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Abstract. The increasing resolution of numerical weather
prediction models makes inter-column three-dimensional
(3D) radiative transport more and more important. However,
3D radiative-transfer solvers are still computationally expen-
sive, largely preventing their use in operational weather fore-
casting. To address this issue, Jakub and Mayer (2015) de-
veloped the TenStream solver. It extends the well-established
two-stream method to three dimensions by using 10 instead
of 2 streams to describe the transport of radiative energy
through Earth’s atmosphere. Building upon this method, this
paper presents the dynamic TenStream solver, which pro-
vides a further acceleration of the original TenStream model.
Compared to traditional solvers, this speedup is achieved by
utilizing two main concepts. First, radiation is not calculated
from scratch every time the model is called. Instead, a time-
stepping scheme is introduced to update the radiation field,
based on the result from the previous radiation time step.
Secondly, the model is based on incomplete solves, with
just the first few steps of an iterative scheme towards con-
vergence performed every time it is called. Essentially, the
model thereby just uses the ingoing fluxes of a grid box to
update its outgoing fluxes. Combined, these two approaches
move radiative transfer much closer to the way advection is
handled in the dynamical core of a numerical weather predic-
tion (NWP) model, as both use previously calculated results
to update their variables and thereby just require access to
the neighboring values of an individual grid box, facilitating
model parallelization. To demonstrate the feasibility of this
new solver, we apply it to a precomputed shallow-cumulus-

cloud time series and test its performance in terms of both
speed and accuracy. In terms of speed, the dynamic Ten-
Stream solver is shown to be about 3 times slower than a tra-
ditional 1D δ-Eddington approximation but noticeably faster
than currently available 3D solvers. To evaluate the accu-
racy of the dynamic TenStream solver, we compare its results
as well as calculations carried out using a 1D δ-Eddington
approximation and the original TenStream solver, to bench-
mark calculations performed with the 3D Monte Carlo solver
MYSTIC. We demonstrate that at the grid box level, dynamic
TenStream is able to calculate heating rates and net irradi-
ances at domain boundaries that are very close to those ob-
tained by the original TenStream solver, thus offering a much
better representation of the MYSTIC benchmark than the
1D δ-Eddington results. By calling the dynamic TenStream
solver less frequently than the δ-Eddington approximation,
we furthermore show that our new solver produces signif-
icantly better results than a 1D δ-Eddington approximation
carried out with a similar computational demand. At these
lower calling frequencies, however, the incomplete solves in
the dynamic TenStream solver also lead to a buildup of bias
with time, which becomes larger the lower the calling fre-
quency is.
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1 Introduction

Sources and sinks of radiative energy in the atmosphere
are the main drivers of both weather and climate. They are
quantified by heating rates and net surface irradiances and
are calculated using radiative-transfer models, which de-
scribe the transport of radiative energy through Earth’s at-
mosphere, ideally allowing for full three-dimensional (3D)
transport of energy. Depending on the scale, we can dif-
ferentiate between two different regimes of 3D radiative
transport: at the model grid scale, 3D radiative transfer al-
lows for the horizontal transport of energy between adja-
cent model columns, whereas at the sub-grid scale, it refers
to the 3D transport of radiative energy within a heteroge-
neous model grid box. The calculation of both of these ef-
fects is computationally expensive, largely preventing their
representation in operational weather forecasting. This is
why, to this date, numerical weather prediction (NWP) mod-
els still use one-dimensional (1D) independent-column ap-
proximations (ICAs), such as the Monte Carlo independent-
column approximation (McICA; Pincus et al., 2003) cur-
rently employed at both the Deutscher Wetterdienst (DWD)
and the European Centre for Medium-Range Weather Fore-
casts (ECMWF) (DWD, 2021; Hogan and Bozzo, 2018).
These models assume that radiative transport between grid
boxes only takes place in the vertical and neglect any hori-
zontal transport of energy – both in between different model
columns and within individual model grid boxes.

However, both of these effects have been shown to be im-
portant for the correct calculation of radiative transfer in the
atmosphere. While sub-grid-scale 3D effects primarily act at
coarser resolutions, where an individual grid box incorpo-
rates both cloudy and clear-sky regions and should thus not
be treated homogeneously, the increasing horizontal resolu-
tion of NWP models makes inter-column radiative transfer
more and more important (O’Hirok and Gautier, 2005). Es-
pecially in large-eddy simulations (LESs) with hectometer-
scale resolutions, inter-column radiative transport has been
shown to affect both the organization and development of
clouds. Klinger et al. (2017), for example, showed that con-
sidering it in the thermal spectral range leads to systemat-
ically greater cooling and much stronger organizational ef-
fects than in simulations driven by 1D radiative transfer. In
accordance with that, Jakub and Mayer (2017) demonstrated
that inter-column 3D radiative transfer in the solar spectral
range may lead to the formation of cloud streets that are not
found to this extent in 1D simulations.

To account for these increasingly important effects, in
recent years, a lot of effort has been put into making
3D radiative-transfer models computationally more feasible.
Targeted towards sub-grid-scale 3D effects, the Speedy Al-
gorithm for Radiative Transfer through Cloud Sides (SPAR-
TACUS; Schäfer et al., 2016; Hogan et al., 2016), for ex-
ample, provides a fast method to calculate 3D radiative ef-
fects at the resolutions of currently employed global atmo-

spheric models. To this end, it introduces additional terms
into the well-established two-stream scheme to account for
the radiative transport between cloudy and clear regions
inside an individual model column. On the other hand, a
lot of work has gone into the speeding up of inter-column
radiative transport at subkilometer-scale resolutions, where
model grid boxes can be gradually treated homogeneously.
A large group of these models simplify the expensive an-
gular part of 3D radiative-transfer calculations by just us-
ing a discrete number of angles (e.g., Lovejoy et al., 1990;
Gabriel et al., 1990; Davis et al., 1990). Most recently, the
TenStream solver (Jakub and Mayer, 2015) built upon this
idea. It is capable of calculating 3D radiative fluxes and heat-
ing rates in both the solar and the thermal spectral ranges.
To do so, it extends the 1D two-stream formulation to 10
streams to consider the horizontal transport of energy. Be-
sides the TenStream solver, the neighboring column approx-
imation (NCA; Klinger and Mayer, 2016, 2020) provides a
fast analytical method for calculating inter-column 3D heat-
ing rates in the thermal spectral range. For that purpose, it
estimates cloud side effects by taking just the direct neigh-
bors of a specific grid box into account. Apart from these two
approaches, significant progress has also been made in ac-
celerating highly accurate 3D Monte Carlo solvers for use in
LES models, with Veerman et al. (2022), for example, speed-
ing up the method through the use of graphics processing
units (GPUs). This allowed them to perform LES simulations
driven by a full Monte Carlo solver for the first time ever.
However, despite all these efforts, all of these solvers are still
too slow to be used operationally, with the GPU-accelerated
Monte Carlo solver of Veerman et al. (2022), for example,
being at least 6.4 times slower than the two-stream model
they compare it to. This high computational burden prohibits
the use of all of these models in operational forecasting, es-
pecially given that radiation is already called far less often
than the dynamical core of NWP models.

To address this high computational cost of current 3D
solvers, this paper presents a first step towards a new “dy-
namic” 3D radiative-transfer model. Currently designed for
the use at subkilometer-scale horizontal resolutions, where
model grid boxes can be assumed to be homogeneous, this
new fully 3D model is based on the TenStream solver. It
accelerates inter-column 3D radiative transfer towards the
speed of currently employed 1D solvers by utilizing two
main concepts. First, the model does not calculate radiation
from scratch every time it is called. Instead, it treats radiation
more like dynamics by using a time-stepping scheme to up-
date the radiation field based on the result from the previous
time step. Secondly, the model is based on incomplete solves
– it performs just the first few steps towards convergence ev-
ery time it is called.

A detailed description of this method can be found in
Sect. 2 of this paper. In Sect. 3, we then introduce a pre-
computed LES shallow-cumulus-cloud time series and fur-
ther methodology to assess the quality of the new dynamic
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Figure 1. Schematic illustration of all fluxes entering and exiting
a rectangular grid box (i,j,k) in the TenStream solver and their
respective indices. Diffuse fluxes are shown in blue, while fluxes of
direct radiation are displayed in red. Fluxes entering the grid box
are shown in a darker tone than the ones exiting. The two pairs of
diffuse fluxes on each of the sideward-oriented faces of the cuboid
point into and out of the upper and lower hemispheres, respectively.
Fluxes at the sides of the cuboid facing to the north and west are not
visible.

TenStream solver in terms of both speed and accuracy, while
also considering different calling frequencies. To this end, we
compare it to a traditional 1D δ-Eddington approximation,
the original TenStream solver and a benchmark simulation
provided by the 3D Monte Carlo solver MYSTIC (Mayer,
2009). The results of this evaluation are presented in Sect. 4.
The paper ends with a summary and outlook, given in Sect. 5.

2 Towards the dynamic treatment of radiation

Our goal is to create a 3D radiative-transfer solver that calcu-
lates radiative fluxes and heating rates at a significantly faster
speed than other inter-column 3D solvers while also deliv-
ering a noticeable improvement in terms of accuracy over
currently employed 1D radiation schemes. Here, we explain
the foundation and functionality of our newly developed dy-
namic TenStream solver, which aims to achieve these targets
using a time-stepping scheme and incomplete solves.

2.1 The original TenStream model

We build upon the TenStream model (Jakub and Mayer,
2015), which extends the established two-stream formula-
tion to three dimensions. Figure 1 shows the definition of
its streams, i.e., radiative fluxes (in units of W), for a single
rectangular grid box, with the indices (i,j,k) indicating the
position of the box in a Cartesian grid of size Nx ·Ny ·Nz.

Ten streams (80, 81, . . . , 89; depicted in blue) are used
to describe the 3D transport of diffuse radiation. As in the
two-stream formulation, two of them (80 (upward) and
81 (downward)) characterize the transport in the vertical,

whereas four additional streams are introduced to describe
the transport in each of the two additional horizontal dimen-
sions. The transport of direct radiation, i.e., radiation orig-
inating from the sun that has not yet interacted with the
atmosphere, is treated separately using the three additional
streams S0, S1 and S2, one for each dimension (shown in
red in Fig. 1). Using these streams, the radiative transport
through a single grid box (i,j,k) in the case of the sun shin-
ing from the southwest can be expressed by the following
matrix equation:



80, i, j, k+1
81, i, j, k

.

