay of convective rainfall
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-99,https://doi.org/10.5194/gmd-2024-99, 2024
Revised manuscript under review for GMD
Short summary
The accuracy of weather radar in heavy rain: a comparative study for Denmark, the Netherlands, Finland and Sweden
Marc Schleiss, Jonas Olsson, Peter Berg, Tero Niemi, Teemu Kokkonen, Søren Thorndahl, Rasmus Nielsen, Jesper Ellerbæk Nielsen, Denica Bozhinova, and Seppo Pulkkinen
Hydrol. Earth Syst. Sci., 24, 3157–3188, https://doi.org/10.5194/hess-24-3157-2020,https://doi.org/10.5194/hess-24-3157-2020, 2020
Short summary
Pysteps: an open-source Python library for probabilistic precipitation nowcasting (v1.0)
Seppo Pulkkinen, Daniele Nerini, Andrés A. Pérez Hortal, Carlos Velasco-Forero, Alan Seed, Urs Germann, and Loris Foresti
Geosci. Model Dev., 12, 4185–4219, https://doi.org/10.5194/gmd-12-4185-2019,https://doi.org/10.5194/gmd-12-4185-2019, 2019
Short summary

Related subject area

Atmospheric sciences
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024,https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024,https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024,https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024,https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Observational operator for fair model evaluation with ground NO2 measurements
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024,https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary

Cited articles

Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U. R., Makarenkov, V., and Nahavandi, S.: A review of uncertainty quantification in deep learning: Techniques, applications and challenges, Inform. Fusion, 76, 243–297, https://doi.org/10.1016/j.inffus.2021.05.008, 2021. a
Agrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen, C., and Hickey, J.: Machine Learning for Precipitation Nowcasting from Radar Images, arXiv [preprint], https://doi.org/10.48550/arXiv.1912.12132, 2019. a
Alexander, C., Dowell, D. C., Hu, M., Olson, J., Smirnova, T., Ladwig, T., Weygandt, S., Kenyon, J. S., James, E., Lin, H., Grell, G., Ge, G., Alcott, T., Benjamin, S., Brown, J. M., Toy, M. D., Ahmadov, R., Back, A., Duda, J. D., Smith, M. B., Hamilton, J. A., Jamison, B. D., Jankov, I., and Turner, D. D.: Rapid Refresh (RAP) and High Resolution Rapid Refresh (HRRR) Model Development, 100th Annual AMS Meeting, Boston Convention and Exhibition Center 415 Summer St. Boston, MA, https://rapidrefresh.noaa.gov/pdf/Alexander_AMS_NWP_2020.pdf (last access: 2 May 2024), 2020. a
Ayzel, G., Scheffer, T., and Heistermann, M.: RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting, Geosci. Model Dev., 13, 2631–2644, https://doi.org/10.5194/gmd-13-2631-2020, 2020. a, b, c
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a, b
Download
Short summary
Probabilistic precipitation nowcasting (local forecasting for 0–6 h) is crucial for reducing damage from events like flash floods. For this goal, we propose the DEUCE neural-network-based model which uses data and model uncertainties to generate an ensemble of potential precipitation development scenarios for the next hour. Trained and evaluated with Finnish precipitation composites, DEUCE was found to produce more skillful and reliable nowcasts than established models.