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Abstract. Precipitation nowcasting (forecasting locally for
0–6 h) serves both public security and industries, facilitating
the mitigation of losses incurred due to, e.g., flash floods and
is usually done by predicting weather radar echoes, which
provide better performance than numerical weather predic-
tion (NWP) at that scale. Probabilistic nowcasts are espe-
cially useful as they provide a desirable framework for op-
erational decision-making. Many extrapolation-based statis-
tical nowcasting methods exist, but they all suffer from a lim-
ited ability to capture the nonlinear growth and decay of pre-
cipitation, leading to a recent paradigm shift towards deep-
learning methods which are more capable of representing
these patterns.

Despite its potential advantages, the application of deep
learning in probabilistic nowcasting has only recently started
to be explored. Here we develop a novel probabilistic pre-
cipitation nowcasting method, based on Bayesian neural net-
works with variational inference and the U-Net architecture,
named DEUCE. The method estimates the total predictive
uncertainty in the precipitation by combining estimates of
the epistemic (knowledge-related and reducible) and het-
eroscedastic aleatoric (data-dependent and irreducible) un-
certainties, using them to produce an ensemble of develop-
ment scenarios for the following 60 min.

DEUCE is trained and verified using Finnish Meteorolog-
ical Institute radar composites compared to established clas-
sical models. Our model is found to produce both skillful
and reliable probabilistic nowcasts based on various evalua-
tion criteria. It improves the receiver operating characteristic
(ROC) area under the curve scores 1 %–5 % over STEPS and
LINDA-P baselines and comes close to the best-performer
STEPS on a continuous ranked probability score (CRPS)
metric. The reliability of DEUCE is demonstrated with, e.g.,

having the lowest expected calibration error at 20 and 25 dBZ
reflectivity thresholds and coming second at 35 dBZ. On
the other hand, the deterministic performance of ensemble
means is found to be worse than that of extrapolation and
LINDA-D baselines. Last, the composition of the predictive
uncertainty is analyzed and described, with the conclusion
that aleatoric uncertainty is more significant and informative
than epistemic uncertainty in the DEUCE model.

1 Introduction

Predicting the amount and location of precipitation at lo-
cal scales of a few kilometers for lead times ranging from
minutes to hours, i.e., precipitation nowcasting, has recently
grown into an important component of severe weather early-
warning systems, particularly for those focused on predicting
flash floods. Because of the intensification coupled with the
increased frequency of extreme precipitation events brought
by climate change, accurate estimates of future precipitation
have increased in importance. However, the capacity of any
nowcasting model to produce accurate estimates is limited
and thus also having an idea of the reliability of the nowcast
is operationally important. This can be addressed with en-
semble nowcasts, which generate a set of possible scenarios,
with which it is possible to estimate the probability of certain
events.

Numerical weather prediction (NWP) is widely used for
forecasts at longer timescales and with coarser grids (Bauer
et al., 2015), with regional high-resolution models model
generally having a grid resolution of a few kilometers and
a refresh rate of typically 1 h. For example, the High-
Resolution Rapid Refresh (HRRR) model developed by the
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United States’ National Oceanic and Atmospheric Adminis-
tration (NOAA) has a grid resolution of 3 km and a refresh
rate of 1 h (Alexander et al., 2020). However, NWP does not
achieve sufficient performance at the spatiotemporal scales
typical of nowcasts, due to not yet having achieved numer-
ical stability in these first few hours and due to the com-
putational complexity of resolving atmospheric equations at
sub-hour temporal resolutions and grid resolutions approach-
ing the microscale (≤ 1 km) (Sun et al., 2014; Radhakrishnan
and Chandrasekar, 2020). Specialized nowcasting methods
for precipitation have been developed in parallel with NWP
and may be used in order to circumvent its problems in the
domain. These mainly rely on forecasting the evolution of
radar echo image sequences that act as a good proxy for
ground-level precipitation and usually have a spatial resolu-
tion of ∼ 1 km and a temporal resolution of ∼ 5 min, which
are characteristic of weather radar observations.

1.1 Extrapolation-based precipitation nowcasting

The most important class of precipitation nowcasting mod-
els is based on the extrapolation of radar echoes along the
background advection field. These models first estimate the
advection field from a sequence of past radar images with
methods such as variational echo tracking (Laroche and Za-
wadzki, 1995) or optical-flow-based methods like the Lucas–
Kanade method (Lucas and Kanade, 1981; Bouguet, 2001).
In the classical case of the pure extrapolation nowcast, the
most recently observed frame is simply extrapolated along
the estimated advection field, often using a semi-Lagrangian
scheme (Staniforth and Côté, 1991). Extrapolation nowcast-
ing does not model the growth and decay of precipitation,
so many extensions attempting to make up for that have
been developed. One important method is Spectral Prognosis
(S-PROG) by Seed (2003). S-PROG is based on the scale-
dependence of the lifetime and evolution of features, decom-
posing the field into additive components corresponding to
different spatial scales and evolving each of them separately
using an autoregressive (AR2) model in Lagrangian (flow
frame of reference) coordinates, enabling modeling the scale-
dependent behavior of precipitation.

STEPS (Short-Term Ensemble Prediction System) by
Bowler et al. (2006), is an influential ensemble nowcasting
model based on S-PROG. In STEPS, stochastic perturbations
are added to the motion field in order to model its uncer-
tainty. Just like with S-PROG, the growth and decay of the
precipitation field is modeled by decomposing it using a cas-
cade of scales with the autoregressive model applied to each
of these scales separately in Lagrangian coordinates. Unlike
in S-PROG, stochastic noise is injected at each scale, con-
current with the AR modeling. Over time, various models
have expanded upon STEPS; one recent example is LINDA
(Lagrangian INtegro-Difference equation model with autore-
gression) (Pulkkinen et al., 2021), which uses an integro-
difference equation model with rain cell detection and convo-

lutions for modeling the loss of predictability at small scales.
LINDA produces nowcasts that are particularly well-suited
to the prediction of strong localized rainfall.

1.2 Deep-learning approaches to precipitation
nowcasting

With significant recent advances in deep learning, the interest
in its use for precipitation nowcasting has increased. One of
the first deep-learning models to have been used explicitly for
precipitation nowcasting is the convolutional LSTM (ConvL-
STM) model (Shi et al., 2015), which combines the temporal
prediction capacity of the long short-term memory (LSTM)
neural networks with 3D convolutions modeling spatiotem-
poral features in one model for spatiotemporal nowcasting.
ConvLSTM has later been improved by the TrajGRU model
(Shi et al., 2017) that replaces the heavy LSTM structure with
a lighter GRU (gated recurrent unit) structure and is capable
of learning an active location variant structure for the recur-
rent connections.

Apart from doing the temporal modeling using recurrent
units, a popular approach has been to use fully convolutional
neural networks, often two-dimensional, thus avoiding the
modeling of explicit temporal dependencies. These networks
have often been based on U-Net-type architectures, one early
example of which is the model by Agrawal et al. (2019),
which predicts the exceedance of rainfall over three distinct
intensity thresholds for a 1 h lead time. A more useful model
is RainNet by Ayzel et al. (2020). RainNet nowcasts rainfall
continuously, one time step at a time, inserting the predicted
frames back into the network in order to make multiple lead
time predictions. Similarly, FureNET by Pan et al. (2021)
nowcasts rainfall 1 h at a time using polarimetric input vari-
ables, in addition to observed rain rates, via multiple encoder
branches and late fusion in the decoder of a residual U-Net
architecture and brings improvement compared to using plain
rain rates.

The principal problem of using the above deep-learning
models for deterministic precipitation nowcasting is that of
the increasing blurring of nowcasts with lead time. This is
the natural consequence of attempting to minimize the pixel-
wise forecasting error in the presence of uncertainties inher-
ent to the task of predicting precipitation. Such loss func-
tions thus behave in the same fashion as S-PROG and STEPS
by explicitly filtering out scales through their loss of pre-
dictability. One way to resolve the problem is to use gener-
ative modeling, which is the approach taken by Ravuri et al.
(2021) with their Deep Generative Model of Radar (DGMR).
DGMR is an adversarially trained convolutional gated re-
current unit (ConvGRU)-based generative model capable of
generating realistic time series of future radar observations
that outperform both classical and deep-learning baseline
models. In addition to deterministic nowcasts, DGMR is also
capable of making ensemble-based probabilistic nowcasts.
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Making probabilistic precipitation nowcasts using deep
learning has been explored less often than deterministic now-
casts, despite the clear benefit of the probabilistic approach in
operational use. In addition to DGMR, other existing prob-
abilistic models are MetNet (Sønderby et al., 2020) and its
successor MetNet-2 (Espeholt et al., 2022). MetNet aggre-
gates weather radar, satellite, and orographic information
over a large area to predict a probability distribution of rain
rate per pixel in one forward pass for a single lead time, with
an architecture consisting of a spatial aggregator of inputs, a
ConvLSTM spatial encoder, and a spatial decoder with ax-
ial attention. The model is shown to outperform the HRRR
NWP model on an F1 metric for lead times up to 8 h. MetNet-
2 improves upon its predecessor by adding the data assimi-
lation context as an input and aggregating data over a larger
area. This enables it to outperform, or at worst rival, HRRR
and HREF (High-Resolution Ensemble Forecast) models in
continuous ranked probability score (CRPS) and critical suc-
cess index (CSI) metrics for lead times up to 12 h.

1.3 Uncertainty quantification and Bayesian deep
learning

In addition to playing an important role in precipitation now-
casting, the importance of uncertainty quantification (UQ)
has also been recognized in deep learning (Abdar et al.,
2021). In the field of machine learning, uncertainty in the pre-
dictions can be divided into two separate components: epis-
temic and aleatoric uncertainty. Epistemic uncertainty repre-
sents the lack of knowledge in the model, and it is reducible
through improving the model or bringing in more training
data. Aleatoric uncertainty, on the other hand, is inherent to
the input data, and no amount of additional training data or
model improvement will reduce it. Aleatoric uncertainty that
varies over the input data is said to be heteroscedastic; a con-
stant uncertainty is called homoscedastic.

Many approaches to the quantification of uncertainty have
been developed on the deep-learning side. One particularly
important theme driving the development in this realm has
been operational safety and countering overconfident predic-
tions made by black box models overfitting the training data.
Bayesian neural networks (BNNs) have emerged as a candi-
date for addressing that issue. They work by placing proba-
bility distributions over the weights, which are estimated via
the means of Bayesian inference and yield a predictive dis-
tribution for data through their marginalization.

