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Abstract. Urban smoke exposure events from large wild-
fires have become increasingly common in California and
throughout the western United States. The ability to study the
impacts of high smoke aerosol exposures from these events
on the public is limited by the availability of high-quality,
spatially resolved estimates of aerosol concentrations. Meth-
ods for assigning aerosol exposure often employ multiple
data sets that are time-consuming to create and difficult to re-
produce. As these events have gone from occasional to nearly
annual in frequency, the need for rapid smoke exposure as-
sessments has increased. The rapidfire (relatively accurate
particulate information derived from inputs retrieved easily)
R package (version 0.1.3) provides a suite of tools for devel-
oping exposure assignments using data sets that are routinely
generated and publicly available within a month of the event.
Specifically, rapidfire harvests official air quality monitoring,
satellite observations, meteorological modeling, operational
predictive smoke modeling, and low-cost sensor networks. A
machine learning approach, random forest (RF) regression,
is used to fuse the different data sets. Using rapidfire, we
produced estimates of ground-level 24 h average particulate
matter for several large wildfire smoke events in California
from 2017-2021. These estimates show excellent agreement
with independent measures from filter-based networks.

1 Introduction

Changes in climate in the western United States, and else-
where, are driving larger, more intense fires with greater
smoke impacts on larger populations (Burke et al., 2021), and
these trends are projected to continue (Hurteau et al., 2014).
The wildfire seasons of 2020 and 2021 produced some of the
highest concentrations of particulate matter, less than 2.5 ym
in diameter (PM35), ever observed in monitoring stations
around California, some for several days or weeks. Despite
reductions in ambient PM; s driven by air pollution regula-
tions, areas of the western United States are seeing increasing
concentrations due to wildfire smoke impacts (McClure and
Jaffe, 2018).

There are widespread concerns about potential health con-
sequences of wildfire exposures on vulnerable populations as
the smoke increasingly reaches populated areas. From 2008-
2012, it was estimated that over 10 million individuals in the
United States experienced unhealthy air quality levels (aver-
age daily fire PM» s > 35 ugm™3) associated with exposure
to wildfire for more than 10d (Rappold et al., 2017). This
number is expected to have risen several-fold in the decade
since, given the increase in wildfire events across the conti-
nent (Childs et al., 2022). Additionally, long-range transport
of wildfire PM, 5 has been associated with adverse health ef-
fects in susceptible populations thousands of miles away (Le
et al., 2014; Kollanus et al., 2016).

Wildfire smoke is associated with premature deaths (Chen
etal., 2021a; Johnston et al., 2012) and significant cardiovas-
cular (Chen et al., 2021b) and respiratory morbidity (Reid
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et al., 2016), including asthma exacerbations. Certain sub-
populations are more susceptible to the health impacts of air
pollution and wildfire smoke, including the elderly, pregnant
women, and those with underlying health conditions such
as asthma (Chen et al., 2021b). Few studies have examined
long-term health outcomes in relation to chronic exposures
to high concentrations of wildfire smoke. Prenatal wildfire
smoke exposure has been linked to adverse birth outcomes,
including preterm birth (Heft-Neal et al., 2022) and lower
birth weight (Abdo et al., 2019; Holstius et al., 2012), es-
pecially with exposure in the second or third trimester. In
contrast to studies of ambient air pollution, associations be-
tween wildfire smoke and adverse birth outcomes did not
differ by race, ethnicity, or income but differed by baseline
smoke exposure. Many epidemiological studies have linked
early-life air pollution exposure to increased autism spectrum
disorder risk (Volk et al., 2013; Dutheil et al., 2021; Volk
et al., 2011) and to cognitive functioning impairments (Clif-
ford et al., 2016; Loftus et al., 2019; Chiu et al., 2016; Loftus
et al., 2020).

Evidence suggests that wildfire PM» 5 could induce higher
toxicity than other ambient air PM; 5 (Kim et al., 2018;
Wegesser et al., 2010; Franzi et al., 2011; Wegesser et al.,
2009) and is associated with about 10 times higher increase
in hospital admissions for respiratory health than PM> s from
other sources (Aguilera et al., 2021a), including in young
children (Aguilera et al., 2021b). With climate predictions
for increased occurrence and severity of wildfires, there is a
growing need to understand which populations are at highest
risk and PMj 5 concentrations of concern to inform adverse-
health mitigation strategies. Yet, many gaps remain in our
understanding of the linkages between wildfire smoke and
human health (Black et al., 2017). A critical challenge is in
characterizing personal or population exposures during high-
intensity events. There are many methods for estimating ex-
posure to ambient pollution, including spatial interpolation
of measured values, chemical transport modeling, remote
sensing, land-use regression modeling, data fusion and ma-
chine learning, and combinations of all of these approaches
(e.g., Reid et al., 2015; Zhang et al., 2020; Al-Hamdan et al.,
2014; Cleland et al., 2020; Hoek et al., 2008). The rapidly
changing conditions during wildfire smoke events can con-
found otherwise high-performing approaches (O’Neill et al.,
2021). There are several barriers to the adoption of existing
methods for exposure assignment. These can include data
availability for the study location, data latency, and high-
performance computing requirements. The combination of
increasing frequency of smoke events and the proliferation
of smoke exposure human health studies drives a need for
exposure modeling that is quick and inexpensive.