.

.
89, i, j+1, k
S0, i, j, k
S1, i+1, j, k
S2, i, j+1, k


︸ ︷︷ ︸

=8out,i,j,k

=



a00,i,j,k . . . a09,i,j,k b00,i,j,k b01,i,j,k b02,i,j,k
a10,i,j,k . . . a19,i,j,k b10,i,j,k b11,i,j,k b12,i,j,k

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
a90,i,j,k . . . a99,i,j,k b90,i,j,k b91,i,j,k b92,i,j,k

0 . . . 0 c00,i,j,k c01,i,j,k c02,i,j,k
0 . . . 0 c10,i,j,k c11,i,j,k c12,i,j,k
0 . . . 0 c20,i,j,k c12,i,j,k c22,i,j,k


︸ ︷︷ ︸

=Ti,j,k

·



80, i, j, k
81, i, j, k+1

.

.

.
89, i, j, k
S0, i, j, k+1
S1, i, j, k
S2, i, j, k


︸ ︷︷ ︸

=8in,i,j,k

+



e0,i,j,k ·Beff,0,i,j,k
e1,i,j,k ·Beff,1,i,j,k

.

.

.

e9,i,j,k ·Beff,9,i,j,k
0
0
0


︸ ︷︷ ︸

=Bi,j,k

.

(1)

Note the following about this equation:

– The vector 8in,i,j,k consists of all the radiative fluxes
entering grid box (i,j,k). For reasons of clarity, will use
the expression 8in,m,i,j,k to address an individual entry
m of this vector, implying that, for example, 8in,10,i,j,k
equals S0,i,j,k+1 in the case of the sun shining from the
southwest.

– The matrix Ti,j,k describes the scattering and absorp-
tion of the ingoing radiation8in,i,j,k on its way through
the grid box, with a00,i,j,k , for example, quantifying the
fraction of the upward flux entering the grid box at the
bottom (80,i,j,k) that exits the box in the same direction
through the top (80,i,j,k+1). While the “a” coefficients
describe the transport of diffuse radiation, the “b” coef-
ficients quantify the fraction of direct radiation that gets
scattered, thus providing a source term for the 10 dif-
fuse streams. The “c” coefficients describe the amount
of direct radiation that is transmitted through the grid
box without interacting with the medium. All of these
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transport coefficients depend on the optical properties
(optical thickness, single-scattering albedo, asymmetry
parameter, grid-box aspect ratio and angle of solar inci-
dence) of the particular grid box. They are precomputed
using Monte Carlo methods and stored in lookup tables
(Jakub and Mayer, 2015). We will use the expression
tmn,i,j,k to refer to the entry in row m and column n of
the full matrix Ti,j,k .

– The vector Bi,j,k quantifies the amount of thermal radi-
ation that is emitted in the direction of every one of the
10 diffuse streams. Its entries Bm,i,j,k are calculated by
multiplying the black-body radiation that is emitted in
the corresponding direction (Beff,m,i,j,k) by the emissiv-
ity of the grid box in that direction. According to Kirch-
hoff’s law, this emissivity of a grid box in a certain di-
rection is the same as the absorptivity of radiation com-
ing from that direction, which, in turn, is 1 minus the
transmittance in that direction. For example, the emis-
sivity e0,i,j,k of grid box (i,j,k) in the upward direction
is equal to the fraction of the downward-facing radiative
flux 81,i,j,k+1 that is absorbed on the way through that
grid box, which, in turn, is 1 minus the sum of all frac-
tions an1,i,j,k of81,i,j,k+1 exiting grid box (i,j,k), i.e.,

e0,i,j,k = 1−
9∑
n=0

an1,i,j,k ,

where an1,i,j,k refers to the corresponding entries in the
second column of matrix Ti,j,k .

– The vector 8out,i,j,k consists of all radiative fluxes ex-
iting the grid box (i,j,k). For every stream, it contains
all the radiative energy that has not interacted with the
grid box on its way through plus, in case of the diffuse
streams, the radiative energy that has been scattered and
emitted in that direction along that way. Similar to the
ingoing flux vector, we use the expression8out,m,i,j,k to
refer to an entry m of the full vector 8out,i,j,k .

Combined, the equations for all the Nx ·Ny ·Nz grid boxes
make up a large system of coupled linear equations that must
be provided with boundary conditions at the edges of the do-
main. At the top and bottom, these are determined by the in-
coming solar radiation on one side and by ground reflection
and emission on the other:

S0,i,j,Nz+1 = E0 · cosθinc ·1x ·1y

(incoming solar radiation at the top)
80,i,j,0 = Ag · (81,i,j,0+ S0,i,j,0)+ (1−Ag) ·π ·Bg ·1x ·1y

(reflection and emission at the ground).

Here, E0 denotes the extraterrestrial solar irradiance (in units
of W m−2), θinc the solar zenith angle, Ag the ground albedo,
Bg the emitted black-body radiance of the ground (in units
of W m−2 sr−1), and 1x and 1y the horizontal grid box

lengths (in units of m). The boundary conditions employed
at the sides of the domain depend on the model configura-
tion and can be either cyclic or provided by neighboring sub-
domains. The resulting system of linear equations can then
be solved by various numerical methods. In the original Ten-
Stream solver, they are provided by the parallel linear algebra
library PETSc (Balay et al., 2023).

2.2 Introducing time-stepping and incomplete solves:
the dynamic TenStream solver

However, solving this large system of linear equations is a
difficult task, especially when it needs to be parallelized for
large NWP simulations. The main reason behind this diffi-
culty is the fundamentally different approaches to how radi-
ation and dynamics are treated in numerical models. On the
one hand, solving the equations of motion that govern advec-
tion in the dynamical core of an NWP model represents an
initial value problem that has no known analytical solution.
Hence, these equations are discretized in space and time and
solved by a time-stepping scheme, where model variables are
gradually propagated forward in time by applying the dis-
cretized equations to values obtained at previous time steps
(Holton and Hakim, 2012). An individual grid box thereby
only needs information about itself and its nearby surround-
ings, facilitating model parallelization. Radiative transfer, on
the other hand, is treated as a boundary value problem, where
information is not gradually propagated through the domain
but rather spreads almost instantaneously at the speed of
light, involving the entire model grid. Three-dimensional ra-
diative transfer can thus easily break model parallelization,
as a radiative flux at any position in the domain can theo-
retically depend on all other radiative fluxes throughout the
domain. This can be seen by looking at the coupled structure
of the equations in the original TenStream solver in Eq. (1).

2.2.1 The Gauß–Seidel method

We tackle this problem by treating radiation similarly to ini-
tial value problems. To this end, we build upon the Ten-
Stream linear-equation system revisited in Sect. 2.1 and ex-
amine its solution with the Gauß–Seidel method, as de-
scribed in, e.g., Wendland (2017). According to this iterative
method, a system of linear equations must be transformed in
such a way that one equation is solved for every unknown
variable. This form is given by the equations in Eq. (1), with
the unknown variables being all the radiative fluxes in the
entire domain. Providing first guesses for all of these vari-
ables, one then iterates through all these equations and se-
quentially updates all the radiative fluxes on the left-hand
sides of the equations by applying either the first guess or,
if already available, the updated values to the corresponding
variables on the right-hand sides of the equations. Applied to
the TenStream equations, this means that one gradually iter-
ates through all the grid boxes of the entire domain. For every
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Figure 2. Schematic illustration of the dynamic treatment of radiation compared to the classic treatment. Instead of performing full 1D solves
from scratch every time the radiation scheme is called, we use the result obtained at the last call as a starting point for an incomplete 3D
solve, adjusting the previously calculated radiative fluxes towards the new full 3D solution.

grid box, one then calculates updated values for the outgoing
fluxes 8(l+1)

out,m,i,j,k on the left-hand side of Eq. (1) by apply-

ing either the already updated ingoing fluxes 8(l+1)
in,m,i,j,k or, if

those are not yet available, their values 8(l)in,m,i,j,k from the
previous Gauß–Seidel iteration step to the variables on the
right-hand sides of the equations:

8
(l+1)
out,m,i,j,k =

9+3∑
n=0

tmn,i,j,k

·


8
(l+1)
in,n,i,j,k if 8(l+1)

in,n,i,j,k
has already been
calculated

8
(l)
in,n,i,j,k otherwise

+Bm,i,j,k . (2)

Here, the indices m and n denote an individual entry of
the outgoing flux vector 8out,i,j,k , the ingoing flux vector
8in,i,j,k or the thermal source vector Bi,j,k , whereas l quan-
tifies the Gauß–Seidel iteration step and tmn,i,j,k refers to the
corresponding entry in matrix Ti,j,k in Eq. (1). Completing
this procedure for all the grid boxes and boundary conditions
accomplishes one Gauß–Seidel iteration. One can then repeat
this procedure with the updated radiative fluxes serving as
the new first guess until the values eventually converge to the
solution of the linear-equation system. The thermal source
terms are not part of the first guess and have to be calculated
from scratch, following the pattern outlined in Sect. 2.1, be-
fore starting with the Gauß–Seidel algorithm.

2.2.2 Dynamic treatment of radiation

We use the Gauß–Seidel method to significantly speed up
3D radiative-transfer calculations by utilizing two main con-
cepts: a time-stepping scheme and incomplete solves.