Although exact Bayesian inference is intractable for
large neural networks, suitable approximations exist. These
are commonly divided into Markov chain Monte Carlo
(MCMC)- and variational inference (VI)-based methods
(Jospin et al., 2022). MCMC methods predict better weight
distributions but are more computationally expensive and
thus often reserved for small-scale problems where perfor-
mance is key. VI, on the other hand, is more scalable and
has been applied to larger neural networks. The idea behind

variational inference is to approximate the true posterior of
weights with a simpler analytic one (the variational posterior)
and to estimate the variational posterior which is the closest
to the true one. Thanks to advances by Graves (2011) and
subsequently Blundell et al. (2015) with the Bayes by Back-
prop (BBB) algorithm, it is now possible to use mini-batch
optimization for mean field VI (i.e., assuming fully factor-
izable variational posteriors) on large networks, opening up
possibilities for the use of VI in problems such as precipita-
tion nowcasting that require large amounts of input data and
numerous model parameters.

Later, Monte Carlo Dropout (Gal and Ghahramani, 2016)
techniques, among other variants, have been identified as be-
ing equivalent to approximate Bayesian inference due to los-
ing some model expressivity but gaining ease of implementa-
tion. Based on this, Kendall and Gal (2017) have developed
a technique for estimating the epistemic and heteroscedas-
tic aleatoric variance components separately in deep-learning
regression tasks. They estimate the epistemic uncertainty
with the variance of predictions made via Monte Carlo
Dropout and add a separate component to their network for
predicting the aleatoric component. The predictions are mod-
eled as having Gaussian likelihoods, with means equal to the
prediction point estimates and variances equal to the aleatoric
term described. These terms are then learned by minimizing
a Gaussian negative log-likelihood loss function and taking
them and observations as inputs. This approach has recently
started to be applied to problems such as the segmentation
of satellite images (Dechesne et al., 2021), remaining use-
ful for life prognostics (Caceres et al., 2021) and long-term
synoptic-scale precipitation forecasts (Xu et al., 2022).

1.4 Model idea and research questions

We propose the Deep Ensemble-based Uncertainty Combin-
ing radar Echo nowcasting (DEUCE) model for probabilistic
precipitation nowcasting. The idea of the model is to apply
the aleatoric and epistemic decomposition of uncertainty by
Kendall and Gal (2017) to a Bayesian convolutional neural
network with mean field variational inference to produce a
predictive distribution of radar reflectivity. This distribution
is then sampled to generate ensemble nowcasts of weather
radar echo images. The research questions that we will at-
tempt to answer are the following:

1. Can we produce both powerful and reliable ensemble
precipitation nowcasts using Bayesian neural networks
with uncertainty decomposition? Specifically, is such a
model competitive when compared to classical base-
line models when assessed with a variety of quantita-
tive probabilistic prediction skill metrics and based on a
qualitative assessment?

2. What are the characteristics of the aleatoric/epistemic
decomposition? We are interested in the evolution of
uncertainties with prediction lead time and whether they

https://doi.org/10.5194/gmd-17-3839-2024 Geosci. Model Dev., 17, 3839–3866, 2024



3842 B. Harnist et al.: DEUCE v1.0

capture different and complementary features of the to-
tal predictive uncertainty.

3. Can the model additionally be useful in producing de-
terministic precipitation nowcasts by means of averag-
ing multiple predictions and leveraging the regulatory
effect of probability distributions placed on weights? Do
such predictions perform competitively when assessed
against classical baseline models using quantitative ver-
ification metrics? Also, what can those metrics tell us
about the nature of the predictions?

2 Model description

DEUCE builds upon a U-Net-based convolutional neural net-
work (CNN) model of deterministic precipitation nowcasting
and turns it into a Bayesian neural network with variational
inference for making the predictions stochastic, enabling us
to model the uncertainty in this U-Net model. As mentioned,
we build upon the work of Kendall and Gal (2017) for quan-
tifying the uncertainty in the nowcasting task. Particularly,
DEUCE attempts to decompose predictive uncertainty into
aleatoric uncertainty (originating from data and irreducible)
and epistemic uncertainty (induced by lacking knowledge
and reducible) by predicting reflectivity fields along with the
aleatoric uncertainty associated with them explicitly. Epis-
temic uncertainty, in turn, is estimated from the variance
in the reflectivity fields sampled, and it is combined with
aleatoric uncertainty at the inference time in order to yield an
approximation of the total predictive uncertainty. From this
point onward, symbols in bold will refer to quantities repre-
sented by multidimensional arrays which we interchangeably
call tensors. Scalar quantities will be represented with non-
bold symbols.

2.1 Functional model

A neural network fθ (x)= ŷ is a universal function approx-
imator which can be used for regression tasks, mapping an
input tensor x to a predicted output tensor ŷ and approx-
imating a ground-truth output tensor y, using its learned
network parameters θ that are represented as a list of ten-
sors. In the case of radar-based precipitation nowcasting with
neural networks, we approximate a function mapping the
spatiotemporal time series of past radar observation images
x = x1,x2, . . .,xLin , where Lin corresponds to the number
of input time steps and to future radar observation images
y = y1,y2, . . .,yLout , where Lout corresponds to the number
of output time steps. In the DEUCE model, both x and y
represent processed radar reflectivity data, and the network
fθ (x)= ŷ,σ

2 outputs a tuple of predicted reflectivity field
time series ŷ = ŷ1, ŷ2, . . ., ŷLout , along with fields estimat-
ing the aleatoric uncertainties σ 2

= σ 2
1,σ

2
2, . . .,σ

2
Lout

corre-
sponding to each of the pixels of ŷ.

For the task of precipitation nowcasting, the neural net-
work has to be capable of outputting predictions for multiple
lead times, i.e., discrete time steps in the future, correspond-
ing to future radar observations. DEUCE achieves this using
a variant of U-Net as its functional architecture, taking in a
sequence of 12 radar reflectivity fields x, predicting ŷ,σ 2

that corresponds to the nowcast for the next 12 time steps in
a single forward pass.

A schematic representation of the main components of
DEUCE and how they are connected is presented in Fig. 1.
The architecture consists of a single encoder branch, extract-
ing features from x at different spatial scales and semantic
levels. The feature maps from these different scales are pre-
served for later use through skip connections. The (largest-
scale) latent state produced by the encoder and the interme-
diate feature maps mediated by skip connections are then fed
to two independent decoders: one outputting ŷ and the other
outputting logσ 2

al. Using separate decoders for the outputs
is preferable over a single combined decoder to avoid the
blending of adjacent features, which would be detrimental to
the expressivity of the model.

The network contains two-dimensional (spatial) convolu-
tions. These are represented by conv2d 3x3 and conv2d
1x1 labels denoting layers with filter sizes 3 and 1, respec-
tively. Using 2D convolutions, temporal dependencies are
only present implicitly. This approximation casts the now-
casting task as a simple image sequence-to-sequence trans-
lation problem, which reduces the computational resources
needed compared to explicit modeling of the temporal as-
pect. The convolutional layers use partial convolutions (Liu
et al., 2018) in which missing values are masked, and only
valid values are used to normalize the convolutions. Al-
though we do not work with missing data, this design choice
helps in providing better-quality predictions near image bor-
ders by reducing, e.g., various artifacts related to them. ReLU
denotes the rectified linear unit activation function, concat
is concatenation along the channel dimension, upsample
is nearest-neighbor upsampling by a scale of 2, and Max
Pooling is maximum pooling by a scale of 2.

2.2 Stochastic model

Conventional neural networks are deterministic in their na-
ture, meaning that they only ever yield the same output ŷ
for a given input x and parameters θ . Our goal is to pro-
duce a reliable estimate of the uncertainty associated with
the approximation produced by the neural network. Because
this approximation is merely a function of the input data and
the functional model including parameters, considering the
uncertainty in these sources separately should allow the ap-
proximation of the total predictive uncertainty in nowcasts.

Hence, epistemic uncertainty is modeled by placing prob-
ability distributions on functional model parameters θ , ef-
fectively turning the model stochastic. A Bayesian approach
is taken in this regard, placing a prior distribution upon the
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Figure 1. The DEUCE encoder and decoder architectural components depicted on the left, along with the architectural diagram making
use of those components on the right. Feature maps at different scales are extracted in the encoder branch before being passed to decoder
branches, providing the outputs of the network.

weights and estimating the most likely posterior distribution
given that prior and the training data. The estimation of the
true posterior is an intractable task for a large-scale neural
network, which is why variational inference (VI) is used to
learn approximate posterior estimates for weights. VI limits
the space of acceptable posterior distributions to a parame-
terized family, whose learned parameters replace the point
estimates of classical neural network weights. Here, we aim
to minimize the Kullback–Leibler (KL) divergence (Kull-
back and Leibler, 1951)DKL between the true and variational
posteriors, which is a measure of the similarity between two
probability distributions. As such, the objective is stated as

θ∗ = argmin
θ
DKL[q(w | θ)‖p(w |D)]

= argmin
θ

∫
q(w | θ) log

q(w | θ)

p(w |D)
dw, (1)

where θ denotes the variational posterior parameters, θ∗ the
optimal parameters, w the sampled network weights, D =
(x,y) the problem data, q(w | θ) the variational posterior,
and p(w |D) the exact posterior of network weights. In prac-
tice, this is not directly solvable, so the optimization is ac-
complished through the maximization of an evidence lower-
bound (ELBO) proxy objective. The objective is defined as

ELBO(D,θ)= Eq(w|θ)[logp(w,D)]
−Eq(w|θ)[logq(w | θ)], (2)

=

likelihood︷ ︸︸ ︷
Eq(w|θ)[logp(D | w)]

+

prior︷ ︸︸ ︷
Eq(w|θ)[logp(w)] −

posterior︷ ︸︸ ︷
Eq(w|θ)[logq(w | θ)]︸ ︷︷ ︸

=−DKL[q(w|θ)‖p(w)],i.e., the complexity term

, (3)

consisting of the log-likelihood, log-prior, and log-posteriors,
with the last two terms commonly grouped together as the

complexity term. Here Eq(w|θ) denotes the expected value of
the probability density of interest over the variational poste-
riors.