There has been a rapid proliferation of low-cost sensors
for air quality within the past decade. While these sensors
do not measure PM, 5 with the same fidelity as the regula-
tory monitoring conducted by federal and local air quality
agencies, they represent a new resource for PM s assess-
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Figure 1. Locations of burned areas in California, 2017-2021.

ment with relatively dense spatial coverage. Many low-cost
PM, 5 sensors operate with similar principles, using a laser
to count particles that scatter light in the optical range, with
sensitivities peaking for aerosols with median scattering di-
ameter of < 0.3 pum (Ouimette et al., 2022). Recent studies
have shown the value of incorporating low-cost sensor net-
works into PM3 5 exposure modeling (Bi et al., 2020).

Past work has shown that a data fusion approach that com-
bines ground-based air quality monitors, transport modeling
that incorporates wildfire emissions, satellite observations,
and meteorological variables can be effective in predicting
PM, 5 exposure during large wildfire events (Zou et al., 2019;
O’Neill et al., 2021) and prescribed fires (Huang et al., 2021).

We developed methods and a suite of tools for rapidly pre-
dicting PM; 5 exposure, particularly during wildfire smoke
events, using readily available data with low latency (less
than 1 month). The tools are contained within a package
written in the R programming language called rapidfire (rel-
atively accurate particulate information derived from inputs
retrieved easily). rapidfire adapts and builds upon the meth-
ods of Zou et al. (2019) and O’Neill et al. (2021), replac-
ing retrospective chemical transport modeling and other data
sets developed for research with smoke forecast modeling
and “off-the-shelf” data sets that are routinely available and
easily acquired. A major addition is the incorporation of low-
cost sensor data. This paper describes the data sets and algo-
rithms used in the rapidfire package and presents an example
case study during five recent extreme wildfire seasons in Cal-
ifornia.
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Figure 2. Temporal and area views of smoke impacts across California. Panels on the left show 24 h PM 5 concentrations from permanent
and temporary monitors in California for July-November for 2017-2021. Data are color-coded by air quality index. Panels on the right
show visible satellite imagery of smoke and satellite fire hotspot detections across California from NASA Worldview for 13 October 2017
during the wine country wildfires, 9 November 2018 during the Camp and Woolsey wildfires, 27 October 2019 during the Kincade wildfire,
9 September 2020 after widespread lightning ignition of wildfires in northern and central California, and 19 August 2021 when many wildfires
were burning in northern California and the Sierras.
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Table 1. Modeled time periods and major California wildfires. Annual area burned in California is from the United States National Intera-
gency Fire Center (NIFC; https://www.nifc.gov/fire-information/statistics, last access: 10 January 2024).

Year  Time period Major California fires

Annual California area burned (ha)

2017  Oct

2018 15 Jul-15 Sep; Nov
2019 15 Oct—15 Nov
2020  Aug—Oct

Kincade

Atlas, Nuns, Pocket, Redwood Valley, Tubbs
Carr, Mendocino, Ferguson, Camp, Woolsey

August, Apple, Creek, Dolan, Dome, LNU

513000
738000
105000
1657000

Lightning, North, SCU Lightning, Bobcat

2021  Aug—Oct

Antelope, Caldor, Dixie, Monument, River

905 000

2 Methods

In this study, data sets and algorithms are applied to time pe-
riods of large California wildfires from 2017-2021. Table 1
summarizes some of the major California wildfires and the
area burned for the year. Figure 1 shows the wildfire loca-
tions, as detailed by the California Department of Forestry
and Fire Protection’s Fire and Resource Assessment Pro-
gram (FRAP). Extreme fire weather conditions fueled the
October 2017 wine country wildfires (~ 81 ha) in the Napa
and Sonoma counties of central coastal California (Mass and
Ovens, 2019), and over 7 million people were impacted by
unhealthy levels of smoke (O’Neill et al., 2021). The 2018
wildfire season began in July with wildfires such as the Carr,
Ferguson, and Mendocino Complex (Mueller et al., 2020)
and extended through November with the Camp and Woolsey
wildfires. In comparison, 2019 was a relatively low-activity
fire year, but the Kincade wildfire (~ 31 ha) again impacted
the wine country in October—-November. The 2020 wildfire
season was relatively quiet until the middle of August when
widespread lightning ignited many wildfires across central
and northern California, including the coastal range south of
San Francisco. In 2021 about two-thirds of the acres were
burned as in 2020, but over a longer duration, starting about
a month earlier in July. These different patterns and the level
of smoke impacts are seen in Fig. 2, which shows 24 h av-
erage PMj 5 concentrations from permanent and temporary
monitors across the state of California and satellite imagery
of the smoke and satellite hotspot detections.

2.1 Input data sets

Input data for rapidfire consist of ground-based monitors
from three sources, aerosol optical depth from satellite in-
struments, and modeled meteorological and air quality data.
Table 2 summarizes these data sources and the rapidfire func-
tions used to access them and/or the location where the data
can be obtained.