To introduce the time-stepping scheme, we make use of
the fact that the Gauß–Seidel algorithm requires us to choose
an initial guess for where to start. So, instead of solving the
whole TenStream linear-equation system from scratch every
time, we use the result obtained at the previous call of the ra-
diation scheme as a starting point for the algorithm. Assum-
ing that the field of optical properties determining the radia-
tive fluxes has not changed fundamentally between two calls
of the radiation scheme, this first guess should already be a
good estimator of the final result. However, for the very first
call of the radiation scheme, we cannot use a previously cal-
culated result. In order to choose a reasonable starting point
of the algorithm for this first call as well, we could use a full
TenStream solve. However, such a solve would be computa-
tionally expensive and rely on numerical methods provided
by the PETSc library, which we want to get rid of with our
new solver to allow for easier integration into operational
models. So, instead of performing a full TenStream calcu-
lation, we decided to solve the TenStream linear-equation
system for a clear-sky situation as a starting point. This is
the spin-up mentioned in Fig. 2. Since there is no horizon-
tal variability in the cloud field in a clear-sky situation and
our model does not feature any horizontal variability in the
background atmosphere, we can perform this calculation for
a single vertical column at a dramatically increased speed
compared to a calculation involving the entire model grid.
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Figure 3. Two-dimensional schematic illustration of the first four steps of a Gauß–Seidel iteration, showing both diffuse and direct TenStream
fluxes in the case of the sun shining from the west or left-hand side. As one sequentially iterates through the grid boxes, ingoing fluxes are
used to update the outgoing fluxes of the corresponding grid box (highlighted in gray). Gray arrows, in contrast to black arrows, indicate
fluxes that have not yet been updated in this Gauß–Seidel iteration. Ingoing fluxes at the domain borders are dependent on the type of
boundary conditions used. For this schematic, we applied periodic boundary conditions in the horizontal direction, while fluxes entering at
the top of the domain are updated right from the beginning.

We cannot use a 1D solver for that, however, because we also
need to pass initial values to the sideward-facing fluxes in the
TenStream equation system. Assigned to the radiative fluxes
of all vertical columns in the entire domain, these values then
provide first guesses for all the TenStream variables that can
be assumed to be much closer to the final result than starting
with values of zero – even if the background atmosphere was
not horizontally homogeneous and we would have to take the
average of that background first.

Based on the idea that the radiative field does not funda-
mentally change between two calls of the radiation scheme,
we furthermore just perform a limited number N of itera-
tions of the Gauß–Seidel algorithm every time the radiation
scheme is called, essentially not letting it fully converge. Un-
less the radiative fluxes have changed dramatically compared
to the last calculation, adjusting the variables towards the
new solution should already provide a good approximation of
the full solution, especially since it incorporates inter-column
3D effects, unlike the 1D independent-column solutions used
nowadays.

The combination of these two efforts is visualized in
Fig. 2. Instead of calculating a full 1D solution from scratch
every time radiation is called, our dynamic approach uses the
previously obtained result as the starting point of a new in-
complete 3D solve. This treatment of radiation puts it much
closer to the way initial value problems like advection in
the dynamical core of an NWP model are handled. Both
use previously calculated results to update their variables.
And, looking at an individual grid box, updating the outgoing
fluxes by applying Eq. (2) only requires access to the fluxes
entering that exact same grid box and thus only to neighbor-
ing values, just like in the discretized equations describing
advection in the dynamical core of an NWP model.

But, even though the calculation of updated outgoing
fluxes only requires access to fluxes entering the exact same
grid box, this update process can indeed involve more dis-
tant grid boxes, since their calculation uses ingoing fluxes
calculated in the very same Gauß–Seidel iteration wherever

possible. And, since these ingoing fluxes are outgoing fluxes
of a neighboring grid box that may have also been calcu-
lated using already updated radiative fluxes, information can
spread across the domain wherever possible, involving, e.g.,
entire subdomains in NWP models. This is visualized in
Fig. 3, which shows the first few steps of a Gauß–Seidel it-
eration in two dimensions only. Looking, for example, at the
third step, outgoing fluxes of the upper-right grid box (high-
lighted in gray) are updated using the corresponding ingoing
fluxes. Thereby, the ingoing flux of direct radiation enter-
ing the grid box on the left-hand side, for example, already
contains radiative transfer through the two grid boxes on its
left-hand side. This shows that the iteration direction through
the grid boxes within a Gauß–Seidel iteration is crucial, as
information can spread much faster in the direction one it-
erates through the grid boxes. Since the Gauß–Seidel algo-
rithm allows us to freely choose the order in which to pro-
ceed through the system of linear equations, we can use this
order to our advantage. First, we use the fact that, whereas
diffuse radiation spreads into all directions simultaneously,
direct radiation clearly propagates in the direction of the sun.
Hence, for the solar spectral range, we first iterate through
the grid boxes in the direction given by solar incidence in the
horizontal and then from top to bottom in the vertical, as indi-
cated by the dashed brown arrow in Fig. 3. In contrast to this
2D example, both horizontal dimensions are affected by the
position of the sun in the fully 3D case, of course. If the sun
is shining from the southwest, for example, we would hence
first iterate from south to north and from west to east in the
horizontal before iterating from top to bottom. In the ther-
mal spectral range, however, emitted radiation is larger in the
lower part of the domain due to the vertical temperature gra-
dient in the atmosphere. Hence, we iterate from bottom to top
in the vertical there. Independent of the spectral range, we,
however, still need to consider that diffuse radiation spreads
in all directions simultaneously, which we do not account for
by using a fixed iteration direction. Thus, every time we fin-
ish iterating through all the grid boxes, which completes a
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Gauß–Seidel iteration step, we reverse the direction of iter-
ation in all three dimensions to not favor the propagation of
information in one direction.

Combined, these efforts should allow us to very effi-
ciently calculate radiative transfer in three dimensions. First,
the time-stepping scheme allows us to already start with a
reliable first guess instead of calculating everything from
scratch. Next, we speed up the rate of convergence by choos-
ing a proper order in which to proceed through the linear-
equation system. And, since the updated solution should not
be radically different from the previous one, we furthermore
just perform a limited number of Gauß–Seidel iterations, es-
sentially exiting the algorithm before it fully converges, not-
ing that an incomplete 3D solution should still be better than
a 1D solution that neglects all 3D effects, as we will also see
later on (in Sect. 4). And, finally, updating the outgoing radia-
tive fluxes of any grid box within a Gauß–Seidel iteration just
requires access to the fluxes entering the exact same grid box,
which facilitates model parallelization. Implemented into the
method, incomplete dynamic TenStream solves, each withN
Gauß–Seidel iterations, would then be calculated in parallel
for the different subdomains, with communication between
these subdomains ideally taking place just once afterwards,
at the end of the radiation scheme call. In this case, the spread
of information would be limited to the scopes of the individ-
ual subdomains for every call of the radiation scheme.

2.2.3 Calculation of heating rates

In the end, though, we are not just interested in calculating
radiative fluxes. We are especially interested in computing
3D heating rates. They quantify local changes in temperature
with time due to sources and sinks of radiative energy in the
atmosphere and can be calculated using the net irradiance
divergence (Mayer, 2018):

∂T

∂t
=

1
ρ · cp

∇ ·E =
1

ρ · cp

(
∂Ex

∂x
+
∂Ey

∂y
+
∂Ez

∂z

)
. (3)

Here, T denotes the temperature, t the time, ρ the air density,
cp the specific heat capacity of air at constant pressure andE
the net irradiance (in units of W m−2), with components Ex ,
Ey and Ez when expressed in Cartesian coordinates. When
applied to the TenStream fluxes (in units of W) outlined in
Sect. 2.1, we have to find expressions for the net flux in all
three dimensions and then divide these by the area of the grid
box surface they refer to. For the calculation of net fluxes,
we have to recall that TenStream features two streams to de-
scribe the transport of diffuse radiation on each of its sides.
Since these two streams describe the flux entering and exiting
a grid box in the upper and lower hemispheres, respectively,
the total flux entering or exiting a grid box on one of its sides
is given by the sum of these two streams. The net flux in any
of the three dimensions is thus given by adding up all diffuse
and direct fluxes entering the grid box in that dimension and
subtracting those exiting it in the very same dimension. The

heating rate of a grid box can thus be expressed as(
1T
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)
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)
, (4)

with 1x, 1y and 1z quantifying the size of the grid box.
However, this formula raises some problems when used
in combination with the incomplete solves introduced in
Sect. 2.2.2. To explain this, we once more look at Fig. 3.
While, for example, fluxes exiting the upper-left grid box are
updated in the very first step, the diffuse flux entering that
exact same grid box from the bottom is updated much later
in the fourth step. Hence, when the whole Gauß–Seidel iter-
ation is completed, the fluxes exiting a certain grid box do
not necessarily match the ones entering it anymore; i.e., the
fluxes are not consistent anymore. This can lead to heating
rates that are unphysically large or negative in the solar spec-
tral range. To avoid this problem, we have to rephrase the
outgoing fluxes in Eq. (4) in terms of ingoing fluxes, as given
by the equations in Eq. (1):

(
1T

1t

)
i,j,k

=
1

ρ · cp
·

1
1x ·1y ·1z

·

12∑
m=0

(
8in,m,i,j,k −

12∑
n=0

tmn,i,j,k ·8in,n,i,j,k −Bm,i,j,k

)
. (5)

Since this expression incorporates the radiative transfer
throughout the corresponding grid cell, it ensures that all
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fluxes involved in the calculation of the heating rate are con-
sistent with each other and thus provides physically correct
3D heating rates.

3 Evaluation method

The dynamic TenStream solver outlined in Sect. 2 was imple-
mented in the libRadtran library for radiative transfer (Emde
et al., 2016; Mayer and Kylling, 2005), allowing the perfor-
mance of the new solver to be tested with respect to other
solvers using an otherwise identical framework. Using this
environment, our goal is to demonstrate that the new dy-
namic TenStream solver produces more accurate results than
1D independent-column solvers employed nowadays while
still being noticeably faster than typical 3D solvers. There-
fore, this section will first introduce our test setup as well as
the solvers we compare dynamic TenStream with. Then, we
will explain how we determine its performance in terms of
both speed and accuracy. Since 3D solvers are computation-
ally much more demanding than 1D solvers, in this analy-
sis, special emphasis will also be placed on the calling fre-
quency of the radiative-transfer calculations in order to elab-
orate whether the dynamic TenStream solver still performs
better when operated with a similar computational demand
to current 1D solvers.