According to Blundell et al. (2015), in Bayesian neural
networks and using mini-batch optimization, the ELBO ob-
jective, as stated in Eq. (3), can be approximated as

ELBOπi (Di,θ)≈
1
N

N∑
n=1

(
logp(Di | wi,n)

+πi logp(wi,n)−πi logq(wi,n | θ)
)
, (4)

which acts as an unbiased Monte Carlo estimator of the
ELBO and is our final loss function. Here, the cost is cal-
culated for each ith of theM mini-batches in an epoch draw-
ing N Monte Carlo samples of the variational posteriors of
the weights each time. πi denotes an arbitrary weighting
of the complexity term, using the same rule as in Blundell
et al. (2015) in this work, which is πi = 2M−i/(2M − 1).
This serves to make the regularization effect of the prior
stronger earlier, allowing data to be more important later
in the training. In DEUCE, the variational posterior distri-
butions q are modeled as diagonal Gaussian distributions,
and the Bayes By Backprop (BBB) algorithm, using the re-
parameterization trick by Blundell et al. (2015), is employed
for their optimization. The prior distribution p(w), on the
contrary, is fixed as a hyperparameter and is identically and
independently distributed for each parameter as a normal dis-
tribution with zero mean and a variance of 0.1. This allows
us to potentially calculate the complexity cost in closed form
(Hershey and Olsen, 2007), rather than with the Monte Carlo
estimate of Eq. (4), hence reducing the computational cost of
training.

The likelihood cost of Eq. (4), similar to Kendall and Gal
(2017), is modeled for the ith mini-batch and the nth Monte
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Carlo sample as the Gaussian log likelihood

logP(D | w)=−
1
P

P∑
p=1

1
2
e−sp (yp − ŷp)

2
+

1
2
sp, (5)

where the cost is averaged over p = 1. . .P pixels of the
Lout×W ×H spatiotemporal time series s, y and ŷ. Lout
refers to the length of the time series, W refers to the width
of the images, and H refers to the height of the images. i
and n indices of fields are omitted here for clarity. Here, y
denotes the observed reflectivity fields, ŷ denotes the pre-
dicted reflectivity fields using the nth weights sampled from
the network, and s := logσ 2 refers to the corresponding log-
arithm of the aleatoric variances predicted by the network
with those weights. The logarithm of the aleatoric variances
estimate is taken because optimizing using it is more com-
putationally stable and was found to work better than simply
using variance constrained to be positive with a ReLU output
activation function, especially when dealing with variances
approaching zero.

2.3 Generation of ensemble nowcasts

The procedure for producing the primary outputs of DEUCE
to make probabilistic nowcasts is presented in Fig. 2. First,N
raw network outputs are produced, which are stochastic pairs
of reflectivity field sequences ŷn and logarithmic aleatoric
variance field sequences σ n. Each nth of those sampled out-
puts draws different weights from the learned variational pos-
terior distributions, which is reflected in the output distribu-
tion. The σ n are converted to their non-logarithmic version
σ 2
n, and individual stochastic runs are stacked into a pair of

raw ensembles ŷ,σ 2. At this point, the epistemic uncertainty
is embedded in ŷ, but the aleatoric uncertainty is separate
and only present in σ 2

al. Hence, in order to allow the com-
bination of these uncertainties, ŷ is divided into the predic-
tion mean ŷmean and the epistemic variance σ 2

ep by taking
the mean and variance over ŷ, respectively. Additionally, the
aleatoric variance σ 2 is summarized by taking its mean, de-
noted σ 2

al. These three outputs, ŷmean, σ 2
ep, and σ 2

al, form the
base from which probabilistic nowcasts are computed.

The total mean and uncertainty in the prediction can thus
be estimated as

ŷmean =
1
N

N∑
n=1

ŷn,

σ 2
pred ≈

σ 2
ep︷ ︸︸ ︷

1
N

N∑
n=1

ŷ2
n− (

1
N

N∑
n=1

ŷn)
2
+

σ 2
al︷ ︸︸ ︷

1
N

N∑
n=1

σ 2
n, (6)

where σ 2
pred denotes the predictive variance. This means that

the predictive variance can be estimated as the sum of the
variance of the predicted reflectivity fields, which is the epis-
temic variance, and of the mean of the predicted aleatoric

variance fields. These quantities are sufficient for making
probabilistic nowcasts such as calculating exceedance prob-
abilities for future radar reflectivity values, allowing us to
model the predictive distribution of this reflectivity as nor-
mally distributed with mean ŷmean and variance σ 2

pred. This
formulation is admissible, as reflectivity of precipitation
(in dBZ units) is known to have a normal distribution which
follows from the distribution of the precipitation rate being
log-normal (Kedem and Chiu, 1987). Additionally, it is in-
teresting to note that the relationship between the ensem-
ble and the predictive distribution here is opposite to that
of NWP, where perturbations to initial conditions lead to
ensembles that themselves define the predictive distribution
(Bauer et al., 2015).

Nevertheless, some applications of probabilistic precip-
itation nowcasting – such as flood modeling – assume
ensemble-based nowcasts, where each member of the ensem-
ble represents a physically plausible precipitation scenario.
One could of course randomly sample the predictive distri-
bution to generate an ensemble, which would correctly ap-
proximate pixel-wise statistics, but the spatiotemporal struc-
ture of the fields would be lost. In an attempt to remedy this,
we post-process outputs to generate ensemble members re-
specting the spatial covariance structure of the input field x
as

ŷens
n = ŷmean+

√
σ 2

pred⊗ εcorr,n, (7)

where ŷens
n = ŷ

ens
n,1, ŷ

ens
n,2, . . ., ŷ

ens
n,Lout

denotes the newly gener-
ated ensemble member, ⊗ denotes an element-wise multi-
plication broadcast over Lout frames, and εcorr,n is a corre-
lated Gaussian random field of shape W ×H . εcorr,n is gen-
erated to match the average spatial correlation structure of
x using fast Fourier transform (FFT) filtering. The structure
is obtained non-parametrically from the power spectrum of
x (Seed et al., 2013). The technique is equivalent to that
used to generate perturbation fields in STEPS (Pulkkinen
et al., 2019). Even though this method accounts for the spa-
tial structure of the precipitation time series, it is not capable
of modeling its temporal structure, which is assumed con-
stant. The ensembles produced in this way shall be denoted
ŷens, which is in contrast to the raw predicted reflectivity
fields denoted ŷ.

3 Experimental details

This section presents the experiments performed. First, in
Sect. 3.1, we present the dataset used, followed by the details
related to the training of DEUCE in Sect. 3.2, and the verifi-
cation experiments in Sect. 3.3. Additional technical details
can, on the other hand, be found in Appendix A.
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Figure 2. The prediction procedure for the primary outputs of the DEUCE is model illustrated. Each sampled output is computed separately
with a forward pass through the network, yielding a time series of the predictions and the logarithmic aleatoric variances, which are converted
back to variances. After agglomeration into a pair of raw ensembles, the prediction mean ŷmean and the two types of uncertainties, the
epistemic variances σ 2

ep and aleatoric variances σ 2
al, are computed from the pair. These three quantities are the ones used for producing the

final prediction ensemble.

3.1 Data

The dataset used for this work comes from the Finnish Me-
teorological Institute radar network. It consists of cropped
lowest-altitude radar reflectivity composites chosen from
rainy days during the summer period of the years 2019–2021.
The dataset is identical to that used by Ritvanen et al. (2023),
except for using longer time series. The composites are built
from the two lowest-elevation angle scans interpolated into
an 1× 1 km Cartesian grid. The chosen area covers southern
Finland, with the bottom-left corner at coordinates (59.01° N,
20.55° E) and the top-right corner at coordinates (63.62° N,
30.27° E). The spatial extent of this crop is 512× 512 km,
corresponding to 512×512 pixel square images, suitable for
training a neural network. The composites are available with
a temporal resolution of 5 min. The extent of the bounding
box is additionally illustrated in Fig. 3, along with the cov-
erage of Finnish Meteorological Institute radars. From this
we see that the advantage of the crop is that it has a higher-
density radar cover than its surroundings.

The data were selected on a day-by-day basis, selecting
the 100 d with the most pixels having reflectivity values over
35 dBZ. The days were then divided into 6 h long blocks from
which blocks with below 1 % of the pixels with reflectivity
values over 20 dBZ were removed. These remaining blocks
were then randomly split into training, validation, and ver-
ification datasets with a ratio of 6 : 1 : 1. The division into
blocks was done in order to limit the number of successive
time series present in different splits, as they exhibit high
correlation, and not using any blocks would make the train-
ing, validation, and verification sets dependent, as the same
events would be present in all of them. A time of 6 h was
deemed a sufficient time for temporal correlations to mostly

disappear. Last, 2 h long time series, corresponding to 24 im-
ages each, were then extracted from these blocks using a slid-
ing window principle, with a stride of one, omitting those
time series with missing data. The final training, validation,
and verification datasets ended up containing 10 780, 1813,
and 1666 time series, respectively.

The input time series were read from HDF5 files, stored
there with an 8 bit scale-offset lossy compression scheme,
ranging from −32 to 96 dBZ at a resolution of 0.5 dBZ. The
images were then converted to floating point values, and a
threshold of 8 dBZ was applied, replacing values below the
threshold with −10 dBZ. This served as a simple way to re-
move non-meteorological targets and other clutter that could
interfere with the training and prediction while maintaining
most of the relevant precipitation echoes. Finally, the reflec-
tivity values were normalized between zero and one. Com-
puted predictions were converted back into reflectivity values
by applying the inverse of the transformation before saving
them, using the same scheme as with the input data.

The dataset reflectivity distribution is depicted in Fig. 4,
with the −32 dBZ minimum value pixels left out of the his-
togram for clarity. The threshold is shown to divide the data
into retained and discarded parts, and a Gaussian density is
fitted to the part most likely to purely consist of precipitation,
which exceeds 20 dBZ. Below the threshold, there seem to be
multiple peaks in density, likely involving insects, birds, and
miscellaneous clutter, as well as increasing noise the lower
we go on the scale. While the highest-reflectivity density val-
ues seem to follow the Gaussian fit well, part of the density
between 10 and 20 dBZ remains unexplained, and this range
is likely to contain a mixture of precipitation and clutter. Still,
this is not a major issue, since the most interesting precipita-

https://doi.org/10.5194/gmd-17-3839-2024 Geosci. Model Dev., 17, 3839–3866, 2024



3846 B. Harnist et al.: DEUCE v1.0

Figure 3. The Finnish Meteorological Institute radar network with its 11 radars and the bounding box used. Each radar is described by its
three-letter code, with their 120 km coverage radii for snowfall in gray and the intersection of 250 km coverage radii for rainfall as the black
outline. An example radar composite crop from a precipitation event (15 August 2019 at 15:00:00 UTC) is visualized in the enlarged version
of the bounding box on the right.