Geosci. Model Dev., 17, 381-397, 2024

2.1.1 Permanent and temporary air quality monitoring
data

Hourly PM» 5 observations are available from monitoring
stations across the United States via the AirNow program,
which is a partnership of the United States Environmen-
tal Protection Agency (EPA); National Oceanic and Atmo-
spheric Administration; National Park Service; NASA; Cen-
ters for Disease Control and Prevention; and tribal, state, and
local air quality agencies (https://www.airnow.gov/, last ac-
cess: 10 January 2024). Within California, about 117-141
monitors were operating during the study period. These per-
manent monitors are a mixture of federal reference method or
federal equivalent method instruments, instruments of suffi-
cient quality such that the data are used by EPA to determine
attainment and non-attainment of the National Ambient Air
Quality Standards (NAAQS).

During wildfires, temporary monitors are also deployed by
the Interagency Wildland Fire Air Quality Response Program
(IWFAQRP; Congress.gov, 2019) and the California Air Re-
sources Board (CARB). These monitors are environmental
beta attenuation monitors (E-BAMs; Met One Instruments,
Inc.). As discussed in O’Neill et al. (2021), laboratory (Trent,
2006) and field (Schweizer et al., 2016) studies, evaluating E-
BAM performance with federal reference method monitors
(BGI Inc., PQ-200, and Met One Instruments BAM) found
correlations greater than 0.9 with a tendency of the E-BAMs
to overestimate PMy s, especially when relative humidity was
greater than 40 % (Schweizer et al., 2016). Though not as ac-
curate as the AirNow monitors, they are deployed in regions
where smoke impacts are significant and permanent moni-
toring is sparse or absent. The locations of permanent and
temporary monitors as of 1 September 2021 are shown in
Fig. 3 (left). The permanent monitors are concentrated in the
coastal and valley regions where larger populations of people
are located, while temporary monitors are focused in areas of
complex terrain where most wildfires and smaller communi-
ties without air quality monitoring data are located.

Hourly PM»>s concentrations from both the perma-
nent and temporary monitors were acquired using
the rapidfire::get_airnow_daterange and
rapidfire::get_airsis_daterange  functions.
These wrap the monitor_subset function from the

https://doi.org/10.5194/gmd-17-381-2024
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Table 2. Data sources used in rapidfire and the rapidfire function to access them or the location where sample data are available.

Data source

rapidfire function or location where available

Spatial resolution

AirNow permanent PM; 5 monitoring data rapidfire::get_airnow_daterange Point locations
IWFAQRP temporary PMj 5 monitoring data rapidfire::get_airsis_daterange Point locations
PurpleAir air sensor data rapidfire::openaq_get_averages Point locations
MAIAC aerosol optical depth rapidfire::maiac_download 1 km
Example smoke modeling data https://doi.org/10.5281/zenodo.7942846 4km
(Raffuse and O’Neill, 2023)
North American Regional Analysis (NARR) rapidfire::get_narr 32km
meteorology
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Figure 3. Map of permanent and temporary California monitor locations (a) and PurpleAir outdoor sensor locations (b), 1 September 2021.

Mazama Science PWFSLSmoke R package (Mazama
Science, 2024). rapidfire::recast_monitors
was then used to calculate daily 24h averages from the
hourly data. At least 16h is required to produce an aver-
age. The daily average data from both the permanent and
temporary monitors were combined into a single data set.
Of this monitor data set, 30 % was withheld for develop-
ment and evaluation of the rapidfire model results. The
remaining 70 % was used to develop model variograms
using rapidfire::create_airnow_variograms.
These PM; 5 observations were then log-transformed and
interpolated to estimate concentrations at locations away
from the monitors using ordinary kriging (Wackernagel,
1995), providing a spatially complete data set for use in the
rapidfire data fusion.

2.1.2 Low-cost sensors

There has been a proliferation of low-cost sensors that es-
timate PM, 5 deployed by the public across the world in the
last decade. We used data from the PurpleAir network, which
had grown to over 6500 outdoor sensors in California as of
the end of 2021. Figure 3 (right) shows the locations of Pur-
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pleAir sensors reporting data on 1 September 2021. Coverage
in populated areas is extensive.

While PurpleAir estimates of PMj; 5 concentration have
been shown to be biased and are dependent on humidity and
aerosol type (Barkjohn et al., 2021), they still correlate with
PMj; 5 observed at FEM monitors and provide invaluable spa-
tial and temporal information that is not available with the
relatively sparse network of monitors. Because these sensors
are not quality controlled or validated, and their siting may
be suspect, care must be taken when using them in modeling.

For time periods since February 2021, rapidfire ac-
quires PurpleAir archive data using the OpenAQ ap-
plication programming interface (API). OpenAQ is
a non-profit data platform that aggregates air qual-
ity data from around the world (OpenAQ, 2023).
rapidfire: :openaq_find_sites is first run to
find all sensors within a specified geographic boundary.
Then, rapidfire: :openaq_get_averages can be
used to download data for those sensors over the specified
time period. At the time of publication, PurpleAir data from
prior to February 2021 were not available via OpenAQ. For
earlier time periods, rapidfire queries data directly from the
PurpleAir APl. rapidfire::pa_find_sensors

Geosci. Model Dev., 17, 381-397, 2024


https://doi.org/10.5281/zenodo.7942846

386

is used for finding all available outdoor PurpleAir
sensors within a geographic bounding box. Then,
rapidfire: :pa_sensor_history can be run to
acquire hourly PM» s concentration estimates from each
sensor. Note that access to historical data via the PurpleAir
API now requires an API key, and there is a cost for
requesting larger amounts of data. There is no cost to access
the data via OpenAQ.

We employ a spatial test to remove sensors that
are significantly different from their neighbors.

rapidfire: :purpleair_clean_spatial_outliers

removes any sensors that are more that 2 standard deviations
away from the median of all sites within 10km. PurpleAir
estimates used in data fusion were log-transformed and then
interpolated using ordinary kriging. While it is common
to apply a correction to PurpleAir data to better correlate
with PM; 5 from standard monitors, we elected not to do so.
The data fusion model described below incorporates relative
humidity and other meteorological parameters and is, in
essence, applying a correction specific to the region and time
period of the modeling domain.

2.1.3 Satellite aerosol optical depth

Satellite aerosol optical depth (AOD) is a measure of the to-
tal columnar aerosol light extinction from the satellite sen-
sor to the ground. AOD is indirectly related to PM, 5, with
the relationship depending on aerosol type, humidity, and
aerosol vertical profile (Li et al., 2015). We used AOD from
the Multi-Angle Implementation of Atmospheric Correction
(MAIAC) project (Lyapustin et al., 2011). MAIAC is an ad-
vanced algorithm that uses time series analysis and additional
processing to improve aerosol retrievals; atmospheric cor-
rection; and, importantly, cloud detection from the Moder-
ate Resolution Imaging Spectroradiometer (MODIS) instru-
ments on board NASA’s Terra and Aqua satellites. Past work
has shown that thick smoke is often mistaken for clouds in
the standard MODIS algorithms (van Donkelaar et al., 2011),
which hampers their use in wildfire conditions. The MAIAC
algorithm reduces those errors.

The rapidfire::maiac_download function can
be used to acquire the 1km daily atmosphere product
(MCD19A2) which contains AOD. Clouds prevent the re-
trieval of AOD, and there are sometimes clouds present
even in the hot, dry conditions during California wildfires.
The data fusion algorithm requires a complete data set,
so a placeholder value must be used to gap-fill in loca-
tions under clouds. Previous work has used model-simulated
AOQOD, along with meteorological variables in a data fusion
approach, to gap-fill satellite-observed AOD (Zou et al.,
2019). For this work, where clouds cover less of the do-
main, we took a simpler approach. Missing AOD values
were filled using a three-stage focal average available in
rapidfire::maiac_fill_gaps_complete and il-
lustrated in Fig. 4. In the first stage, a focal mean of a 5-by-5
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Original

Figure 4. Illustration of the MAIAC AOD gap filling showing the
original scene and results of three sequential focal mean imputations
(denoted by Fill 1, Fill 2, and Fill 3).

pixel square (5 km) is used. In the second stage, the window
is increased to 9 by 9, and in the final stage it is increased
to 25 by 25. Any values that are still missing after the final
stage are filled with the median value for the entire scene.

2.14 Smoke modeling

Air quality models provide near-surface estimates of PMj 5
on an output grid. We processed daily average PM> 5 concen-
tration values acquired from the BlueSky smoke prediction
system (Larkin et al., 2009) developed by the United States
Department of Agriculture Forest Service (USFS) which first
became operational in 2002 and has undergone significant
development in recent years. The USFS runs over 30 simu-
lations a day predicting near-surface 1h average PMj 5 con-

https://doi.org/10.5194/gmd-17-381-2024
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centrations from wildland fire across the United States at a
variety of spatial extents and resolutions using the HYSPLIT
dispersion model (Stein et al., 2015). For this work we ex-
tracted BlueSky data from the California and Nevada Smoke
and Air Committee (CANSAC; https://cansac.dri.edu/, last
access: 10 January 2024) domain that encompasses Cali-
fornia and Nevada for the months of July-November, years
2017-2021. In 2018 and 2019 the domain was at a 2 km res-
olution, and for 2019-2021 the domain was at a 1.33 km res-
olution. On some days, the model did not run successfully.
For those days, data were backfilled by using the second or
third day of a previous day’s 72 h model run. We chose this
air quality data set because it is available operationally, is of
a high spatial resolution, and is focused specifically on mod-
eling smoke aerosols from wildland fires; however, other air
quality modeling could be substituted.

Smoke prediction systems need to make many more as-
sumptions than retrospective analyses. These assumptions,
such as vegetation type and fuel loading, fire size and be-
havior, persistence of fire activity into the future, and using a
meteorological forecast, all have considerable implications
for the quantity of emissions released from fires and how
those emissions transport and undergo chemical reactions in
the atmosphere (Kennedy et al., 2020; Larkin et al., 2012;
O’Neill et al., 2022). These assumptions and associated un-
certainties can result in orders of magnitude spread in the
estimated downwind PM>, 5 concentrations (Li et al., 2020).
Despite these issues, these systems are useful in providing in-
formation about potential smoke impacts (Lahm and Larkin,
2020), and the data are more available and can provide the
underlying consistent data sets necessary to represent near-
surface PM» 5 concentrations for successful applications of
machine learning and health impact analyses. Further ret-
rospective studies are not routinely available for long-term
time periods (5-10 years or more), and maturing air qual-
ity forecasting systems, when coupled with machine learning
approaches such as those provided here, can provide the con-
sistent high-quality data sets needed for health impact analy-
ses.

2.1.5 Meteorology

Meteorological conditions can help explain the relationships
between our inputs and observed PM» 5. For example, the
PurpleAir sensor is sensitive to relative humidity. AOD is
sensitive to humidity and planetary boundary layer height.
Following Zou et al. (2019), we included several meteoro-
logical variables in our model, including daily average tem-
perature, winds, humidity, boundary layer height, and daily
rainfall. These variables were acquired from the North Amer-
ican Regional Reanalysis (NARR) data set (Mesinger et al.,
2006).

https://doi.org/10.5194/gmd-17-381-2024
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2.2 Data fusion

We developed event-specific models using random forest
(RF) regression. RF is a technique that uses a large num-
ber of randomly generated regression trees (Breiman, 2001).
Each tree is constructed using a random subset of the train-
ing data, and each node uses a random subset of the potential
predictive variables. New values are estimated as the mean
prediction of the individual trees. For each RF run, 500 trees
were grown. A single tuning parameter, the number of vari-
ables selected at each node (mtry), was varied between 2
and 5. The model was trained using 10-fold cross-validation,
withholding 30 % of the monitoring data for tuning. Inter-
nally, rapidfire: :develop_model uses the random-
Forest R package (Liaw and Wiener, 2002).

For the final model, 10 predictor variables were used (Ta-
ble 3). PM; 5 from the monitors was used as both a predictor
and a target variable. Given a list of locations and dates, the
final result from rapidfire: :predict_locsisatable
with the 10 input variables plus the resulting modeled PM3 5
for each location and date.

3 Results and discussion

3.1 Model evaluation and comparison with
measurements

To demonstrate the performance of the rapidfire system, we
developed models for five large wildfire smoke events from
2017-2021 in northern California (Table 1). Six quantitative
analysis metrics are used to evaluate model performance (Ta-
ble 4). The model was assessed in two ways.

First, a 10-fold cross-validation was performed on the per-
manent and temporary monitors. For each fold, 10 % of the
monitoring data were withheld prior to interpolation. For this
analysis, we also developed models with three simpler meth-
ods: (1) ordinary kriging (OK) interpolation of AirNow mon-
itors, (2) OK interpolation of PurpleAir sensors, and (3) mul-
tiple linear regression (MLR) using the same inputs as those
used for the rapidfire modeling.

Second, rapidfire predictions using the full data set were
compared against 24 h filter-based measurements from the
Interagency Monitoring of PROtected Visual Environments
(IMPROVE) network and Chemical Speciation Network
(CSN).

The cross-validation results for rapidfire are shown in
Fig. 5. The vast majority of results are along the 1 : 1 line.
There is a large dynamic range, with concentrations ranging
from less than 1 to over 1000 uygm™3. The model overesti-
mates at the lowest concentrations and sometimes underes-
timates the highest concentrations, especially in 2017. The
relative paucity of low-cost sensors in 2017 may have con-
tributed to poorer performance in that year.

Geosci. Model Dev., 17, 381-397, 2024
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Variable Name Description Units

PM25_log_ ANK  Monitors Log-transformed, interpolated PM, 5 from permanent and temporary monitors ug m—3
PM25_log_ PAK  PurpleAir Log-transformed, interpolated PM» 5 estimates from PurpleAir sensors ug m~3
PM25_bluesky BlueSky Daily average ground-level PM, 5 predictions from BlueSky smoke model ug m~3
MAIAC_AOD AOD Gap-filled daily AOD from MAIAC Unitless

air.2m Temperature  Daily average ambient temperature at 2 m above ground level (a.g.l.) from NARR K
uwnd.10m Wind u Daily average u component of wind at 10 ma.g.l. from NARR ms~!
vwnd.10m Wind v Daily average v component of wind at 10 ma.g.l. from NARR ms—!
rhum.2m Humidity Daily average relative humidity at 2 ma.g.l. from NARR %
apcp Precipitation  Daily total precipitation amount from NARR cm
hpbl PBL height Daily average height of the planetary boundary layer from NARR m

Table 4. Definitions of quantitative analysis metrics.

Metric Equation
2 Z i (? i ?)2
r Lillizt)
Z i (Y i Y)2
Root-mean-square error (RMSE) v/ 1 —r2SDy
Median bias med(¥; — ;)

Normalized bias (%) 100 - med (y’%ly’)

Y=Y
med ( Y, )
100 - med (abs (%))

Median error

Normalized error (%)

2017 2018 2019

1000

100

2020 2021

Modeled PM; 5

1 10 100 1000
Measured PM, 5

Figure 5. Cross-validation results by year against measured PM3 5
from AirNow monitors (values are given in units of ug m™3).

Model performance statistics for the cross-validation us-
ing the four methods are shown in Table 5. For these wildfire
events, rapidfire provides good correlation with low error and
bias, offering improvement over classical MLR or interpola-
tion of the ground monitors alone. The high density of mon-
itors in this region helps the interpolation approaches per-
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form well; all of the methods are available within the rapid-
fire package. These results are similar to results from recent
data fusion studies. Cleland et al. (2020) applied bias correc-
tion and data fusion methods to estimate PM; 5 impacts dur-
ing the 2017 wine country wildfires with a resulting correla-
tion of 0.71. They found that temporary monitors in the more
rural areas were critical in improving results. Similarly, Zou
etal. (2019) applied several machine learning approaches, in-
cluding random forest, to improve PM; 5 estimates across the
Pacific Northwest (PNW) during August—September 2017,
with correlations ranging from 0.45 to 0.59. Note that the
PNW region is much more sparsely populated with monitors
than California.

Complete rapidfire results were also compared with avail-
able observations from the IMPROVE network and CSN.
Both IMPROVE and CSN collect 24 h integrated filter-based
measurements of speciated particulate matter every third day
(Solomon et al., 2014). IMPROVE PM, 5 mass is determined
gravimetrically. CSN no longer performs gravimetric mass
analysis, but PM 5 is estimated by reconstructing total mass
from the major components of PM; 5: ammonium sulfate,
ammonium nitrate, soil, organic matter, elemental carbon,
and sea salt.

Figure 6 shows the CSN and IMPROVE monitor locations
along with the identifiers used in this study. The rapidfire
modeling shows excellent agreement with individual CSN
and IMPROVE monitors as shown in Fig. 7 and Table 6.
This is somewhat surprising, as they represent a challeng-
ing test of the method. The 24 h filter data are 100 % inde-
pendent of the model inputs and, for IMPROVE especially,
are located far from other monitors in remote locations with
complex terrain. However, the lower dynamic range of the
data helps to explain the lower RMSE compared to the cross-
validation analysis above. Because the IMPROVE sampler
clogs in very heavy smoke situations, the highest concentra-
tions in this data set are less than 200 ugm™3. The network is
also relatively sparse, and sampling is only every third day.
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Table S. Performance metrics for four modeling methods.
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Model R?2 RMSE Medianbias Normalized bias Median error Normalized error
rapidfire 0.87 16.1 —0.08 —-0.76 —0.008 18.0
MLR 0.84 17.6 0.01 0.11 0.001 22.6
AirNow OK 0.80 19.5 —0.03 —-0.26 —0.002 23.4
PurpleAir OK  0.80 194 1.69 15.2 0.152 41.1

Table 6. Performance metrics for rapidfire at AirNow, IMPROVE, and CSN sites.

Network R?2 RMSE Medianbias Normalized bias Median error  Normalized error

CSN 0.87 5.18 0.42 3.93 1.96 15.3

IMPROVE 0.81 8.47 248 46.5 3.19 49.6
e 2 plexity of these smoke events, which are controlled by multi-
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Figure 6. Map of CSN and IMPROVE monitoring stations used to
validate model results.

3.2 Characterizing rapidfire results across California

The results are plotted across California for two wild-
fire seasons: August—October 2020 (Fig. 8) and August—
October 2021 (Fig. 9). In each case, daily average PM; 5
reaches values greater than 200 ugm™3, with very strong
spatial and temporal variability. The 2020 case shows three
widespread peaks in August, September, and October. In the
2021 case, concentrations were highest in northern locations
in August, while values were higher further south in Septem-
ber and early October. These two cases highlight the com-
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county based on AirNow monitors. Predictions were capped
at 200ugm™3, as the PM, 5 dose-response curve flattens
at higher exposures (Pope et al., 2011). M is the county-
level daily average mortality rate, which was acquired from
the Centers for Disease Control and Prevention’s WONDER
database (CDC, 2023), for the year 2016 (a recent low-fire
year). P is the census tract population from the 2020 Cen-
sus (Census, 2021). RRgy is the relative risk function for
multiple-cause mortality due to short-term PMj; 5 exposure.
The value of RRgy was 0.11 % per 1 pug m~3 increase in PMj s
concentration (Johnston et al., 2012).

Figure 10 shows the California-wide daily excess mortal-
ity calculated from the increment of PM; 5 concentrations
above PM; 5 ,. The most significant impacts are seen in 2018
and 2020. In November 2018, the Camp wildfire produced
massive PM» s emissions that were transported throughout

Geosci. Model Dev., 17, 381-397, 2024
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Figure 7. Model comparison against measured PMj 5 at IMPROVE and CSN monitors.

the Sacramento and San Joaquin valleys and persisted un-
der stagnant weather conditions. The nearly 2-week period of
high concentrations across a broad region of relatively high
population density led to an estimated 266 excess deaths. The
historic 2020 fire season was even more dramatic. Beginning
in August, smoke from fires burning around the state con-
tributed to an estimated 615 excess deaths across a 3-month
period. Incorporating the error in the rapidfire predictions,
the range of excess deaths is 209-339 in the November 2018
period and 457-1072 in the 2020 3-month period. The spatial
distribution of excess mortality for 2020 is shown in Fig. 11.
Impacts are shown by census tract. Though census tracts vary
greatly in size, they have similar populations, with a mini-
mum of 1200 and maximum of 8000. Elevated excess mor-
tality was widespread in the northern half of the state, espe-
cially away from the coast.

4 Discussion
4.1 Model input importance
Although the random forest model uses all of the provided

predictor variables, the most explanatory variables are se-
lected more often at each node. The relative importance of

Geosci. Model Dev., 17, 381-397, 2024

each variable can be visualized by calculating SHapley Addi-
tive exPlanations (SHAP) (Lundberg and Lee, 2017). SHAP
quantifies the contribution of each predictor variable to the
final model prediction. Figure 12 shows input values plot-
ted versus SHAP for 1-10 November 2018. A single pre-
diction, for CSN site 107-1001 on 10 November 2018, is
highlighted. The SHAP values show the contributions to the
final predicted concentration value from each of the model
inputs. The individual component features of the model be-
have as expected from atmospheric dynamics. In the high-
lighted case, PM» 5 was high in the permanent and temporary
monitors (Monitors), the sensor network (PurpleAir), and the
smoke model (BlueSky). AOD was also elevated. By con-
trast, the planetary boundary layer (PBL height) was low, as
were wind speeds, humidity, and precipitation. Air temper-
ature was moderate. The magnitude of the SHAP values in
Fig. 12 quantifies the relative importance of the different in-
puts. The ground-based networks, both official monitoring
and low-cost sensors, are the most important variables in
the model, followed by the BlueSky smoke model, planetary
boundary height, and AOD. The remaining meteorological
variables have a small but coherent impact.

https://doi.org/10.5194/gmd-17-381-2024
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Figure 8. rapidfire PM; 5 estimates for August—October 2020. Each box on the map shows the time series for a point at the centroid of the
box, and the larger plot shows all of those time series overlaid.
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Figure 9. rapidfire PM; 5 estimates for August—October 2021. Each box on the map shows the time series for a point at the centroid of the
box, and the larger plot shows all of those time series overlaid.
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Figure 11. July-November 2020 excess mortality by census tract
from PM, 5 concentrations above estimated baseline.
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4.2 Application for health studies

The rapidfire modeling has been applied, and is being ap-
plied, in several epidemiological studies. The ability to pro-
duce wildfire-associated PM> 5 measures in a timely man-
ner (about 1 month post-event) allows time-critical plan-
ning and implementation of epidemiological studies. For ex-
ample, when each of the recent large wildfires produced
smoke plumes that covered urban areas of northern Cali-
fornia, the rapidfire modeling was used to determine the
time periods and geographical areas where populations were
most impacted by wildfire smoke. This information was used
in two local studies, the Bio-Specimen Assessment of Fire
Effects (B-SAFE) wildfire pregnancy cohort study and the
WHAT-Now CA wildfire cohort study, to recruit participants
from highly affected areas to collect information and bi-
ological specimens to analyze later for wildfire-associated
compounds and biologic responses as indicators of poten-
tial for downstream health impacts. Both studies also related
the wildfire-associated PM> 5 from rapidfire modeling to re-
ported symptoms and health outcomes of the cohort partic-
ipants. In B-SAFE, the timing and concentrations of PMj 5
are being linked to birth outcomes of the children gestation-
ally exposed to wildfires for the initial study and in follow-up
studies on respiratory, developmental, and other child condi-
tions. Specimens collected in B-SAFE for those with higher
versus lower modeled wildfire-associated PM5 5 are also be-
ing compared across various measures (e.g., metals, contam-

https://doi.org/10.5194/gmd-17-381-2024
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Figure 12. SHAP dependence plot at CSN and IMPROVE sites for 1-10 November 2018. Units for feature values depend on the variable
and are listed in Table 3. BlueSky data were log-transformed in this plot for clarity.

inants, cytokines) to better understand differences by degree
of exposure. In WHAT-Now CA, PM; s is being examined
in association with respiratory outcomes. Both studies are
planning to follow these exposed cohorts forward to exam-
ine later health outcomes.

Other local studies, including existing cohorts not focused
on wildfire exposure, like the Markers of Autism Risk in Ba-
bies — Learning Early Signs (MARBLES) pregnancy cohort
study of younger siblings of children with autism (Hertz-
Picciotto et al., 2018), also used the rapidfire modeling in or-
der to identify mothers and infants exposed to wildfire smoke
during pregnancy and examine specimens being collected
as part of the protocol for differences. Further, outcomes of
these children, who are at higher risk of autism and other neu-
rodevelopmental conditions, will be compared across those
exposed and unexposed to wildfire.

rapidfire modeling will be used to determine the time peri-
ods and geographical areas where populations were and will
be most impacted by future wildfire smoke events for other
statewide air pollution studies, including one funded by EPA
(EPA STAR 84048401) that will link air pollution measures,
including wildfire-specific air pollution, to birth outcomes
and neurodevelopmental disorders and work with the most
affected communities to distribute education, materials, and
tools for mitigating exposures.