3.1 Cloud and model setup

Our test setup is centered around a shallow-cumulus-cloud
time series prepared by Jakub and Gregor (2022), which was
computed using the University of California, Los Angeles
(UCLA) large-eddy simulation (LES) model (Stevens et al.,
2005). The dynamics in this LES simulation are driven not by
radiation but by a constant net surface flux, as described in
the corresponding namelist input files. Originally, the data set
features both a high temporal resolution of 10 s and 256×256
grid boxes with a high spatial resolution of 25 m in the hor-
izontal. It is 6 h long and characterized by a continuously
increasing cloud fraction, starting with a clear-sky situation
and ending up with a completely overcast sky. In addition, a
southerly wind with a speed between 3 and 4.7 m s−1 trans-
ports the clouds through the domain (Gregor et al., 2023).

We have chosen this data set for two reasons. First, the
high temporal resolution allows us to investigate the effect
of incomplete solves in the dynamic TenStream solver with
regard to the calling frequency of the solver. As we outlined
in Sect. 2.2.2, we expect these incomplete solves to perform
best if the cloud field that mainly determines the radiative
field does not change much in between two radiation time
steps. Due to the high temporal resolution, we can investigate
how well the incomplete solves perform if we call the solver
less often by comparing runs with low calling frequencies
to runs with the highest possible calling frequency of 10 s.
On the other hand, we need the high spatial resolution of the

data, since dynamic TenStream does not yet take sub-grid-
scale cloud variability into account. However, we may not
need a horizontal resolution of 25 m for that. Thus, to test
the dynamic TenStream solver on a resolution that is closer
to that of operational weather models without having to ac-
count for sub-grid-scale cloud variability, we decided to re-
duce the horizontal resolution of the cloud fields to 100 m.
To avoid problems with an artificially low liquid-water con-
tent (LWC) at cloud edges when averaging the cloud field
to that resolution, we constructed these less-resolved cloud
fields by simply using the data for just every fourth grid box
in both horizontal dimensions. The resulting time series still
features a temporal resolution of 10 s, but the cloud data grid
is reduced to 64× 64 grid boxes with a resolution of 100 m
in the horizontal. In the vertical, the modified cloud data set
consists of 220 layers with a constant height of 25 m, thus
reaching up to a height of 5.5 km. Using this modified grid,
the shape of the grid boxes is also closer to the one in NWP
models, with their horizontal extent being larger than their
vertical extent.

For our test setup, we focus on the 100 time steps between
8000 and 9000 s into the simulation, where the shallow-
cumulus-cloud field has already formed but has not yet
reached a very high cloud fraction, as neither a clear nor a
completely overcast sky are beneficial for 3D cloud-radiative
effects. Figure 4 shows the modified cloud field for the very
first time step in this time frame. Looking at the vertically
integrated liquid-water content in panel (b) in particular, one
can see that our reduced horizontal resolution of 100 m al-
lows us to still resolve the structure of the clouds.

Apart from the cloud field, the 1976 US standard atmo-
sphere (Anderson et al., 1986) interpolated onto the vertical
layers given by the cloud data grid serves as the background
atmosphere. Above the cloud data grid, the native US stan-
dard atmosphere levels provided by libRadtran are used, so
that the full grid features 264 layers in the vertical up to a
height of 120 km. In both the solar and the thermal spectral
ranges, the simulations are carried out using the molecular
absorption parameterization from Fu and Liou (1992, 1993).
In the solar spectral range, the sun is placed at a constant
zenith angle of 50° and in the east. The zenith angle was
chosen to be quite low so that 3D effects such as cloud side
illumination and shadow displacement are more pronounced,
representing a typical morning scene. Furthermore, the sur-
face albedo in the solar spectral range is set to 0.125, re-
sembling the global mean value of Trenberth et al. (2009),
whereas the ground emissivity is set to 0.95 in the thermal
spectral range.

3.2 Overview of the radiative-transfer solvers

We apply four different radiative-transfer solvers to the afore-
mentioned shallow-cumulus-cloud time series: the newly de-
veloped dynamic TenStream solver, the original TenStream
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Figure 4. First time step of the shallow-cumulus-cloud field used in the evaluation. Panel (a) shows a 3D visualization of the liquid water
content in the cloud field, whereas (b) and (c) display the vertically and horizontally integrated liquid-water content for the same cloud field,
respectively.

solver, a classic 1D δ-Eddington approximation and a fully
3D Monte Carlo solver.

Let us discuss the setup of the dynamic TenStream solver
first. As we outlined in Sect. 2.2.2, it has to be provided with
a first guess the very first time it is called, due to the un-
availability of a previously calculated result at this point in
time. To evaluate the performance of the new solver, it is
a good idea to use the best-possible solution for this first
guess. This way, one can examine whether the results ob-
tained from there on using dynamic TenStream featuring in-
complete solves diverge from those retrieved by the origi-
nal TenStream solver using full solves. Hence, we initially
perform 2000 iterations for the clear-sky spin-up described
in Sect. 2.2.2, followed by N0 = 500 Gauß–Seidel iterations
that also involve the cloud field to ensure that the radiative
field is fully converged at the beginning of the time series.
These two steps are visualized by the spin-up and the ar-
row with the first N0 Gauß–Seidel iterations in Fig. 2. From
there on, we just use a minimum of two Gauß–Seidel itera-
tions every time the solver is called. Using two instead of just
one iteration ensures that the iteration direction mentioned in
Sect. 2.2.2 is altered at least once per call. In this way, we
guarantee that information is not preferably transported in
one specific direction. Furthermore, to investigate the effect
of using more than just two Gauß–Seidel iterations per call,
we also performed nine additional runs with integer multi-

ples of two Gauß–Seidel iterations, i.e., with 4, 6, . . . , 20
Gauß–Seidel iterations per call.

Since the dynamic TenStream solver is based on the orig-
inal TenStream solver, reproducing its results despite apply-
ing incomplete solves is the best outcome that we can ex-
pect. Thus, the original TenStream solver (Jakub and Mayer,
2015) serves as a best-case benchmark for our new solver. On
the other hand, our goal is to significantly outperform cur-
rently employed 1D ICAs. Consequently, the δ-Eddington
solver incorporated into the libRadtran radiative-transfer li-
brary serves as a worst-case benchmark for our new solver
that we should definitely surpass.

Finally, we also apply the 3D Monte Carlo solver MYS-
TIC (Mayer, 2009) to the shallow-cumulus-cloud time se-
ries. When operated with a large-enough number of photons,
it allows us to determine the most accurate 3D heating rates
possible. Hence, these results can be used as a benchmark for
all the other solvers. For our MYSTIC simulations, we used
a total of 400 000 000 photons for every time step, which
is about 100 000 per vertical column, resulting in domain-
average mean absolute errors in both heating rates and irra-
diances that are not larger than 1 % of their respective domain
averages.
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3.3 Speed and accuracy evaluation

As we mentioned earlier, our goal is to evaluate the perfor-
mance of dynamic TenStream in terms of both speed and ac-
curacy. However, in particular, determining the speed of a
solver with respect to others is not a straightforward task,
as it is highly dependent on the environment the code is ex-
ecuted in. Since the dynamic TenStream solver is still in an
early stage of development and this work is primarily focused
on demonstrating the feasibility of the main concepts of the
solver, we wanted to keep the speed analysis as simple as
possible. We decided to perform three radiative-transfer com-
putations for each of the previously mentioned solvers on the
same workstation for the first cloud field in our time series.
The average of these three run times for every solver should
at least provide a rough estimate of the speeds of the differ-
ent solvers relative to each other. All calculations were per-
formed on a single core. We compare the computational time
for incomplete dynamic TenStream solves with two Gauß–
Seidel iterations per call, which is the same setup as the one
we will use for the investigation of the performance of the
new solver later on, to run times for full solves by the 1D δ-
Eddington approximation, the original TenStream solver and
MYSTIC. This comparison is not entirely fair for the original
TenStream solver, though, as this solver can be run in a time-
stepping scheme as well, thus relying on previously calcu-
lated results, which noticeably increases its speed compared
to the calculations from scratch that we are using. However,
this time-stepping option for the original TenStream solver is
not yet available within libRadtran.

To assess the accuracy of the dynamic TenStream solver,
we study the entire time series. We focus our analysis on how
well the solvers perform in determining 3D heating rates and
net irradiances at the upper and lower domain boundaries. As
mentioned in Sect. 3.2, values derived by MYSTIC serve as
benchmark values. We evaluate the performance of the other
three solvers compared to MYSTIC using two different error
measures: a mean absolute error (MAE) and a mean bias er-
ror (MBE). The mean absolute error describes the amount by
which the heating rate or net irradiance of an individual grid
box deviates from the benchmark solution on average:

MAE=
〈∣∣ξ − ξref

∣∣〉
with ξ ∈

{(
1T

1t

)
i,j,k

;1Enet,i,j,sfc;1Enet,i,j,TOA

}
and 1Enet,i,j,sfc =

(
S0,i,j,0+81,i,j,0−80,i,j,0

)
·1x ·1y

1Enet,i,j,TOA =
(
S0,i,j,Nz+1+81,i,j,Nz+1−80,i,j,Nz+1

)
·1x ·1y. (6)

Here, 〈. . .〉 denotes a spatial average, whereas the subscript
“ref” refers to a reference value, i.e., the MYSTIC values in
our case. Since the mean absolute error is sensitive to how the
values of an individual grid box deviate from the benchmark
solution, it is a measure of whether a solver gets the overall

heating rate or net irradiance pattern right. It is sensitive to
double-penalty errors; i.e., it gets large when local minima
and maxima in this pattern are displaced between the bench-
mark solution and the investigated solver. We have chosen
an absolute error measure rather than a relative one here be-
cause individual heating rates or net irradiances can be close
to zero and thus blow up a relative error measure. The mean
bias error, on the other hand, is an error measure targeted
towards the domain mean heating rate or net irradiance:

MBE= 〈ξ〉− 〈ξref〉

with ξ ∈

{(
1T

1t

)
i,j,k

;1Enet,i,j,sfc;1Enet,i,j,TOA

}
. (7)

In contrast to the MAE, the MBE compares domain-average
values to each other and is thus a measure of whether we get
the domain-average heating rate or net irradiance right. It is
not sensitive to the spatial pattern of these quantities; rather,
it tells us whether there is, on average, too much or too little
absorption in the domain compared to the benchmark solu-
tion. Domain averages of heating rates and net irradiances
are usually not close to zero, so we can also take a look at the
relative mean bias error (RMBE) here:

RMBE=
〈ξ〉− 〈ξref〉

〈ξref〉

with ξ ∈

{(
1T

1t

)
i,j,k

;1Enet,i,j,sfc;1Enet,i,j,TOA

}
. (8)

Applied to the shallow-cumulus-cloud time series at its full
temporal resolution of 10 s, these two error measures allow
us to determine the accuracy of the dynamic TenStream, the
original TenStream and the δ-Eddington calculations com-
pared to the MYSTIC benchmark run at any point in time.
We can also ensure that the benchmark solution itself has a
significantly smaller error than the other solvers when com-
pared to this benchmark. Therefore, we use the standard de-
viation σref, which can be determined for every single MYS-
TIC value. However, this standard deviation describes the
mean squared deviation of a MYSTIC value from its mean,
whereas the MAE that we are using looks at the mean ab-
solute deviation. For normally distributed random variables,
however, the mean absolute deviation is simply given by

MAD=

√
2
π
· σ, (9)

with σ being the standard deviation (Geary, 1935). We can
assume that the benchmark run is of sufficient quality if
this MAD of the MYSTIC values is much smaller than the
corresponding mean absolute deviations between MYSTIC
and the values of the other solvers. Hence, we can use the
domain-average MAD of the benchmark solution to quantify
the domain-average MAE of the benchmark solution at any
point in time:

MAEref =
〈√ 2
π
· σref

〉
. (10)
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Figure 5. Schematic illustration of how we determine the error of a solver operated at a lower calling frequency of 1trad = 30s compared
to the benchmark solution computed at the highest-possible calling frequency of 1trad = 10s at any point in time. To this end, the circles in
the figure indicate the results of the corresponding solvers at any given time, with the colors symbolizing the time step at which these results
have been calculated and the dotted circles, in contrast to the full circles, indicating results that have not been updated at that point in time.
The color of a dotted circle is thus equal to that of the corresponding last full circle.

We cannot provide a number for the MBE of the benchmark
solution, though, as we only know how much the individual
MYSTIC values are scattered around their mean, not whether
this mean has an inherent bias. Hence, we simply have to
assume that our benchmark simulation is unbiased.

So far, this evaluation would only tell us the accuracy of
the different solvers compared to the benchmark run when
operated at the same highest-possible calling frequency of
10 s. However, radiation is usually called far less often than
the dynamical core of the model. Also, 3D radiative-transfer
solvers are computationally much more demanding than 1D
solvers, raising the question of how well dynamic TenStream
performs when operated with a similar computational de-
mand to the 1D δ-Eddington approximation. To address these
questions, we also investigate the effect of the radiation call-
ing frequency on the temporal evolution of the aforemen-
tioned error measures.

In order to explain our approach to this, we take a look at
Fig. 5. The figure demonstrates how we determine the afore-
mentioned error measures for a solver operated at a lower
calling frequency of 30 s with respect to the MYSTIC bench-
mark run, which is computed at the highest-possible call-
ing frequency of 10 s. At t = 8020 s (that is, 20 s into our
time series), these error measures are given by comparing
the not-yet-updated solution that was originally calculated at
t = 8000 s to the values of the benchmark solution obtained
at exactly t = 8020 s. In this way, we can investigate how the
error metrics of a not-updated radiative field grow until it is
eventually updated again. This investigation is particularly
important for the dynamic TenStream solver, as it just per-
forms incomplete solves every time it is called. As we expect
these to work best if the overall properties determining the
radiative field have not changed much in between two calls

of the solver, this method allows us to investigate whether our
new solver still converges towards the results of the original
TenStream solver when operated at lower calling frequen-
cies. For this paper, we decided to take calling frequencies
of 10, 30 and 60 s into account. These calling frequencies
are still very high for operational weather forecasts, where
the radiation time step is typically around 1 h (Hogan and
Bozzo, 2018), but we have to consider that our cloud field
also features a significantly higher spatial resolution of 100 m
in the horizontal compared to 2.2 km in the DWD ICON-
D2 model (DWD, 2024) and 9 km in the ECMWF high-
resolution deterministic forecasts (Hogan and Bozzo, 2018).
At the LES resolution of 100 m that we use for our evalu-
ation, the Weather Research and Forecasting (WRF) model,
for example, recommends using a radiation time step as high
as 1 min km−1 of horizontal resolution (UCAR, 2024), re-
sulting in a suggested radiation time step of 6 s for our test
case. Our highest calling frequency of 10 s is at least close
to that number, with the other two calling frequencies of 30
and 60 s definitely representing scenarios where radiation is
called less often than recommended.

4 Results and discussion

4.1 Solver speed

The relative speeds of the different radiative-transfer solvers
introduced in Sect. 3.2 compared to the run time of the 1D
δ-Eddington approximation are shown in Table 1. As we de-
scribed in Sect. 3.3, all solvers used in this test were executed
on a single core of the same workstation and were therefore
in a very similar environment. This workstation featured an
Intel Xeon W-2245 CPU and 64 GB RAM, with performance
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Table 1. Computing times of the different solvers (names in bold font) relative to those of the 1D δ-Eddington approximation, taken as an
average over three runs performed on the same workstation for the very first time step of the LES cloud time series.

Solar spectral Thermal spectral
range range

δ-Eddington
1D two-stream solver

1.0 1.0

Dynamic TenStream
Incomplete 3D solver with two Gauß–Seidel iterations

3.6 2.6

Original TenStream
Full 3D solver

50.8 24.1

MYSTIC
Full 3D benchmark solver using 400 000 000 photons

1068.9 1611.3

primarily limited by the network storage, where all the data
were placed. We can see that in this experiment, the newly
developed dynamic TenStream solver with two Gauß–Seidel
iterations is 3.6 times slower than the 1D δ-Eddington ap-
proximation in the solar spectral range and just 2.6 times
slower in the thermal spectral range. Comparing these num-
bers to the findings in Jakub and Mayer (2016), they are in
line with what we could have expected in terms of the speed
of the new solver. According to this paper, retrieving the co-
efficients of the TenStream linear-equation system from the
lookup tables in both the solar and thermal spectral ranges
takes about as long as performing one δ-Eddington calcula-
tion. On top of that, we have to calculate the fluxes for ev-
ery grid box of the domain, just as in a δ-Eddington calcu-
lation. However, for the dynamic TenStream calculation, we
have to determine fluxes for 10 instead of 2 streams per grid
box and calculate all these fluxes twice, as we perform two
Gauß–Seidel iterations whenever the solver is called. And,
even though the number of streams (in particular) will most
likely not scale linearly with run time, we can thus certainly
expect that the new solver will be at least twice as slow as a
δ-Eddington approximation. The factors of 3.6 and 2.6 are in
line with these expectations.

Although the dynamic TenStream solver is thus notice-
ably slower than a 1D solver, it is still significantly faster
when compared to other 3D solvers executed under similar
circumstances – namely the original TenStream and MYS-
TIC solvers in Table 1. The original TenStream solver, for
example, is at least 24 times slower in this experiment than
the 1D δ-Eddington approximation, with MYSTIC being
even slower. As we pointed out earlier, this comparison is
not entirely fair for the original TenStream solver, though,
as it can also be run in a time-stepping scheme. Jakub and
Mayer (2016) showed that, in this case, the original Ten-
Stream solver can be up to only a factor of 5 slower than
1D δ-Eddington solves, which, however, is still noticeably
slower than the dynamic TenStream solver presented here.

4.2 Performance in determining heating rates

Next, let us have a look at how the dynamic TenStream solver
performs in calculating heating rates. Since we are primarily
interested in its performance in the surroundings of the con-
tinuously evolving clouds, we only use the LES part of the
domain for this evaluation, i.e., the part between the surface
and 5.5 km height. As mentioned in Sect. 3.3, the analysis
will be centered around two different error measures: a mean
absolute error and a mean bias error. Figure 6 shows the tem-
poral evolution of the MAE for the different solvers at calling
frequencies of 10, 30 and 60 s. At this point, we should re-
call that the mean absolute error is a measure of how well a
solver performs on average in determining the heating rate
for a certain grid box.

When operated at the highest-possible calling frequency
of 10 s, we can see that the MAE is relatively constant over
time for all the solvers, as we compare radiative-transfer cal-
culations carried out at a certain point in time to benchmark
calculations obtained at the exact same time step. The MAE
in this case is solely determined by the error generated by
the solvers themselves when applied to relatively similarly
structured shallow cumulus clouds, so this behavior is ex-
pected. Looking at the magnitude of the MAE for the dif-
ferent solvers, we can see that for both spectral regions, the
δ-Eddington approximation (dark-blue line) performs worst,
whereas the 3D TenStream solver is a noticeable improve-
ment. Pleasingly, the MAE of our dynamic TenStream solver
at a calling frequency of 10 s (dark-red dash–dotted line) is
almost on par with the error obtained with the original Ten-
Stream solver. It is only in the thermal spectral range that the
error gets slightly larger with time. This shows that, in this
example, at a calling frequency of 10 s, just two Gauß–Seidel
iterations per call are already sufficient to almost reproduce
the results of the original TenStream solver.

At lower calling frequencies, the radiative field is not up-
dated at every time step of the cloud time series anymore.
Consequently, the MAE of each solver rises until the solver
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Figure 6. Temporal evolution of the mean absolute error in heating rates for the 1D δ-Eddington approximation (blue lines), the original
TenStream solver (dashed green lines) and the newly developed dynamic TenStream solver (dash–dotted red lines) with respect to the
MYSTIC benchmark run at calling frequencies of 10, 30 and 60 s (different shades of the corresponding color) for both the solar (a) and
thermal (b) spectral ranges. Due to the statistical nature of Monte Carlo simulations, the MYSTIC benchmark run itself is subject to some
uncertainty. The corresponding MAE calculated using Eq. (10) is visualized by the dotted black line. For reasons of visual clarity, we show
only the first half of the time series here.

is called again. The resulting sawtooth structure can be ob-
served in the MAE time series of all the solvers at calling
frequencies of 30 and 60 s. In case of the traditional solvers,
a full solve is performed every time they are called. Thus,
the MAE at lower calling frequencies always reduces to the
value obtained at a calling frequency of 10 s when the corre-
sponding solver is called. This is not necessarily true for the
dynamic TenStream solver, however, as it only performs an
incomplete solve involving two Gauß–Seidel iterations every
time it is called. If this incomplete solve is not sufficient, it
could lead to a divergent behavior of the MAE time series
for this solver. Looking closely, we can also see that for both
of the lower calling frequencies, the MAE of the dynamic
TenStream solver does not always match the errors obtained
at a calling frequency of 10 s when updated. However, even
at a calling frequency of 60 s, we cannot observe a divergent
behavior, and the newly developed solver is almost able to
reproduce the results of the original TenStream solver when-
ever called.

Moreover, we have seen that our new solver is about 3
times slower than a traditional 1D δ-Eddington approxima-
tion. Looking at Fig. 6, we can now see that, on average over
time, dynamic TenStream even performs better than the δ-
Eddington approximation at a calling frequency of 10 s (bold

blue line) when it is operated at a calling frequency of 30 s
(dash–dotted bold red line), and thus with a similar computa-
tional demand to the 1D solver, in both the solar and thermal
spectral ranges.

Switching to the other error measure, Fig. 7 visualizes the
temporal evolution of the mean bias error for the different
solvers. In contrast to the MAE discussed before, this error
metric describes whether we get the domain-average heating
rate right. As we can clearly see, the MBE is, again, largest
for the 1D δ-Eddington approximation and, once more, sig-
nificantly smaller for the original TenStream solver. When
operated at the highest-possible calling frequency of 10 s, the
mean bias error of dynamic TenStream is also very similar to
that of the original TenStream solver. However, at lower call-
ing frequencies, we can clearly see that the bias increases
with time, although it never gets larger than the bias of the
1D results. It is also clearly visible that the bias is more neg-
ative than the original TenStream bias (dashed green lines) in
the solar spectral range, whereas it is less positive in the ther-
mal spectral range. Since the domain-average heating rate in
the solar spectral range is positive, this implies that our new
solver underestimates absorption in this spectral range, espe-
cially compared to the original TenStream solver it is based
on. This underestimation gets larger the less the dynamic
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Figure 7. Temporal evolution of the mean bias error in heating rates for the different solvers with respect to the MYSTIC benchmark run at
calling frequencies of 10, 30 and 60 s for both the solar (a) and thermal (b) spectral ranges. A run with no bias is visualized by the dotted
black line.

TenStream solver is called. As the liquid-water content in the
domain gradually increases with time and more liquid wa-
ter in the clouds leads to more absorption, this could imply
that the dynamic TenStream solver does not fully take this
increase into account. This does not explain the behavior of
the new solver in the thermal spectral range, though, where
domain-average heating rates are negative. Hence, the posi-
tive MBE values observed for both the original as well as the
dynamic TenStream solver imply that the heating rates are
not as negative there as they should be. But, in contrast to the
solar spectral range, these heating rates get more negative the
less the dynamic TenStream solver is called, so the dynamic
TenStream solver overestimates the magnitude of these ther-
mal heating rates when compared to the original TenStream
solver it is based on. Using this and the results obtained from
the MAE time series, we can draw our first few conclusions:

1. For an individual grid box, our new solver is able to de-
termine heating rates much more accurately than current
1D solvers, even when operated with a similar compu-
tational demand.

2. When looking at domain averages, the dynamic Ten-
Stream solver begins to develop a bias compared to the
original TenStream solver it is based on. This bias be-
comes larger the lower the calling frequency is, but it
remains smaller than the bias of the 1D δ-Eddington cal-
culations at any point in time.

4.3 Performance in determining net irradiances at the
upper and lower domain boundaries

Besides heating rates, we are also interested in how well dy-
namic TenStream performs in determining net irradiances at
the top and bottom of its domain. We will start by looking
at the results for the net surface irradiances and thus absorp-
tion at the ground. Figure 8 shows the temporal evolution
of the mean absolute error for this quantity in an otherwise
similar fashion to Figs. 6 and 7. As for the heating rates,
we can see that the 1D δ-Eddington approximation (blue
lines) performs worst, with the original TenStream solver
(dashed green lines) being a noticeable improvement once
more, remaining significantly below the errors of all 1D runs
throughout the entire time series, even at lower calling fre-
quencies. Again, our newly developed dynamic TenStream
solver (dash–dotted red lines) is able to almost maintain
the MAE of the full TenStream calculations at the highest-
possible calling frequency of 10 s, whereas its error slightly
increases with time for the two lower calling frequencies.
However, this slight divergence from the original TenStream
MAE quickly stabilizes and also remains significantly below
every single δ-Eddington run, even when the solver is only
called every 60 s. What is interesting, though, is that the tem-
poral evolution of the MAE in the thermal spectral range does
not show a sawtooth structure at lower calling frequencies, in
contrast to all other plots involving the MAE so far. As we
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Figure 8. Temporal evolution of the mean absolute error in the net surface irradiance for the different solvers with respect to the MYSTIC
benchmark run at calling frequencies of 10, 30 and 60 s for both the solar (a) and thermal (b) spectral ranges. The MAE of the MYSTIC
benchmark run itself is visualized by the dotted black line.

discussed earlier, this sawtooth structure is mainly caused by
the fact that at lower calling frequencies, we do not update
the radiative field for some time steps while the clouds are
still moving through the domain, resulting in gradually in-
creasing double-penalty errors. The fact that this behavior is
not observed in the thermal spectral range indicates that the
net surface irradiance field does not feature such small-scale
structures in the thermal.

To conclude the analysis for the surface, let us once more
also have a look at the mean bias error. Again, in contrast
to the MAE, this error measure does not tell us how well
dynamic TenStream performs in determining the net surface
irradiance for a single grid box, but rather whether we get the
domain-average surface absorption right. The corresponding
plot is shown in Fig. 9 and reveals a current weakness of both
the original TenStream solver as well as our new solver, as we
can clearly see that the MBE is almost always larger for these
two solvers than it is for the 1D δ-Eddington approximation.
And, as we have already seen in the results for the heating
rates, the lower the calling frequency, the more the MBE of
the dynamic TenStream solver diverges from the MBE of the
original TenStream solver. Here, however, this behavior is
more severe than it was for the heating rates, since the bench-
mark for our new solver – the original TenStream solver –
already performs a bit worse than the 1D solver. Its MBE of
about −2.5Wm−2 in the solar and 5Wm−2 in the thermal
spectral range translates to an RMBE of about −0.5 % and

−6 %, respectively (not shown here), compared to numbers
of around 0Wm−2 (0 %) in the solar and −4Wm−2 (5 %)
in the thermal spectral range for the δ-Eddington approxima-
tion. However, it should be noted that the almost non-existent
MBE of the δ-Eddington approximation in the solar spectral
range is primarily caused by two counteracting 3D radiative
effects that happen to cancel each other out at almost exactly
the solar zenith angle of 50° that we are using.

To show that, Fig. 10 visualizes the MBE for both the δ-
Eddington approximation and the original TenStream solver
as a function of the solar zenith angle for the first time step of
our time series. By looking at the blue line, we can see that
the δ-Eddington approximation underestimates the mean net
surface irradiance for solar zenith angles below 50°, while it
overestimates it for angles above 50°. This is most likely be-
cause, at low solar zenith angles, 1D solvers typically over-
estimate cloud shadows due to the lack of transport of dif-
fuse radiation into these shadow regions, leading to an un-
derestimation of the mean net surface irradiance. At high
solar zenith angles, on the other hand, i.e., when the sun is
close to the horizon, 1D solvers severely underestimate the
size of these shadows, as they cast them directly underneath
the clouds instead of at a slant angle, leading to an overes-
timation of the mean net surface irradiance. As we can see
in Fig. 10, both of these effects cancel out at an angle of
about 50°, which is the one we use, resulting in the almost-
perfect MBE of the δ-Eddington approximation in the solar
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Figure 9. Temporal evolution of the mean bias error in the net surface irradiance for the different solvers with respect to the MYSTIC
benchmark run at calling frequencies of 10, 30 and 60 s for both the solar (a) and thermal (b) spectral ranges. A run with no bias is indicated
by the dotted black line.

Figure 10. Mean bias error in the net surface irradiance as a func-
tion of the solar zenith angle for both the 1D δ-Eddington approx-
imation (blue line) and the original TenStream solver (green line),
evaluated at the first time step of the shallow-cumulus-cloud time
series.

spectral range in Fig. 9. Despite this coincidence, however,
Fig. 10 also shows us that the original TenStream solver per-
forms slightly worse than the δ-Eddington approximation for
any zenith angle below about 50°. However, the difference in
MBE between the two solvers is quite small, and the magni-
tudes of their respective RMBEs do not get much larger than
−1 % for any angle below 50° (not shown here).

The dynamic TenStream solver, however, underestimates
surface absorption in the solar spectral range even more than
the original TenStream solver does, with the effect increas-
ing the less frequently the new solver is called. Looking at
the runs with calling frequencies of 10 and 30 s, however,
one can clearly see that this divergence from the original
TenStream MBE quickly stabilizes itself at values around
−5Wm−2 (−1 %) and −12Wm−2 (−2 %), indicating that
the bias will not grow continuously. The same behavior can
be observed in the thermal spectral range, except that, simi-
lar to the behavior of the heating rates, the buildup of the bias
compared to the original TenStream solver actually improves
the MBE of the new solver at lower calling frequencies there.
Since net surface irradiances in the thermal spectral range are
negative, the positive MBE values for the original TenStream
solver in Fig. 9 indicate an underestimation in the net surface
irradiance, i.e., values that are not negative enough, with the
dynamic TenStream solver counteracting this bias the less
often it is called – although this is, of course, more of a coin-
cidence.
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Figure 11. Temporal evolution of the mean absolute error in the net irradiance at TOA for the different solvers with respect to the MYSTIC
benchmark run at calling frequencies of 10, 30 and 60 s for both the solar (a) and thermal (b) spectral ranges. The MAE of the MYSTIC
benchmark run itself is visualized by the dotted black line.

Figure 12. Temporal evolution of the mean bias error in the net irradiance at TOA for the different solvers with respect to the MYSTIC
benchmark run at calling frequencies of 10, 30 and 60 s for both the solar (a) and thermal (b) spectral ranges. A run with no bias is indicated
by the dotted black line.
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Table 2. Computing times of dynamic TenStream runs with N Gauß–Seidel iterations per call relative to those with two Gauß–Seidel
iterations, taken as an average over three runs performed on the same workstation for the very first time step of the LES cloud time series.

Number N of Gauß–Seidel iterations 2 4 6 8 10 12 14 16 18 20

Solar spectral range 1.0 1.2 1.4 1.6 1.7 1.9 2.1 2.3 2.5 2.6
Thermal spectral range 1.0 1.1 1.3 1.4 1.5 1.6 1.8 1.9 2.0 2.2

Finally, coming to the upper boundary of our domain,
Fig. 11 shows the temporal evolution of the MAE in the net
irradiance at the top of the atmosphere (TOA) in an otherwise
similar fashion to Fig. 8. Again, the incomplete solves in the
dynamic TenStream solver lead to a slight divergence of the
MAE of this solver (red lines) compared to the original Ten-
Stream solver (green lines) in both spectral ranges. However,
this divergence remains small compared to the difference
between the 3D TenStream solver and the 1D δ-Eddington
approximation, even at the lowest investigated calling fre-
quency of 60 s. This indicates that the dynamic TenStream
solver is also much better in capturing the spatial structure of
the net irradiances at TOA than the traditional δ-Eddington
approximation is.

Similar to the surface, however, this does not fully ap-
ply in terms of domain averages. The corresponding tem-
poral evolution of the MBE is shown in Fig. 12. Starting
with the thermal spectral range displayed in panel (b), our
new solver again shows only a comparatively small diver-
gence from the original TenStream solver with time and
performs significantly better than the δ-Eddington approxi-
mation throughout the entire time series, regardless of the
calling frequency used. In the solar spectral range, how-
ever, the original TenStream solver already performs a bit
worse than the δ-Eddington approximation does, with time-
average MBEs of about −4Wm−2 for the TenStream solver
compared to −3W m−2 for the 1D solver. More noticeably
though, the incomplete solves in the dynamic TenStream
solver lead to a fairly pronounced divergence in terms of
the MBE from the original TenStream solver when com-
pared to the difference between the 1D and original Ten-
Stream solvers. However, for every calling frequency inves-
tigated, this divergent behavior peaks at values that translate
to RMBEs of no larger than 1.25 % (not shown here). Tak-
ing both domain boundaries into account, we can thus draw
similar conclusions to those for the heating rates:

1. At the grid box level, our new solver determines far bet-
ter net irradiances at both the surface and TOA than cur-
rent 1D solvers do, even when operated at much lower
calling frequencies.

2. Looking at domain averages, however, the incomplete
solves within the dynamic TenStream solver lead to a
buildup of bias with time. In terms of magnitude rela-
tive to the original TenStream solver, this bias becomes
larger the lower the calling frequency and exceeds the

bias of current 1D solvers, especially in the solar spec-
tral range.

4.4 Dependence on the number of Gauß–Seidel
iterations

So far, we have just looked into dynamic TenStream runs per-
formed with only two Gauß–Seidel iterations whenever the
solver is called. We focused on this computationally afford-
able setup as it already led to promising results. To investi-
gate how the results presented so far change when applying
more than two Gauß–Seidel iterations, we have performed
nine additional runs using integer multiplies of two Gauß–
Seidel iterations, i.e., up to 20 iterations per call. Following
the explanation given in Sect. 3.2, we use integer multiples
of 2 instead of 1 in order to ensure that information is not
preferably transported into one specific direction of the do-
main.

In order to evaluate the improved performance of these
additional runs, it is important to have a rough estimate of
their additional computational cost. Therefore, we have mea-
sured the computing times of these runs exactly as we did it
in Sect. 4.1 for all the other solvers. Table 2 shows these com-
puting times relative to a calculation with two Gauß–Seidel
iterations per call. As we can see, using four instead of two it-
erations does not double the computational cost, as there is a
considerable amount of overhead that always takes the same
amount of time before even starting with the Gauß–Seidel it-
erations, such as retrieving the TenStream coefficients from
the corresponding lookup tables. However, apart from this
offset, computing time scales roughly linearly with the num-
ber of Gauß–Seidel iterations, as two more iterations always
add about 10 % to 20 % of the baseline cost of a calculation
with two Gauß–Seidel iterations to the computing time. This
fraction is smaller for the thermal spectral range because of
a larger overhead due to the additional calculation of thermal
emission.

Having this additional computational burden in mind, we
can now have a look at Fig. 13. Panels (a) and (b) in this
figure show the time- and domain-average MAE in heating
rates from the dynamic TenStream solver for the shallow-
cumulus-cloud time series as a function of the number N
of Gauß–Seidel iterations. Correspondingly, the values at
N = 2 on the far left are the time averages of the sawtooth
curves in Fig. 6 for the corresponding calling frequencies.
The dashed lines represent the temporal mean MAEs for the
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Figure 13. Time- and domain-average mean absolute error (a, b) and mean bias error (c, d) in heating rates with respect to the MYSTIC
benchmark run as a function of the number of Gauß–Seidel iterations used in the dynamic TenStream solver for both the solar (left panels)
and thermal (right panels) spectral ranges. The three different colors show the errors for calling frequencies of 10 s (blue), 30 s (purple) and
60 s (orange). Solid lines connect the values for the dynamic TenStream solver, while the dashed lines with constant MAE or MBE represent
the errors of a full TenStream solve at the corresponding calling frequency, towards which the dynamic TenStream values are converging. In
panels (a) and (b), the MAE of the MYSTIC benchmark run itself is visualized by the dotted black line.

original TenStream solver. The MAEs of the dynamic Ten-
Stream solver converge towards these dashed lines in the
limit of a large number of iterations. For lower calling fre-
quencies, this limit that the dynamic TenStream solver is con-
verging to is larger than it is for higher calling frequencies
because the solver is called less often, leading to the buildup
of a large MAE with time until the solver is eventually called
again, as we have seen in Fig. 6. Since the MAEs of the dy-
namic TenStream solver were already almost on a par with
the original TenStream solver when just two Gauß–Seidel it-
erations were used, the MAE is already nearly converged at
N = 2 and does not greatly improve when using more iter-
ations. It is only in the thermal spectral range and at lower
calling frequencies that we see a slight improvement in the
mean MAE when applying more iterations, especially when
doubling the number of iterations from two to four.

In contrast to the MAE, however, we observed a noticeable
buildup of bias with time for the dynamic TenStream solver
that increases the less the solver is called. Consequently, the
MBE in panels (c) and (d) of Fig. 13 starts at values that are

significantly far from convergence at N = 2, especially for
the lowest two calling frequencies. The more Gauß–Seidel
iterations we apply, the more this difference in bias com-
pared to the original TenStream solver disappears. We can
also see that the initially better bias of our new solver in the
thermal spectral range at a calling frequency of 60 s quickly
converges towards the bias of the original TenStream solver,
as dynamic TenStream is based on this solver. To evaluate
whether it is worth decreasing the magnitude of the MBE
compared to the original TenStream solver by applying more
iterations, let us have a look at the additional computational
cost of these iterations in Table 2. Using four instead of two
Gauß–Seidel iterations adds only 10 % to 20 % to the total
computational time while leading to a noticeable decrease in
both the MAE and (especially) the MBE. In this regard, one
could even think about calling dynamic TenStream less fre-
quently but with more Gauß–Seidel iterations. As we have
seen in Sect. 4.1, using our new solver at a calling frequency
of 30 s is about as expensive as calling a δ-Eddington approx-
imation every 10 s. Taking Table 2 into account, we can see
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Figure 14. Time- and domain-average mean absolute error (a, b) and mean bias error (c, d) in the net surface irradiance with respect to
the MYSTIC benchmark run as a function of the number of Gauß–Seidel iterations at calling frequencies of 10, 30 and 60 s. Solid lines
connect the values for the dynamic TenStream solver, while the constant dashed lines represent the errors of a full TenStream solve at the
corresponding calling frequency. In panels (a) and (b), the MAE of the MYSTIC benchmark run itself is visualized by the dotted black line.

that using N = 20 instead of N = 2 iterations is a bit more
than twice as expensive. Hence, we could argue that a dy-
namic TenStream configuration with N = 20 at a lower call-
ing frequency of 60 s also imposes about the same computa-
tional cost as a δ-Eddington approximation at a calling fre-
quency of 10 s. However, while such a setup would lead to a
better time-average MBE than our configuration with N = 2
and a calling frequency of 30 s, it would also lead to a very
noticeable increase in the mean MAE. To put it figuratively,
using more iterations at a lower calling frequency reduces the
bias at the expense of the spatially correct representation of
the heating rates. In terms of these heating rates, we can thus
draw two main conclusions:

1. Using more Gauß–Seidel iterations per call primarily
counteracts the buildup of a bias with time, as the in-
complete solves with two Gauß–Seidel iterations per
call already resemble the spatial structure of the full
TenStream results very accurately.

2. When using more Gauß–Seidel iterations but a lower
calling frequency in order to maintain the total compu-

tational cost, one improves the representation of domain
averages at the expense of the spatial structure of the re-
sults.

Especially at the surface, however, one should definitely
think about using more than just two Gauß–Seidel iterations
per call. To motivate that, Fig. 14 shows the same plots as
Fig. 13 but for net surface irradiances instead of heating rates.
As for the heating rates, we can see that the use of more than
two Gauß–Seidel iterations per call primarily counteracts the
buildup of the MBE with time. In contrast to the heating
rates, however, lower calling frequencies do not impact the
magnitude of the MAE as much. This indicates that, even
at lower calling frequencies, the dynamic TenStream solver
is able to adequately capture the spatial structure of the net
surface irradiances. Consequently, using our new solver with
N = 20 iterations at a calling frequency of 60 s leads to better
results than achieved withN = 2 and a 30 s calling frequency
here – both in the solar as well as in the thermal spectral
range.

We can thus conclude that, even though the computation-
ally most affordable runs using just two Gauß–Seidel itera-
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tions per call lead to promising results, it might be beneficial
to use configurations involving slightly more iterations, as
they add a comparatively small additional computational cost
to the solver while significantly counteracting the buildup of
a bias with time. The results for the net irradiance at TOA
only underline the statements for the surface and are thus not
shown in here.

4.5 Visualization of dynamic TenStream heating-rate
fields

We want to conclude our evaluation by visually comparing
the dynamic TenStream results to those calculated by the
other solvers introduced in Sect. 3.2. In contrast to the previ-
ous section, we restrict ourselves to dynamic TenStream runs
with just two Gauß–Seidel iterations per call here. A special
focus of this comparison will be on how well dynamic Ten-
Stream performs visually in updating the radiative field de-
pending on the calling frequency. To make this comparison
as hard as possible for our new solver, we decided to look
at the last time step at which the radiative field is simultane-
ously updated for all three calling frequencies that we con-
sider; that is, at t = 8960 s. Instead of this point in time, we
could, of course, also take a look at a point in time where
the different dynamic TenStream solves have just not been
updated. By doing so, one would focus more on how closely
not-yet-updated radiative fields still resemble the benchmark
result. Here, however, we want to focus more on how well
our new solver performs in updating the radiative field de-
pending on how much it has changed between two calls of
the radiation scheme. From this point of view, t = 8960 s is
the last point in time where all three dynamic TenStream runs
have just been updated. Hence, they are subject to the most
incomplete solves and furthest away from the initial spin-up
there, increasing the chance of potential artifacts in the radia-
tive field because the TenStream linear-equation system has
not been fully solved for quite a while.

Figure 15 shows xz cross sections for this point in time for
the solar spectral range, with the colors indicating the heating
rates along the cross section using a logarithmic color scale
– except for the lowermost row in all the panels, which vi-
sualizes the net surface irradiance. In general, the bright yel-
low areas with correspondingly large heating rates indicate
the position of clouds, while the dark areas signify shadows
below the clouds. Right from the start, we can see that the
largest visual differences do not occur in between the dif-
ferent incomplete dynamic TenStream solves but between
the 1D δ-Eddington approximation in panel (a) and the 3D
solvers in panels (b)–(f). As 1D radiation does not allow for
the horizontal transport of energy, in panel (a), shadows can-
not be cast according to the angle of solar incidence; they
are only cast right underneath the clouds. This also affects
absorption at the ground, with regions of low surface ab-
sorption located right below the clouds rather than being dis-
placed like in the MYSTIC benchmark run. We can see that

the visual structure of this benchmark result is much bet-
ter resembled by the TenStream solver shown in panel (b).
Here, clouds are also illuminated at their sides, and horizon-
tal transport of energy allows shadows to be cast in the direc-
tion of the solar incidence angle. However, we can see that
both these shadows and the regions of low surface absorption
are much more diffuse than in the MYSTIC benchmark run
– although they are still a much better representation of the
benchmark than the 1D solution.

Having these characteristics in mind, we can now discuss
the results for the new dynamic TenStream solver, which are
shown in the last row of Fig. 15. The three panels show
the results for the new solver when it has been called ev-
ery 10 s (panel d), 30 s (panel e) or 60 s (panel f). At first
glance, we can see that the results for the new solver are very
similar to those obtained by the original TenStream solver in
panel (b), even when operated at the low calling frequency of
60 s. Remember that, in this run, just two Gauß–Seidel iter-
ations towards convergence were carried out at only (8960–
8000)/60= 16 points in time since the spin-up. Since our
solver is based on the TenStream solver, this is almost the
best result we could have obtained. We can see that, just
like the TenStream solver, dynamic TenStream allows for
full 3D transport of energy, with shadows and regions of
low surface absorption being cast not just directly underneath
clouds. Looking closely, one can, however, see differences
between the results obtained at different calling frequencies.
Panel (d), which shows the results for a calling frequency of
10 s, most accurately resembles the original TenStream re-
sult, which becomes most visible within the shadows cast by
the clouds on the right-hand side of the domain. They are
overestimated by both lower-calling-frequency runs between
about 5 and 6 km in the x direction, with heating rates be-
ing too low there compared to the original TenStream result.
Also, surface absorption differs quite a bit between the differ-
ent dynamic TenStream runs. The structure obtained by the
original TenStream solver is again most accurately resem-
bled by the dynamic TenStream run with a calling frequency
of 10 s, whereas the surface absorption is overestimated a bit
around 5 km in the x direction in the 30 s run and features a
much more pronounced region of high absorption at around
2 km in the 60 s run.

Before we make a closing statement, let us also have a look
at the results in the thermal spectral range shown in Fig. 16.
Again, we can see that the result for the 1D δ-Eddington ap-
proximation in panel (a) features the most differences when
compared to all the other panels showing results obtained by
3D solvers. Compared to the MYSTIC benchmark run, we
can see that the thermal shadows cast by the clouds are much
more pronounced in 1D and not weakened in direction of the
ground due to interactions with neighboring columns. This
also leads to a very distinct pattern of strongly negative and
not so negative net-surface-irradiance areas at the ground in
the 1D results, whereas the net surface irradiance is almost
uniform in the MYSTIC benchmark result. This also pro-
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Figure 15. xz cross section of the heating-rate fields obtained by the different radiative-transfer solvers in the solar spectral range at t =
8960 s. Heating rates are visualized by a logarithmic color scale for the δ-Eddington (a), original TenStream (b) and MYSTIC (c) solvers as
well as for the dynamic TenStream solver when operated at calling frequencies of 10 s (d), 30 s (e) or 60 s (f). Additionally, the horizontal
line at the bottom of each plot visualizes the corresponding net surface irradiances obtained by the solver.

Figure 16. xz cross section of the heating rate fields obtained by the different radiative-transfer solvers in the thermal spectral range at
t = 8960 s. The structure of the plot is identical to Fig. 15, except that the color scale is logarithmic for heating rates both above 1 and below
−1K d−1 and linear in between.
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vides proof for our observation in Sect. 4.3, where we have
noted that the benchmark results for the net surface irradi-
ance in the thermal spectral range should be pretty uniform
in order to avoid the sawtooth pattern in the MAE time se-
ries that we typically saw when evaluating solvers at lower
calling frequencies. Furthermore, we can also see that the
1D δ-Eddington approximation is not able to consider cloud-
side cooling due to its lack of horizontal transport of energy,
leading to much more pronounced cloud bottom warming in
the 1D results than in the MYSTIC benchmark. The origi-
nal TenStream solver depicted in panel (b) is able to consider
almost all of these 3D effects and is therefore, once more,
visually close to the MYSTIC result. Looking closely, we
can, however, see that the thermal shadows are a bit more
pronounced there, which also leads to regions where the net
surface irradiance is a bit weaker below the clouds, in con-
trast to the very uniform pattern produced by the MYSTIC
benchmark solver.

Comparing these results to those of our newly developed
dynamic TenStream solver, we can see that it is also almost
able to reproduce the results of the original TenStream solver
in the thermal spectral range, even when operated at lower
calling frequencies. However, the result obtained with a call-
ing frequency of 10 s shown in panel (d) clearly resembles
the original TenStream result most closely. At lower calling
frequencies, we can see small artifacts, most noticeably in
the form of larger or completely floating thermal shadows
(the white areas in the plots) that do not seem to belong to
any cloud at all, whereas they are normally placed directly
underneath them. These regions are residual shadows of al-
ready dissolved clouds which the incomplete solves have not
been able to get rid of yet. Evidence for this hypothesis is
provided by looking at the same plot at previous time steps
(not shown here). These residual shadows also influence the
net surface irradiance pattern, which is most prominently vis-
ible between 1 and 2 km in panel (f). In total, these resid-
ual shadows are minor artifacts, though, as we have to con-
sider that we were only able to visualize them by using a
logarithmic color scale. And, we also have to keep in mind
that, in particular, panel (e), which shows the results achieved
at a calling frequency of 30 s, was obtained using a similar
computational demand to performing 1D δ-Eddington cal-
culations every 10 s. In contrast to these results, however,
the dynamic TenStream result features horizontal transport
of radiative energy, resulting in much more realistically dis-
tributed heating rates and net surface irradiance patterns.

In summary, we can hence say that for both the solar and
thermal spectral ranges, dynamic TenStream is able to vi-
sually almost reproduce the results obtained by the original
TenStream solver, even when operated at lower calling fre-
quencies. At those frequencies, however, minor artifacts like
residual shadows are introduced. The reason for these arti-
facts is the incomplete solves, which can delay lower-order
3D effects, such as feedback effects from other clouds or
the surface. The term “feedback effects” refers to the fact

that the 3D radiative effects of a cloud can theoretically al-
ter the conditions determining the 3D radiative effects of any
other cloud in the domain. Because these feedback effects re-
quire multiple back-and-forth transports of information, they
cannot be fully accounted for when solving radiation incom-
pletely. For example, incomplete solves can perfectly con-
sider 3D radiative effects of an emerging cloud at the location
of the cloud itself, but the feedback on these heating rates due
to lower upward-facing radiative fluxes from the shadow this
cloud casts may be delayed to a later call of the scheme if the
two Gauß–Seidel iterations that we perform per call are not
sufficient to transport this feedback back to the cloud itself.

5 Summary and outlook

Based on the TenStream solver, we have presented a
new radiative-transfer model currently designed for use at
subkilometer-scale horizontal resolutions that allows us to
calculate 3D radiative fluxes and heating rates at a signifi-
cantly increased speed by utilizing two main concepts that
both rely on the idea that the radiative field does not com-
pletely change in between two calls of the scheme. First, ra-
diation in this method is not solved from scratch every time
it is called. Instead, it uses a time-stepping scheme to update
the radiative field based on the result from the previous ra-
diation time step. Second, the model is based on incomplete
solves, performing just a few Gauß–Seidel iterations towards
convergence every time it is called.

To demonstrate the feasibility of the dynamic TenStream
solver incorporating these two concepts, we implemented it
in the libRadtran library for radiative transfer and applied it
to 100 time steps of a shallow-cumulus-cloud time series pre-
pared by Jakub and Gregor (2022). