Articles | Volume 17, issue 8
https://doi.org/10.5194/gmd-17-3357-2024
https://doi.org/10.5194/gmd-17-3357-2024
Development and technical paper
 | 
29 Apr 2024
Development and technical paper |  | 29 Apr 2024

A dynamic approach to three-dimensional radiative transfer in subkilometer-scale numerical weather prediction models: the dynamic TenStream solver v1.0

Richard Maier, Fabian Jakub, Claudia Emde, Mihail Manev, Aiko Voigt, and Bernhard Mayer

Related authors

CrystalTrace: a Monte Carlo raytracing algorithm for radiative transfer in cirrus clouds with oriented ice crystals
Linda Forster, Anna Weber, and Bernhard Mayer
Atmos. Meas. Tech., 18, 7853–7863, https://doi.org/10.5194/amt-18-7853-2025,https://doi.org/10.5194/amt-18-7853-2025, 2025
Short summary
Quasi-Lagrangian observations of cloud transitions during the initial phase of marine cold air outbreaks in the Arctic – Part 2: Vertical cloud structure
Anna Weber, Fabian Hoffmann, and Bernhard Mayer
EGUsphere, https://doi.org/10.5194/egusphere-2025-5832,https://doi.org/10.5194/egusphere-2025-5832, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Retrieval of cloud thermodynamic phase partitioning from multi-angle polarimetric imaging of Arctic mixed-phase clouds
Anna Weber, Veronika Pörtge, Claudia Emde, and Bernhard Mayer
Atmos. Meas. Tech., 18, 7581–7601, https://doi.org/10.5194/amt-18-7581-2025,https://doi.org/10.5194/amt-18-7581-2025, 2025
Short summary
Quasi-Lagrangian observations of cloud transitions during the initial phase of marine cold air outbreaks in the Arctic – Part 1: Temporal and spatial evolution
Anna Weber, Benjamin Kirbus, Manfred Wendisch, and Bernhard Mayer
EGUsphere, https://doi.org/10.5194/egusphere-2025-5831,https://doi.org/10.5194/egusphere-2025-5831, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Eradiate: An Accurate and Flexible Radiative Transfer Model for Earth Observation and Atmospheric Science
Vincent Leroy, Nicolae Marton, Claudia Emde, Nicolas Misk, Misael Gonzalez Almeida, Sebastian Schunke, Noelle Cremer, Ferran Gascon, and Yves Govaerts
EGUsphere, https://doi.org/10.5194/egusphere-2025-4861,https://doi.org/10.5194/egusphere-2025-4861, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary

Cited articles

AER: RRTM and RRTMG, http://rtweb.aer.com/rrtm_frame.html, last access: 15 March 2024. a
Anderson, G., Clough, S., Kneizys, F., Chetwynd, J., and Shettle, E.: AFGL atmospheric constituent profiles (0–120 km), Tech. Rep. AFGL-TR-86-0110, Air Force Geophys. Lab., Hanscom Air Force Base, Bedford, Mass., https://apps.dtic.mil/sti/pdfs/ADA175173.pdf (last access: 15 March 2024), 1986. a
Balay, S., Abhyankar, S., Adams, M. F., Benson, S., Brown, J., Brune, P., Buschelman, K., Constantinescu, E., Dalcin, L., Dener, A., Eijkhout, V., Faibussowitsch, J., Gropp, W. D., Hapla, V., Isaac, T., Jolivet, P., Karpeev, D., Kaushik, D., Knepley, M. G., Kong, F., Kruger, S., May, D. A., McInnes, L. C., Mills, R. T., Mitchell, L., Munson, T., Roman, J. E., Rupp, K., Sanan, P., Sarich, J., Smith, B. F., Zampini, S., Zhang, H., Zhang, H., and Zhang, J.: PETSc/TAO Users Manual, Tech. Rep. ANL-21/39 – Revision 3.19, Argonne National Laboratory, https://doi.org/10.2172/1968587, 2023. a
Davis, A., Gabriel, P., Lovejoy, S., Schertzer, D., and Austin, G. L.: Discrete angle radiative transfer: 3. Numerical results and meteorological applications, J. Geophys. Res.-Atmos., 95, 11729–11742, https://doi.org/10.1029/jd095id08p11729, 1990. a
de Mourgues, M., Emde, C., and Mayer, B.: Optimized Wavelength Sampling for Thermal Radiative Transfer in Numerical Weather Prediction Models, Atmosphere, 14, 332, https://doi.org/10.3390/atmos14020332, 2023. a
Download
Short summary
Based on the TenStream solver, we present a new method to accelerate 3D radiative transfer towards the speed of currently used 1D solvers. Using a shallow-cumulus-cloud time series, we evaluate the performance of this new solver in terms of both speed and accuracy. Compared to a 3D benchmark simulation, we show that our new solver is able to determine much more accurate irradiances and heating rates than a 1D δ-Eddington solver, even when operated with a similar computational demand.
Share