4.3 Advantages over existing methods

There are many methods to produce spatially resolved esti-
mates of PM» s for use in exposure studies. The advantages
of rapidfire include reliance on only off-the-shelf inputs with
low latency, inclusion of data sets that provide improvements
for wildland fire smoke, and an extensible framework with
an open code base. If a new smoke event occurred, all inputs
would be accessible and PM» s modeling could be completed
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within 1 month. At present, only the NARR meteorological
data are not available in near real time. In future work, these
could be replaced by a daily operational model and the rapid-
fire predictions could be produced 1d after an event. The
addition of a low-cost sensor network has also significantly
improved resulting predictions. The rapidfire algorithm and
code base have been designed to be modular so that new in-
puts can be included as they become available. For example,
the MAIAC AOD may become unavailable as the MODIS in-
strument reaches end of life. A new function could be added
to deal with AOD from another data source.

4.4 Limitations and future directions

The rapidfire modeling approach has some limitations. The
model requires high-quality training data to produce a high-
quality result. In areas without accurate PM 5 measurements
at point locations within the modeling domain, there is no
way to create a reliable regression, though this is true for all
statistical air quality models. In this study, the monitors from
the AirNow network served that purpose. However, AirNow
is only present in the United States, and the current rapidfire
functions require data sets that are not all globally available.
These data sets could be replaced by others to cover a spe-
cific region, and new handling functions could be added to
rapidfire to support those data sets as needed.

The rapidfire methods are designed with wildfire smoke
events in mind. They are best suited for regional-scale mod-
eling at spatial resolutions of 1 km or larger. This is appropri-
ate for smoke events, which are driven by a regional source
that impacts a broad swath. rapidfire would be less suitable
for modeling exposure to PM; 5 from emission sources at
very fine spatial scales, such as near-road emissions. Also,
rapidfire is currently limited to estimates of total PM» 5 only.
Estimates of PM» 5 composition, or specific wildfire contri-
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bution, are not supported with the currently available inputs,
though this is an area of future work.

The random forest regression method has historically been
seen as a black box, with potential for good prediction but
limited ability to provide insight into the drivers of the model
prediction and the underlying physical phenomena. How-
ever, the advent of new metrics for explaining machine learn-
ing models, such as SHAP, makes these models more useful
and transparent.

Several improvements could be made to enhance the
algorithm and potentially improve performance. The re-
cently released collection 6.1 of MAIAC AOD provides
better spatial coverage and more accurate results in con-
ditions of heavy smoke compared to collection 6.0 (Ye
et al., 2022). The relatively simplistic gap-filling approach
applied to AOD should be reviewed, especially for use
in cloudier conditions. Additional transport models with
modern fire emissions processing and broad coverage,
such as HRRR-Smoke (https://rapidrefresh.noaa.gov/hrrr/
HRRRsmoke/, last access: 10 January 2024), could be tested.
Other machine learning algorithms such as eXteme Gradient
Boosting (XGBoost) should be explored.

5 Conclusions

The rapidfire R package was developed to model rela-
tively accurate particulate information derived from inputs
retrieved easily. It incorporates off-the-shelf data sets that
are produced operationally and with low latency (< 1 month)
within a machine learning framework. rapidfire takes advan-
tage of the recent burgeoning of low-cost sensors around the
world, in addition to traditional air pollution data sources
such as ground-based monitoring networks and satellite-
derived aerosol products. The rapidfire code is available
for use and contribution at https://github.com/raffscallion/
rapidfire (last access: 10 January 2024). We demonstrated
rapidfire modeling for five recent wildfire seasons in Cali-
fornia and validated results against fully independent filter-
based measurements of PMj 5. rapidfire showed excellent
performance, predicting PMj 5 under heavy smoke with high
accuracy, even at remote and elevated sites. An example cal-
culation of conservative excess mortality from high PM; 5
exposure in California showed large impacts, including an
estimated 615 excess deaths in California over a 3-month pe-
riod of intense wildfire smoke in 2020. rapidfire PM> 5 esti-
mates are currently being used in several health effect studies
in California. In the future, we hope to expand the methods
to include data sets that are of even lower latency. At present,
the input that becomes available the most slowly is the NARR
meteorology, which is available at the end of each month.
There are several candidate meteorological data sources that
are available daily, which would allow for next-day estimates
of PM; 5. These low-latency estimates would be useful for
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rapid deployment, recruitment, and sample collection in epi-
demiologic studies.

Code and data availability. The current version of rapidfire is
available on the project website: https://github.com/raffscallion/
rapidfire (last access: 10 January 2024) under the license
GPLv3. The exact version of the model used to produce
the results used in this paper (v0.1.3) is archived on Zen-
odo (https://doi.org/10.5281/zenodo.7888562; Raffuse, 2023), as
are input data and scripts to run the model and produce
the plots for all the simulations presented in this paper
(https://doi.org/10.5281/zenodo.7942846; Raffuse and O’Neill,
2023).
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