Figure 4. Finnish Meteorological Institute composite crop dataset
distribution of reflectivity. The threshold chosen below which the
data are set to −10 dBZ is shown with a dashed line. Additionally,
a Gaussian probability density function (PDF) fit on the data above
20 dBZ is shown in red, which serves to illustrate the Gaussian dis-
tribution of precipitation reflectivity.

tion to predict corresponds to reflectivity values well above
20 dBZ.

3.2 Training

For the training of the network, the Adam optimizer (Kingma
and Ba, 2015) was used with an initial learning rate of
1× 10−4 and other parameters set to their PyTorch default
values. The network was trained with that learning rate for 20
epochs, after which the learning rate was lowered to 1×10−5

for 8 more epochs, and finally further lowered to 1×10−6 for

1 final epoch. A validation epoch was carried out after each
epoch in which equitable threat score (ETS) (Hogan et al.,
2010) metrics were calculated for converted precipitation es-
timates (Sect. A1) of predictions and summed over thresh-
olds of 0.5, 1.0, 5.0, 10.0, 20.0, and 30.0 mm h−1, as well as
each lead time. This validation score showed improvement
over the whole training process.

The training procedure for DEUCE is presented in Fig. 5
for a single epoch. Both input sequence lengths Lin and
output sequence lengths Lout were 12, corresponding to 1 h
each. For the training and validation epochs, the batch size
was set to two, and the number of produced Monte Carlo
samples of posteriors N was set to two as well, which was
the most that our GPU could fit during training. In order
to increase the variance between the gradients of mini-batch
members, Flipout re-parameterization (Wen et al., 2018) was
applied to the sampled weights, multiplying the random sam-
pling coefficient of weights with a random sign matrix and
effectively adding randomness inside batches for a low com-
putational cost. The closed-form of the KL divergence be-
tween two Gaussian distributions was used for the calcula-
tions of the ELBO complexity term instead of Monte Carlo
estimates in the final model training.

The input time series Xi was pre-processed first, as de-
scribed in Sect. 3.1, and, in the case of training data, was
then augmented by applying in succession a random horizon-
tal flip, a random vertical flip, and a rotation by an angle ran-
domly chosen between 0, 90, 180, and 270°. This was done to
improve the variety in the training dataset and consequently
improve the generalization performance of the trained net-
work.
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Figure 5. An illustrated training epoch for DEUCE. One loop corresponds to a single training sequence, which can be substituted for a
single training mini-batch, taking multiple sequences in one batch. The DEUCE prediction process refers to that illustrated in Fig. 2, without
the post-processing. The blue box labeled DKL(q‖p) corresponds to the complexity term of the negative ELBO loss (to minimize), πi
corresponds to its weighting coefficient, and the red box labeled − logp(Di | w) corresponds to the likelihood term of the negative ELBO
loss. Monte Carlo estimates of the complexity term use sampled weights wi , whereas the closed-form expression that we use is a function of
parameters θ .

3.3 Verification

The performance of the DEUCE model is verified against the
pySTEPS (Pulkkinen et al., 2019) implementation of multi-
ple extrapolation-based precipitation methods. The verifica-
tion is divided into the qualitative inspection of ensembles
produced in two case studies, into an analysis of DEUCE
uncertainty composition, into the verification of the (prob-
abilistic) performance of the whole ensemble, and into the
verification of the (deterministic) performance of the ensem-
ble mean, i.e., its fidelity in representing the true variation in
the radar images. The four types of verification performed,
along with the relevant DEUCE product, the baseline models
used, and the evaluation criteria are summarized in Table 1.

In probabilistic verification experiments, N = 48 ensem-
ble members are used both for producing the raw outputs
ŷ,σ 2 and for drawing the post-processed ensemble ŷens, as
well as for making the baseline ensemble model predictions.
All of the predictions made for the verification of DEUCE
are made until a 60 min lead time and thresholded at 8 dBZ,
serving as an estimate for minimum observable precipi-
tation. Four precipitation thresholds are considered where
the verification involves evaluating the quality of a predic-
tion exceeding a particular reflectivity value. Converted us-
ing the Z–R relationship presented in Sect. A1, these are
20 dBZ (≈ 0.5 mm h−1), 25 dBZ (≈ 1.3 mm h−1), 35 dBZ
(≈ 5.7 mm h−1), and 45 dBZ (≈ 25.5 mm h−1), which corre-
spond to very light, light, moderate, and heavy rain, respec-
tively.

3.3.1 Case studies

Two distinct rainfall events are chosen as case studies to pro-
vide a qualitative assessment, as well as a comparison of
DEUCE nowcasts with the baseline probabilistic methods.
The case studies each focus on an ensemble nowcast at a
particular time step during the precipitation event that is cho-
sen to include both large-scale weaker precipitation, which
is characteristic of stratiform rainfall, or localized heavy pre-
cipitation, which is characteristic of convective rainfall. The
latter has a shorter lifetime and has been traditionally harder
to predict, but it is of interest to observe the performance
of the model with both types. In addition, we include both
instances of weakening and of intensification of echoes in
the case studies. The cases are chosen from radar composite
crops, with the area described in Sect. 3.1 over the verifica-
tion split, and the summer of the year 2022, which is separate
from the dataset used for training, validation, and quantita-
tive verification. The timestamp of the first case chosen is
9 July 2022 at 15:00:00 UTC. This case contains mostly con-
vective rainfall, with some localized high rain rates. The sec-
ond case chosen is 17 August 2021 at 16:50:00 UTC, which
represents a very different scenario with large-scale, mostly
stratiform rainfall. The radar images of the hour leading up
to the timestamps are used as inputs and the following 1 h of
radar images are predicted.

Three different visualizations of the cases are made at
5, 15, 30, and 60 min lead times, using the post-processed
DEUCE ensembles ŷens and the probabilistic baseline mod-
els STEPS and LINDA-P described in Sect. A2 when appro-
priate. The first visualization is that of predictive means and
standard deviations of the ensembles (in dBZ units). Here,
DEUCE, STEPS, and LINDA-P are compared side by side.
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Table 1. The four components of the verification process for DEUCE summarized.

DEUCE product Baseline models (Sect. A2) Evaluation criteria

Case studies (Sect. 3.3.1) ŷens STEPS, LINDA-P Ensemble mean/SD, exceedance probabilities
Uncertainty composition (Sect. 3.3.2) ŷ,σ 2 – Case decomposed mean/SD and statistics
Probabilistic perf. (Sect. 3.3.3) ŷens STEPS, LINDA-P CRPS, reliability diagram, ROC AUC, rank hist.
Deterministic perf. (Sect. 3.3.4) ŷmean Extrapolation, LINDA-D ME, ETS, RAPSD

The second visualization is that of exceedance probabilities
of DEUCE, STEPS, and LINDA-P ensemble nowcasts at a
25 dBZ reflectivity threshold. The third, and last, visualiza-
tion depicts the exceedance probability of DEUCE in pre-
dicting reflectivity above 20, 25, 35, and 45 dBZ thresholds.

3.3.2 Uncertainty composition analysis

The composition of the DEUCE predictive uncertainty is an-
alyzed using the prediction of the first case study and using
statistics aggregated over the verification dataset. For the case
study prediction, the aleatoric and epistemic components of
the predictive standard deviation are visualized next to the
combined predictive uncertainty, the mean predictions, and
the observations at lead times of 5, 15, 30, and 60 min. The
statistics collected are the average magnitude of the aleatoric
and epistemic standard deviation components under differ-
ent conditions. These magnitudes are divided into bins corre-
sponding to the prediction lead time and the observed reflec-
tivity matching the pixel in question (5 dBZ bin width from 5
to 60 dBZ) and are collected for each prediction timestamp.
The resulting statistics are visualized in the form of a his-
togram aggregated over the whole dataset and as bar plots
showing the contribution of the uncertainties against lead
time and observed reflectivity.

3.3.3 Probabilistic performance verification

Probabilistic verification serves to assess the probabilistic
predictive power of DEUCE ensembles, mostly in terms
of prediction reliability and discrimination ability. In other
words, it determines the quality and the variety of produced
ensembles with regard to the true distribution of different fu-
ture scenarios. Here, the DEUCE prediction is represented
by the post-processed ensemble ŷens. The probabilistic base-
line models used are STEPS (Bowler et al., 2006; Seed et al.,
2013) and LINDA-P (Pulkkinen et al., 2021). The descrip-
tion and configuration of those models are given in Sect. A2.

The probabilistic performance metrics used are the con-
tinuous ranked probability score (CRPS) (Hersbach, 2000;
Wilks, 2011), which generalizes the mean absolute error in
deterministic forecasts to probability distributions and is cal-
culated for lead times up to 60 min. Next, the receiver operat-
ing characteristic (ROC) curve (Mason, 1982; Wilks, 2011),
along with the area under it (AUC), quantifies the discrimi-
native power of the ensembles for predicting reflectivity val-

ues exceeding a certain threshold. ROC AUC is computed
for reflectivity thresholds of 20, 25, 35, and 45 dBZ at lead
times of 5, 15, 30, and 60 min. To measure forecast reliability
and sharpness, we used the reliability diagram, along with its
sharpness histogram (Wilks, 2011), and the expected calibra-
tion error (ECE) score (Naeini et al., 2015), which we com-
puted for the same threshold and lead times as ROC curves.
Finally, rank histograms (Wilks, 2011) were calculated to
measure the bias and spread of ensembles at lead times of 5,
15, 30, and 60 min. A detailed description of these metrics,
along with the configurations used, is found in Sect. A3.

3.3.4 Deterministic performance verification

Deterministic verification serves to assess whether DEUCE
ensemble means are useful themselves. It also gives insight
into many interesting aspects of predictions, such as system-
atic biases and the possible loss of small-scale variability.
Here, the DEUCE prediction is represented by the ensemble
mean ŷmean. The deterministic baselines used are an extrap-
olation nowcast and LINDA-D (Pulkkinen et al., 2021). The
description and configuration of those models are again de-
scribed in Sect. A2.

Three deterministic metrics are used to assess DEUCE
ensemble means. The first is the mean error (ME) (Wilks,
2011), measuring the bias of nowcasts produced. The equi-
table threat score (ETS) (Hogan et al., 2010; Wilks, 2011)
then provides an estimate of the deterministic skill in fore-
casting reflectivity above a certain intensity threshold. It is
calculated for lead times up to 60 min and thresholds of 20,
25, 35, and 45 dBZ. Finally, the radially averaged power
spectral density (RAPSD) (Ruzanski and Chandrasekar,
2011; Ulichney, 1988) measures how well the power spec-
trum of reflectivity is maintained. It is summarized with a rel-
ative mean absolute error (MAE) score. We compute RAPSD
for prediction lead times of 5, 15, 30, and 60 min. RAPSD
is also calculated for individual ŷens members to analyze
the possible contribution of the spatially correlated noise to
maintaining the power spectrum. A detailed description of
these metrics, along with the configurations used, is found in
Sect. A4.
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4 Results

The results of the quantitative and qualitative analyses of
model performance and fitness to the task indicate that
DEUCE succeeds in its primary task of providing reason-
ably reliable probabilistic precipitation nowcasts but not in
that of producing skillful deterministic nowcasts. This is il-
lustrated by the summary of quantitative verification results
is provided in Table 2. These results will then be elaborated
upon in detail and presented as figures in the following four
subsections. Starting with the qualitative case study results in
Sect. 4.1, we then present the composition of the uncertainty
in Sect. 4.2, before continuing with the probabilistic perfor-
mance metric results in Sect. 4.3, and finally presenting the
deterministic performance metric results in Sect. 4.4.

4.1 Case studies

The results of the first case study in Figs. 6, 7, and 8 sug-
gest that DEUCE ensemble nowcasts are able to give rea-
sonable uncertainty and exceedance probability estimates at
multiple thresholds and lead times and that DEUCE now-
casts look similar to those given by STEPS, despite being
less grainy. The results of the second case study are detailed
in Appendix B. Figure C1 shows an example of what individ-
ual ensemble members look like at different prediction lead
times for the first case. The predictions all start out being
quite similar, but they eventually diverge, driven by the in-
creasing predictive uncertainty and different patterns of cor-
related noise. The ensemble members exhibit variety while
preserving a moderate amount of realism that is nevertheless
limited by the increasing smoothing of the predictive mean
and variance fields with lead time.

4.1.1 Ensemble mean and breadth

Ensemble mean and breadth as units of standard deviation are
shown for the first case in Fig. 6. Here, we can see a trend
in all models towards a loss of predicted reflectivity inten-
sity and a disappearance of heavily localized echoes. How-
ever, these are in all models compensated by an increase in
the spatial extent and the magnitude of the ensemble stan-
dard deviation. In LINDA-P, the effect of predicting in rain
rate (mm h−1) is seen as the uncertainty in the cell borders
emphasized. LINDA-P also generally exhibits a smaller and
more uniform standard deviation than the other models. For a
1 h lead time, DEUCE seems to generally have an ensemble
breadth a bit smaller than STEPS but higher than LINDA-P,
with the most heterogeneity in the standard deviation values.

4.1.2 Reflectivity exceedance probabilities

Reflectivity probabilities of exceeding 25 dBZ predicted by
the different models for the first case are shown in Fig. 7.
Overall, DEUCE seems to provide balanced exceedance
probabilities that are not missing any significant areas even

after 1 h but are also not covering excessively large areas.
Comparatively, STEPS tends to completely miss some sig-
nificant portions, such as in the area highlighted in the south-
west of Finland at 1 h, and generally seems to predict smaller
probabilities for the evolution of smaller cells. LINDA-P, on
the other hand, suffers from overconfidence and misplaces
the evolution of multiple precipitation areas after 1 h. On a
general level for all models compared, the advection field
is well captured, while the growth and decay of echoes are
often not very effectively forecast. The anisotropic structure
of the uncertainty shown through exceedance probabilities
is also much better captured by DEUCE and LINDA-P than
STEPS. In addition, because it is not based on the extrapo-
lation of radar echoes, there are no “dead zones” filled with
NaN (not a number) values (dark gray color), and DEUCE
is able to provide nowcasts with varying success in border
regions where STEPS and LINDA-P predictions are not nec-
essarily defined.

Last, the exceedance probabilities of DEUCE nowcasts for
15, 25, 35, and 45 dBZ reflectivity thresholds for the first case
are shown in Fig. 8. We can see that DEUCE is able to now-
cast an exceedance probability at all thresholds (which are
indeed all exceeded at some place and point in the obser-
vations). Higher thresholds exhibit lower values and some
misplacement of exceedance probabilities, as precipitation
exceeding those is more difficult to predict and has smaller
areas.

4.2 Analysis of the aleatoric and epistemic uncertainty
dichotomy

The relative contribution of aleatoric and epistemic uncer-
tainty for the first case study is presented in Fig. 9. We can see
that most of the predictive uncertainty in fact comes from the
aleatoric part. Epistemic uncertainty is of much smaller mag-
nitude, and its contribution is further reduced when working
in terms of variance in the calculation of predictive uncer-
tainty. We can see that epistemic uncertainty does not extend
as much away from the core of the predicted reflectivity as
for aleatoric uncertainty, which reflects a small variance in
the raw ŷ ensemble. This overlap can be seen in probabilistic
nowcasts as aleatoric uncertainty overshadowing the contri-
bution of epistemic uncertainty.

A more detailed view of the contribution of aleatoric and
epistemic components is provided in Fig. 10, with statistics
over the whole verification dataset. A histogram of the un-
certainties aggregated over all lead times and observed re-
flectivity values is shown to the left of Fig. 10. Epistemic
uncertainty has a very narrow distribution, mostly between
0–5 dBZ, which means that its average value could not have
varied much in different cases, lead times, and observed re-
flectivity values, pointing to a small model uncertainty re-
sponse to these factors. Aleatoric uncertainty, on the other
hand, has a long-tail distribution centered around 10 dBZ but
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Table 2. Quantitative verification metrics are summarized. The ↑ indicates that a higher score is better, while the ↓ indicates that a lower
score is better. The best score amongst models is marked using bold font. ECE scores indicate the expected calibration error, which is an
aggregate measure of reliability. AME stands for absolute mean error, and RAPSD rel. MAE score summary values indicate the relative
mean absolute error between the power spectral density (PSD) of the observation and predictions. For AME, the sign of the mean error is
reported in parentheses. Scores are averaged over the lead times for which they were calculated, except for RAPSD rel. MAE scores, as
they are averaged over frequencies. Numerical values in the ECE, ROC AUC, and ETS score names indicate decibels relative to Z threshold
values and in RAPSD lead time in minutes. ECE 45 results are omitted because the results are not comparable due to missing data in some
of the bins of the DEUCE reliability diagrams.

Probabilistic models Deterministic models

DEUCE (ours) STEPS LINDA-P DEUCE mean (ours) Extrapolation LINDA-D

CRPS ↓ 1.29 1.27 1.43 AME ↓ 1.31 (–) 0.35 (–) 0.53 (+)
ECE 20 (×103) ↓ 6.88 9.45 13.36 ETS 20 ↑ 0.442 0.435 0.454
ECE 25 (×103) ↓ 5.36 6.64 8.44 ETS 25 ↑ 0.299 0.341 0.371
ECE 35 (×103) ↓ 1.97 1.13 2.04 ETS 35 ↑ 0.047 0.134 0.162
ECE 45 (×104) ↓ – – – ETS 45 ↑ 0.006 0.049 0.056
ROC AUC 20 ↑ 0.968 0.957 0.943 RAPSD rel. MAE 5 ↓ 0.55 0.08 0.39
ROC AUC 25 ↑ 0.960 0.938 0.926 RAPSD rel. MAE 15 ↓ 0.74 0.08 0.52
ROC AUC 35 ↑ 0.885 0.784 0.840 RAPSD rel. MAE 30 ↓ 0.84 0.07 0.58
ROC AUC 45 ↑ 0.706 0.610 0.689 RAPSD rel. MAE 60 ↓ 0.90 0.11 0.65

Figure 6. The first case study ensemble means and breadths of DEUCE compared to STEPS and LINDA-P model predictions and observa-
tions for multiple lead times. The area covers southern Finland, starting at 15:00:00 UTC on 9 July 2022. The rows represent lead time and
columns different instances of observations, model mean, and standard deviations. Missing values are indicated by a dark gray color.

going up to values over 30 dBZ, which means that we cannot
exclude a dependence on these external factors.

Such dependencies are confirmed when inspecting the bar
plots on the right of Fig. 10, where mean aleatoric uncer-
tainty shows a clear dependence on prediction lead time and
to some degree on observed reflectivity. Aleatoric uncertainty
seems to clearly increase with lead time and to first slightly

decrease before increasing again in relation to observed re-
flectivity. One possible explanation for this last observation
is that reflectivity values below 20 dBZ often correspond to
the edges of precipitation cells, which are difficult to predict,
and that reflectivity values over 35 dBZ often correspond to
heavy precipitation with a short lifetime and thus bad pre-
dictability. In between those, there are more predictable pre-
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Figure 7. The first case study reflectivity exceedance probabilities of 25 dBZ for DEUCE compared to STEPS and LINDA-P model predic-
tions and observations for multiple lead times. The area covers southern Finland, starting at 15:00:00 UTC on 9 July 2022. The rows represent
the lead time. In the leftmost column, actual observations are shown in light gray, with echo isotherms corresponding to the threshold marked
in black. In other columns, the same isotherms are overlaid on the exceedance probabilities of the models that are depicted in shades of
red. Missing values are indicated by a dark gray color. The blue circles labeled “1” highlight a case of DEUCE model improvement over
baselines.

cipitation patterns, such as the interior of stratiform precipita-
tion cells. Epistemic uncertainty, on the other hand, does not
seem to show any particular dependence on prediction lead
time, which might have something to do with the fact that
the model predicts all lead times at once, making it possibly
more difficult for the predictions to vary, depending on the
lead time. There is, on the other hand, a slight increase in the
epistemic uncertainty with observed reflectivity, which might
be an accurate reflection of the relatively smaller amount of
training data available for high observed reflectivity values.

4.3 Probabilistic skill verification

The reliability diagrams and sharpness histograms for prob-
abilistic nowcasts are depicted in Fig. 11. It can first be
noted that, in general, DEUCE nowcasts are very close to

the dashed black line, indicating a perfectly reliable forecast.
Sometimes, this is similar to baseline models, but in some
cases, such as a long lead time and a high threshold, DEUCE
is closer to the diagonal than baselines. This is, however, not
reflected in the ECE scores at 35 dBZ shown in Table 2, as
smaller forecast probabilities are weighted much higher due
to their sample count here, making STEPS the most reliable
model at 35 dBZ when using this metric. An important pat-
tern is that compared to baseline models, DEUCE is prone to
slight under-forecasting of the exceedance probabilities. This
is particularly the case for a short lead time (5 min), where the
effect is the most pronounced. As lead times grow longer and
thresholds get higher, nowcasting gets harder, and there is an
overall tendency in all models, but particularly LINDA-P, to
over-forecast threshold exceedance.
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Figure 8. The first case study reflectivity exceedance probabilities of DEUCE compared to observations for multiple lead times and reflectiv-
ity thresholds. The area covers southern Finland, starting at 15:00:00 UTC on 9 July 2022. The rows represent lead time. The leftmost column
is observations, and the rest are exceedance probabilities at different thresholds. As in Fig. 7, the observation isotherms corresponding to the
threshold in question overlay the exceedance probabilities depicted in shades of red.

From the sharpness histogram, it is seen that the distri-
bution of forecast probabilities is more or less uniform at
low thresholds but more biased towards small exceedance
probabilities at higher thresholds. These higher thresholds
are where the difference between DEUCE and baselines is
visible, as there is a considerably lower number of cases of
high forecast probability in DEUCE than in baselines.

The rank histogram of nowcasts is shown in Fig. 12. It
is apparent here that DEUCE is constantly slightly biased
towards predicting reflectivity values that are too low and
that the spread is large at short lead times but less significant
later on. STEPS exhibits a very balanced flat histogram, but
LINDA, on the other hand, has a U-shaped histogram char-
acteristic of an ensemble breadth that is too small in general.

The results for the ROC area under the curve probabilis-
tic nowcast metric are shown in Fig. 13. In this benchmark,
DEUCE achieves the best results at all thresholds. We can
notice that STEPS has good discriminative power at low
thresholds but that it does not scale well to higher ones and
that LINDA-P is not competitive at lower thresholds but ex-
cels as the threshold grows. Nevertheless, DEUCE manages
to perform better than both in their skillful areas.

Last, the CRPS verification metric is depicted in Fig. 14.
It can be seen that the lowest and best score is achieved
by STEPS at all lead times. DEUCE comes second, slightly
above STEPS, and LINDA-P lags far behind. Overall, with
CRPS, it can be seen that DEUCE achieves adequate results
of the order of baseline models.

From the quantitative probabilistic verification, it can be
summarized that DEUCE achieves satisfactory and well-
rounded performance. The model does not significantly lack
in any category in particular and offers a good trade-off be-
tween forecast reliability and discriminatory power.

4.4 Deterministic skill verification

Here, we analyze the results of the comparison of the de-
terministic nowcast skill between DEUCE non-augmented
mean predictions ŷmean and baseline predictions. First, a de-
piction of the mean nowcasting error (ME) until a 60 min
lead time is presented in Fig. 14. While extrapolation now-
casts have, on average, a ME slightly below zero, DEUCE is
more strongly negatively biased, while LINDA-D is strongly
positively biased.
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Figure 9. Composition of the predictive uncertainty for the first case study. The area covers southern Finland, starting at 15:00:00 UTC on
9 July 2022. The rows represent lead time and columns observations (ground truth), the mean prediction, aleatoric and epistemic standard
deviation components, and the combined predictive standard deviation.

Figure 10. Visualization of the statistics on the composition of predictive uncertainty over the verification dataset. On the left, a histogram
of aleatoric and epistemic standard deviation (SD) aggregated over all lead times and observed reflectivity values is shown. On the right,
we arrange the same data into bar plots to show the relationship between the type of the uncertainty SD with prediction lead time (b) and
observed ground truth radar reflectivity (c).

Furthermore, the equitable threat score (ETS) results for
reflectivity thresholds of 20, 25, and 35 dBZ are shown in
Fig. 15. The ETS score of DEUCE is competitive for the
20 dBZ threshold, but at 25 dBZ, its progression at lead times
longer than 30 min is already worse than the baseline. At 35
and 45 dBZ, DEUCE already performs worse than the base-

line at any lead time examined. The reason for this weakness
is the compound effect of intrinsic CNN prediction smooth-
ing and the averaging of ensemble members. This smoothing
effect is also visible in the radially averaged power spectral
density (RAPSD) results for nowcasts presented in Fig. 16.
Average RAPSD is computed for nowcasts at lead times of

https://doi.org/10.5194/gmd-17-3839-2024 Geosci. Model Dev., 17, 3839–3866, 2024



3854 B. Harnist et al.: DEUCE v1.0

Figure 11. The reliability diagrams and sharpness histograms for DEUCE (yellow), STEPS (blue), and LINDA-P (red) model nowcasts at
exceedance probability thresholds of 20, 25, 35, and 45 dBZ and at lead times of 5, 15, 30, and 60 min. Rows indicate the lead time and
columns the exceedance probability threshold. The diagonal dashed black lines indicate perfect reliability.

Figure 12. Rank histograms of ensemble nowcasts, including DEUCE, STEPS, and LINDA-P, at lead times of 5, 15, 30, and 60 min over the
verification set.

5, 15, 30, and 60 min. It can clearly be seen that, compared
to baselines, the fields predicted by DEUCE lose more power
at small spatial scales and that this effect is heavily amplified
at longer lead times, which again illustrates the above com-
pound effect. However, this effect seems to be damped by
augmenting the mean prediction with uncertainty-weighted
correlated noise following the structure of the input field, es-
pecially at longer lead times.

5 Discussion

DEUCE probabilistic ensemble nowcasts proved to be both
relatively reliable and skillful compared to STEPS and
LINDA. In comparison, STEPS was often reliable but strug-
gled to capture small-scale high reflectivity, and LINDA was
better at this task but sometimes suffered from overconfi-
dence. DEUCE seems to offer a good compromise as it does
not suffer too much from either of those two defects. Nev-
ertheless when analyzing the reliability diagram, it is ap-
parent that DEUCE is under-confident, especially at short
lead times. Further inspection of rank histograms (Fig. 12)
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Figure 13. The ROC area under the curve (AUC) values at lead times up to 60 min for DEUCE (yellow), STEPS (blue), and LINDA-P (red)
model nowcasts at exceedance probability thresholds of 20, 25, 35, and 45 dBZ.

Figure 14. The CRPS score of DEUCE (yellow) compared to the
ensemble baselines of STEPS (blue) and LINDA-P (red) is shown
on the left. The mean error (ME) score for non-augmented ensem-
ble mean predictions of DEUCE (yellow) compared to determinis-
tic baseline extrapolation (green) and LINDA-D (red) nowcasts is
shown on the right.

– showing the distribution of the rank of observations among
ensemble members – indicated that this under-confidence is
expressed by (1) an ensemble spread that is too large and (2) a
slight bias towards ensembles producing estimates that are
too weak, which was also visible in the ensemble mean ME
score. The ensemble spread that is too large may be a byprod-
uct of attempting to predict the ensemble mean and aleatoric
variances all at once, with the prior placed on weights that
place a limit on the complexity of the model and in effect
privileging the learning of longer lead times where the aver-
age errors are of a bigger magnitude.

We can also observe that most of the uncertainty is of an
aleatoric nature and that the contribution of epistemic vari-
ance is universally low. In addition to having trained with
a large amount of data, low epistemic variance is probably
related to the variational inference mechanism, as the combi-
nation of Bayes by Backprop and Flipout re-parameterization
has been shown by Valdenegro-Toro and Mori (2022) to yield
epistemic uncertainty estimates that are too small when com-
pared to Monte Carlo Dropout, deep ensembles, and Markov
Chain Monte Carlo. Another factor that might have played a
role in this is again predicting all lead times at once because

adopting the iterative approach of RainNet (Ayzel et al.,
2020) would have propagated previous epistemic uncertain-
ties to subsequent lead times, possibly balancing out the con-
tributions, and also allowing predictions to be made for an ar-
bitrary number of time steps. On the other hand, abandoning
the recursive prediction scheme of RainNet significantly re-
duces the time complexity of computing ŷ,σ 2 from O(NL)
to O(N), where N is the sample size, and L is the number of
prediction lead times.

Contrary to the preliminary iteration of the model focusing
only on modeling epistemic uncertainty (Harnist, 2022), the
current model better captures the increased spread of the pre-
dictive distribution with lead time through the aleatoric com-
ponent. An alternative model – without a separate decoder
branch for σ 2 and only allocating a separate output channel
to it – was not successful because the ŷ and σ 2 that it learned
were highly correlated, more blurry, and lacked expressivity.
It is for this reason that the two-branch version was adopted.

In DEUCE, small-scale variability is steadily lost with in-
creasing lead time, which is especially noticeable for lead
times over 30 min. This is a problem for the production of
realistic nowcasts, as the loss of small-scale variability is
synonymous with the loss of information, limiting the ex-
pressivity of the model. However, the smoothing of radar im-
age predictions can be justified in the case of a probabilis-
tic model, assuming that the breadth of the ensemble is pre-
served despite the loss of high frequencies. This is because
information will invariably be lost with time as we attempt to
predict the evolution of a chaotic system through imperfect
measurements. In the present case of DEUCE, the predic-
tive distribution is modeled explicitly, giving us the ability
to arbitrarily sample from it, so this loss of high-frequency
components is not a major issue. For the preliminary ver-
sion of the model (Harnist, 2022), however, losing small-
scale details had adverse effects. This was because the model
was trained with homoscedastic (fixed as a hyperparameter)
aleatoric uncertainty modeling, which was not taken into ac-
count when making predictions, resulting in an ensemble
spread of smooth predictions that is too small and leading
to vastly underestimated exceedance probabilities. The spa-
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Figure 15. Equitable threat scores (ETSs) as a function of lead time for non-augmented DEUCE ensemble means (yellow) compared to those
of extrapolation (green) and LINDA-D (red) deterministic baseline models for reflectivity thresholds of 20, 25, 35, and 45 dBZ at lead times
up to 60 min. DEUCE ensemble means perform competitively for predicting reflectivity exceeding 20 dBZ but see their relative performance
drop at higher reflectivity thresholds.

Figure 16. Radially averaged power spectral density (RAPSD) for non-augmented DEUCE ensemble means (solid yellow) and individual
augmented DEUCE ensemble members (dashed yellow) compared to those of the extrapolation (green) and LINDA-D (red) deterministic
baseline models at lead times of 5, 15, 30, and 60 min. The observation RAPSD is shown as a dashed black line.

tially correlated noise scheme for sampling the predictive un-
certainty may help integrate DEUCE into applications where
physically plausible ensemble members are necessary. Still,
the lack of temporal correlation modeling inside the post-
processed ensemble members and the smoothing of the pre-
dictive means and variances themselves limit realism, point-
ing to the limits of the taken approach. One grounded method
for resolving this problem is to either implicitly or explicitly
constrain the predictions to replicate the power spectrum of
observations. Generative models such as GANs (Generative
Adversarial Networks) fall into the category of implicit con-
straining. For example, the DGMR model by Ravuri et al.
(2021) learns to model realistic spatial and temporal corre-
lations by adversarially training the generator with two dis-
criminators designed to discern those aspects.

We see that the issues of under-forecasting at short lead
times and lacking small-scale variability could be linked and
related to the model training settling for underperforming
local optima. Avenues to mitigate this include longer train-
ing and different training strategies, using a bigger and more
varied dataset, adapting the loss function, and improving the
model itself. DEUCE was trained with only 29 epochs, which
is a relatively small number. We attempted to train with a
higher number of epochs, but this did not result in consis-

tent improvement in model validation performance metrics.
However, this behavior might have been related to our choice
of learning rate scheduling. On the other hand, it might also
be worthwhile to attempt to implement a curriculum learning
strategy where easier to learn and earlier lead times would be
learned first before allowing the network to learn to predict
longer lead times. The dataset size itself may be increased by
covering a variety of bounding boxes in the composite area
and by including precipitation events from outside the sum-
mer period. The likelihood part of the loss function may be
adapted so that higher weight is given to higher-reflectivity
pixels. We, nevertheless, found this tricky to get right, as
the experiments that we performed with weighting propor-
tional to the inverse of the density of the reflectivity in the
dataset distribution failed to produce reasonable nowcasts.
From the perspective of the model, under-forecasting and the
lack of small-scale details could be reduced by including spa-
tial and channel (temporal for us) attention mechanisms, such
as the Convolutional Block Attention Module (CBAM) (Woo
et al., 2018), which has been applied to improve (determin-
istic) precipitation nowcasting performance (Trebing et al.,
2021). CBAM might enable, for example, sharper forecasts
with smaller aleatoric uncertainties at short lead times with-
out affecting the reliability at longer lead times.

Geosci. Model Dev., 17, 3839–3866, 2024 https://doi.org/10.5194/gmd-17-3839-2024



B. Harnist et al.: DEUCE v1.0 3857

It is important to note that all models, DEUCE included,
are generally not able to predict convective initiation, which
is a notoriously hard problem to solve (Prudden et al., 2020).
This is clearly illustrated with the new echoes appearing in
the northwestern (continuously) and southern (between 30
and 60 min) parts of the second case (Fig. B2) for which
very low exceedance probabilities are predicted. Adding po-
larimetric or vertical profile information as additional input
channels and adopting a model less susceptible to blurring
might improve this aspect of predictions.

With regard to the model development in general, some
degree of hyperparameter optimization was performed.
Those hyperparameters related to the functional model and
the optimizer are mainly inherited from RainNet (Ayzel
et al., 2020), and those related to variational inference mostly
originate from the preliminary version of the model (Har-
nist, 2022). There, the VI-related parameters specifically de-
manded non-trivial tuning for model convergence and ac-
ceptable result production, which might limit the immediate
applicability of the model in its default state. Also, the lo-
cal optimality of the current hyperparameters is not assured.
Despite this, VI and epistemic uncertainty are not decisive
factors in the model performance, and swapping out those
components is a potential way forward. Moreover, 60 min
(12 frames) of input data and the same length for predictions
were picked without optimization in an attempt to preserve
some symmetry between the network inputs and outputs. Al-
though there is no consensus yet on how many frames are
needed, as few as four input frames have be enough to sat-
urate model performance in some conditions (Ravuri et al.,
2021), so tuning the ratio of input to output frames could be
a viable thing to try.

Regarding the verification process, it is a pertinent ques-
tion to ask whether the used baseline models were sufficient
to validate the performance of DEUCE. In particular, the
lack of deep-learning ensemble baselines is one weakness
of the performed verification. It would have been particu-
larly interesting to use the Deep Generative Model of Radar
(DGMR) by Ravuri et al. (2021) as a baseline, as it represents
the current state-of-the-art in deep-learning-based precipita-
tion nowcasting and is capable of producing ensemble now-
casts. Unfortunately, we were not able to successfully train
DGMR on our dataset using the resources that we had al-
located for the task. Other models of interest that were not
included in the verification are MetNet by Sønderby et al.
(2020) and its successor MetNet-2 by Espeholt et al. (2022),
which use, e.g., orographic and satellite data in addition to
radar data. We hope that further work will make the com-
parison of DEUCE probabilistic nowcasting performance to
other deep-learning-based models possible.

One last point of concern regards the validity of the veri-
fication metrics used. The potential issues here mostly relate
to the summarizing quantitative metrics of Table 2. First, the
relative RAPSD MAE metric for measuring the power spec-
trum fidelity of predictions uses a tighter sampling of points

towards wavelengths representing small spatial scales, which
biases it to give a higher weight to those scales. Although we
are indeed mostly interested in small-scale variations, this
property means that even big discrepancies in the power of
large spatial scales will be under-represented. Next, the ECE
metric used to summarize the reliability of ensemble models
is very sensitive to variations of the order of magnitude of
the number of samples per bin. This behavior is significant
especially at higher exceedance thresholds, where almost
all prediction probabilities are concentrated in the smallest
probability bin, giving almost no weight to even the mildly
successful nowcasting of rare but significant events of high
heavy precipitation probability. This means that ECE does
not necessarily provide a complete assessment of model re-
liability in the context of probabilistic precipitation nowcast-
ing.

6 Conclusions

We developed a probabilistic precipitation nowcasting model
named DEUCE, based on a Bayesian neural network with
variational inference and featuring the combination of epis-
temic and aleatoric uncertainty estimates in an attempt to
yield reliable yet powerful probabilistic predictions. The
model succeeded at this primary task, performing competi-
tively against the baseline STEPS and LINDA-P models that
were judged using qualitative and quantitative evaluation.

It was found that DEUCE had issues with the representa-
tion of epistemic uncertainty, leading to most of the uncer-
tainty appearing as aleatoric uncertainty, maybe due to the
variational inference used. The aleatoric uncertainty exhib-
ited a clear dependence on lead time and corresponding ob-
served reflectivity, which are factors heavily influencing the
predictability. The epistemic uncertainty, on the other hand,
showed little dependence on these factors, with the exception
of a slight increase with observed reflectivity, which might
reflect the distribution of the training data. Based on this,
aleatoric and epistemic uncertainties do indeed seem to cap-
ture complementary features of the predictive uncertainty.

Deterministically, the ensemble means were found to per-
form worse compared to extrapolation and LINDA-D base-
lines, showing that the model in its current state is not use-
ful in the deterministic case due to the excessive smoothing
of predictions. This smoothing may also have affected the
uncertainty composition, such that assuming the predictive
mean to be fixed, i.e., with no improvement in skill, means
that sharper reflectivity predictions would increase the epis-
temic uncertainty. As for the aleatoric uncertainty, the varia-
tion between individual draws would increase, but their av-
erage would not necessarily increase, except for cases where
smoothing is the mechanism that hinders the prediction of
large enough reflectivity values. In those cases, the average
aleatoric uncertainty might decrease.
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Looking into future research directions, DEUCE has a
number of different facets upon which its performance could
be improved. First, the underlying U-Net could potentially be
replaced by a more powerful architecture capable of model-
ing explicit temporal dependencies. The spatiotemporal ex-
tent could be enlarged, and additional orographic, polari-
metric, or satellite input channels could improve parts of
the nowcasts. It is possible to additionally try to leverage
other patterns for increasing predictability, such as operat-
ing in Lagrangian coordinates, as shown by Ritvanen et al.
(2023), to increase prediction performance. From a proba-
bilistic aspect, certain alternative inference methods, such
as radial Bayesian neural networks (Farquhar et al., 2020)
or deep ensembles, look promising as a potential way to
ease the training and improve the representation of epis-
temic uncertainty. We could also think of directly appending
the post-processing sampling with spatially correlated noise
to the neural network or even learning context-dependent
spatiotemporal correlation structures. The sampled outputs
could then be, e.g., fed to a GAN-like discriminator module
which would drive the processed outputs to be more realistic
while retaining the uncertainty decomposition.

Regardless of its shortcomings, DEUCE is a first step
in ensemble-based probabilistic precipitation nowcasting us-
ing Bayesian neural networks. The concurrent modeling of
aleatoric and epistemic uncertainties has the potential to be
useful for operational forecasters, and the model in its cur-
rent state forms a strong yet relatively lightweight baseline
for future developments in deep-learning-based probabilistic
precipitation nowcasting.

Appendix A: Additional technical details

A1 Ground precipitation estimates from reflectivity

The formulaR = (10z/10/223)1/1.53 was used in cases where
an estimate of ground precipitation corresponding to lowest-
level radar reflectivity composites was needed. Here R de-
notes precipitation estimates (in mm h−1), and z denotes
radar reflectivity (in dBZ). The parameters of the Z–R re-
lationship employed in the formula come from the work
of Leinonen et al. (2012) and aim to estimate the amount
of rainfall corresponding to radar reflectivity measurements
from the Finnish Meteorological Institute polarimetric C-
band radars in Finland.

A2 Baseline models

There are two deterministic baseline models: a simple ex-
trapolation nowcast and the deterministic variant of LINDA
(LINDA-D). The extrapolation nowcast extrapolates the last
input reflectivity field along a motion field calculated from
the last four elements of the input time series. In the ex-
trapolation nowcast and all other baseline methods, we use
the dense Lucas–Kanade optical flow method with its de-

fault pySTEPS parameters for the computation of the motion
field. In addition, all baseline nowcasting methods use the
semi-Lagrangian integration scheme from pySTEPS for per-
forming the extrapolation, with cubic interpolation and other
parameters left to their default values.

LINDA, a more advanced extrapolation-based method ca-
pable of predicting high-intensity rainfall more accurately,
serves as a natural benchmark in the deterministic and prob-
abilistic cases for the ability of the model to capture convec-
tive rainfall evolution. LINDA predictions are made using
reflectivity fields converted to rain rate, using the method de-
scribed in Sect. A1, as it is required for the model to work.
LINDA models here use the last three input rain rate fields
as input, in addition to the motion field. They do not use
feature detection in order to reduce the prediction computa-
tion time over the verification set to more practical durations.
The ensemble-producing version of LINDA, LINDA-P, is
used as a probabilistic baseline model; while LINDA-D de-
terministic nowcasts do not add any perturbations, LINDA-P
does add them, as well as velocity perturbations from Bowler
et al. (2006), with lucaskanade/fmi+mch parameters
(Pulkkinen et al., 2019). Other parameters are set to be data-
specific or to be their default values.

The STEPS model is used in addition to LINDA-P as a
probabilistic baseline. While being a bit older and having
lower discriminative power, it is a popular method for mak-
ing reliable probabilistic precipitation nowcasts to this day.
STEPS is applied to decibels relative to Z (dBZ) reflectivity
fields and also takes in the last three input images, in addi-
tion to the motion field. Field perturbations and motion field
perturbations are applied with the same parameters as with
LINDA-P. Six cascade levels are used for the cascade decom-
position, and the precipitation threshold of 8 dBZ is given as
the lowest observable precipitation intensity.

A3 Details on probabilistic verification metrics

A3.1 Continuous ranked probability score (CRPS)

The CRPS generalizes the MAE to probability distributions
by calculating the sum of the difference between the cumula-
tive density function (CDF) of the nowcast and the empirical
CDF of observations. It is defined as

CRPS(F,y)=

∞∫
−∞

(F (ŷ)− 1(y ≥ ŷ))2dŷ, (A1)

where ŷ denote possible forecast values, F(ŷ) denote the
forecast CDF, and 1(y ≥ ŷ)) denote the empirical CDF of
observations y.

A3.2 Receiver operating characteristic (ROC) curve

The receiver operating characteristic (ROC) curve (Mason,
1982; Wilks, 2011) quantifies the discriminative power of an
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ensemble for predicting over a certain threshold by keeping
track of the false alarm rate (FAR), i.e.,

FAR=
FP

FP+TN
, (A2)

where the rate of false positives is indicated by FP, and the
rate of true negatives is indicated by TN, and both are com-
pared to the probability of detection (POD), i.e.,

POD=
TP

TP+FN
, (A3)

where TP is the rate of true positives, and FN is the rate of
false negatives. POD is regularly binned, and FAR is aver-
aged over those bins, making a curve, the area under which
(AUC) summarizes the overall discriminative power of the
nowcasting method. A ROC AUC of 0.5 indicates zero skill,
whereas a value of 1.0 indicates a perfect forecast. For ROC
curve computations, we use 10 bins.

A3.3 Reliability diagram

The reliability diagram (Wilks, 2011) measures the reliabil-
ity of the forecast by presenting the observed relative fre-
quencies of dBZ threshold exceedance events against the
forecast probability of those events. Having these two val-
ues strongly correlate makes the forecast reliable. Reliability
diagrams are built by dividing the forecast probabilities into
bins (we choose 10) and incrementing them with associated
binary indicators of whether the event happened. Sharpness
histograms represent the number of events recorded in each
forecast probability bin. They measure the relative “decisive-
ness” of the forecast, where a high decisiveness is associated
with a convex histogram shape. A low decisiveness, on the
other hand, can be discerned from a more uniform, or in the
extreme case, a concave histogram shape.

A3.4 Expected calibration error (ECE)

The expected calibration error (ECE) (Naeini et al., 2015)
quantitatively summarizes the reliability of a model indicated
by a reliability diagram. It is defined as

ECE=
1
N

B∑
b=1

nb | fb− ob |, (A4)

with a total of N pairs of forecast probability and observa-
tion, forecast probabilities divided into B bins, with nb ob-
servations per bin, fb is the mean bin forecast probability,
and ob is the corresponding observation frequency in the bin.
ECE corresponds to the MAE of the reliability diagram to
the diagonal and is weighted by the number of observations
per bin.

A3.5 Rank histogram

Rank histograms (Wilks, 2011) measure the bias and spread
of ensemble nowcasts. They present a histogram of the rank

of the true observed echo reflectivity among all ensemble
members, where a convex histogram indicates a small spread
and a concave histogram indicates a small spread. On the
other hand, a higher frequency of low ranks for observa-
tions indicates a positive bias of predictions, and a higher
frequency of high ranks for observations indicates a negative
bias of predictions.

A4 Details on deterministic verification metrics

A4.1 Mean error (ME)

The mean error (ME) (Wilks, 2011) measures the bias of de-
terministic predictions. It is defined as

ME=
1
P

P∑
p=1

yp − ŷp (A5)

for images, or time series of them, with P pixels. This metric
tells us about the mean bias of nowcasts produced. The ab-
solute value of ME is used to give a quantitative summary of
the bias of predictions made.

A4.2 Equitable threat score (ETS)

The equitable threat score (ETS) (Hogan et al., 2010; Wilks,
2011) is an extension of the threat score, also known as the
critical success index (Schaefer, 1990). ETS aims to provide
an estimate of deterministic skill in forecasting precipitation
above a certain intensity threshold. This extension takes into
account the effect of randomly occurring true positives. ETS
is defined as

ETS=
TP− rnd

TP+FN+FP− rnd
,

where rnd=
(TP+FN)(TP+FP)
TP+FN+FP+TN

, (A6)

where the rnd term estimates the influence of random true
positives.

A4.3 Radially averaged power spectrum density
(RAPSD)

The radially averaged power spectrum density (RAPSD)
(Ruzanski and Chandrasekar, 2011; Ulichney, 1988) mea-
sures how well the power spectrum of precipitation is main-
tained when calculated for nowcasts at different lead times.
RAPSD fidelity is summarized as

RAPSD rel. MAE=
1
F

F∑
f=1

| P obs
f −P

pred
f |

P obs
f

, (A7)

which is the absolute error between the observed and pre-
dicted PSD, relative to observed PSD, averaged over frequen-
cies. Here, F denotes the number of frequencies of the power
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spectrum, P obs
f is the power of the observed field at the f th

frequency, and P pred
f is the power of the predicted field at the

f th frequency. Taking the relative values allows the compar-
ison of spectral densities on multiple scales. In the present
case, PSD frequencies are sampled linearly, weighting cor-
responding wavelengths towards smaller scales, effectively
biasing small-scale errors to be more important. This is, how-
ever, not necessarily a problem, as prediction fidelity at small
scales is the most important question we seek to answer with
RAPSD.

A5 Hardware and software packages used

The DEUCE model was built on PyTorch (version 1.12.1).
PyTorch Lightning (version 1.7.7) was used to organize
the neural network training and prediction workflow, and
the TyXe library (version 0.0.1) was used to turn DEUCE
Bayesian, making use of the Pyro (version 1.4.0) proba-
bilistic programming language as its back-end for variational
inference. The DEUCE training and prediction were per-
formed using the Finnish IT Center for Science (CSC) super-
computer Puhti, using one NVIDIA V100 GPU with 32 GB
of VRAM, 64 GB of RAM, and 10 cores from a 2.1 GHz Intel
Xeon Gold 6230 CPU. For the evaluation of the model per-
formance, we used the pySTEPS library (version 1.6.1). It
served to produce baseline extrapolation-based model now-
casts, to calculate verification metrics, and to help with their
visualization. The pySTEPS-based verification pipeline was
run on a computational server of the Finnish Meteorological
Institute equipped with two Intel Xeon Gold 6138 2.0 GHz
CPUs, each with 20 cores and 2 threads by core, as well as
192 GB of RAM.

Appendix B: Results of the second case study

The results of the second case study show a similar behavior
to that of the first case study (Sect. 4.1) but generally lower
uncertainty values, especially on the inside of the areas con-
taining precipitation.

B1 Ensemble mean and breadth

Ensemble mean and breadth as units of standard deviation
are shown for the second case in Fig. B1. Here, we observe a
generally similar trend, as with the first case (Sect. 4.1), with
the difference being that the ensemble breadth of STEPS is
only higher than that of DEUCE towards the center of the
rainfall areas, as it tends to be similar at the outskirts of those
larger areas. Among the different models, we can also ob-
serve the most heterogeneity and anisotropy in the predictive
distribution of DEUCE.

B2 Reflectivity exceedance probabilities

Reflectivity probabilities of exceeding 25 dBZ predicted by
the different models for the second case are depicted in
Fig. B2, and many of the same comments can be made with
respect to the first case (Sect. 4.1), with DEUCE seeming
to offer the best balance between accuracy and lacking too
many false positives.

For this second case study, the exceedance probabilities of
DEUCE at thresholds of 15, 25, 35, and 45 dBZ are shown
in Fig. B3. It is worth pointing out that DEUCE was not
able to predict the growth of a substantial new rainfall area
in the northwest of the composite, despite the predictive un-
certainty being significant there, as shown in Fig. B1, which
can be understood because the predictive means under the
8 dBZ threshold were generally closer to the minimum value
of −10 dBZ.
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Figure B1. The second case study ensemble means and breadths of DEUCE compared to STEPS and LINDA-P model predictions and
observations for multiple lead times. The area covers southern Finland, starting at 16:50:00 UTC on 17 August 2021. The rows represent
lead time and columns different instances of observations, model mean, and standard deviations. Missing values are indicated by a dark gray
color.

Figure B2. The second case study reflectivity exceedance probabilities of 25 dBZ for DEUCE compared to STEPS and LINDA-P model
predictions and observations for multiple lead times. The area covers southern Finland, starting at 16:50:00 UTC on 17 August 2021. The
rows represent lead time. In the leftmost column, actual observations are shown in light gray, with echo isotherms corresponding to the
threshold marked in black. In other columns, the same isotherms are overlaid on the exceedance probabilities of the models and depicted in
shades of red. Missing values are indicated by a dark gray color.
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Figure B3. The second case study reflectivity exceedance probabilities of DEUCE compared to observations for multiple lead times and
reflectivity thresholds. The area covers southern Finland, starting at 16:50:00 UTC on 17 August 2021. The rows represent lead time. The
leftmost column is observations, and the rest are exceedance probabilities at different thresholds. As in Fig. B2, the observation isotherms
corresponding to the threshold in question overlay the exceedance probabilities depicted in shades of red.
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Appendix C: Additional figures

Figure C1. Five randomly selected examples of post-processed DEUCE ensemble members on the first case studied, whose area covers
southern Finland, starting at 15:00:00 UTC on 9 July 2022. The prediction lead times illustrated are 5, 15, 30, and 60 min.
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Code and data availability. The data used for the pro-
duction of the results are available online (Har-
nist et al., 2023) at https://doi.org/10.23728/fmi-
b2share.3efcfc9080fe4871bd756c45373e7c11. These data
include the input data used for the training of DEUCE, prediction
generation, and observations for the verification. Pre-trained model
checkpoints, the script used to gather neural network inputs into an
HDF5 file, and computed metric data are also included.

The source code with instructions for the reproduc-
tion of results is available online (Harnist, 2023) at
https://doi.org/10.5281/zenodo.7961954 and from GitHub
at https://github.com/fmidev/deuce-nowcasting (last access:
2 May 2024). This code is used for the training and nowcast
generation of DEUCE, the production of baseline nowcasts, the
computation of metrics, and the creation of figures presenting these
metrics.
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