Articles | Volume 17, issue 1
https://doi.org/10.5194/gmd-17-381-2024
https://doi.org/10.5194/gmd-17-381-2024
Model description paper
 | 
16 Jan 2024
Model description paper |  | 16 Jan 2024

A model for rapid PM2.5 exposure estimates in wildfire conditions using routinely available data: rapidfire v0.1.3

Sean Raffuse, Susan O'Neill, and Rebecca Schmidt

Related authors

Intercomparison of thermal–optical carbon measurements by Sunset and Desert Research Institute (DRI) analyzers using the IMPROVE_A protocol
Xiaolu Zhang, Krystyna Trzepla, Warren White, Sean Raffuse, and Nicole Pauly Hyslop
Atmos. Meas. Tech., 14, 3217–3231, https://doi.org/10.5194/amt-14-3217-2021,https://doi.org/10.5194/amt-14-3217-2021, 2021
Short summary

Related subject area

Atmospheric sciences
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024,https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024,https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024,https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024,https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024,https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary

Cited articles

Abdo, M., Ward, I., O'Dell, K., Ford, B., Pierce, J. R., Fischer, E. V., and Crooks, J. L.: Impact of wildfire smoke on adverse pregnancy outcomes in Colorado, 2007–2015, Int. J. Env. Res. Pub. He., 16, 3720, https://doi.org/10.3390/ijerph16193720, 2019. a
Aguilera, R., Corringham, T., Gershunov, A., and Benmarhnia, T.: Wildfire smoke impacts respiratory health more than fine particles from other sources: observational evidence from Southern California, Nat. Commun., 12, 1493, https://doi.org/10.1038/s41467-021-21708-0, 2021a. a
Aguilera, R., Corringham, T., Gershunov, A., Leibel, S., and Benmarhnia, T.: Fine particles in wildfire smoke and pediatric respiratory health in California, Pediatrics, 147, e2020027128, https://doi.org/10.1542/peds.2020-027128, 2021b. a
Al-Hamdan, M. Z., Crosson, W. L., Economou, S. A., Jr, M. G. E., Estes, S. M., Hemmings, S. N., Kent, S. T., Puckett, M., Quattrochi, D. A., Rickman, D. L., Wade, G. M., and McClure, L. A.: Environmental public health applications using remotely sensed data, Geocarto International, 29, 85–98, https://doi.org/10.1080/10106049.2012.715209, 2014. a
Barkjohn, K. K., Gantt, B., and Clements, A. L.: Development and application of a United States-wide correction for PM2.5 data collected with the PurpleAir sensor, Atmos. Meas. Tech., 14, 4617–4637, https://doi.org/10.5194/amt-14-4617-2021, 2021. a
Download
Short summary
Large wildfires are increasing throughout the western United States, and wildfire smoke is hazardous to public health. We developed a suite of tools called rapidfire for estimating particle pollution during wildfires using routinely available data sets. rapidfire uses official air monitoring, satellite data, meteorology, smoke modeling, and low-cost sensors. Estimates from rapidfire compare well with ground monitors and are being used in public health studies across California.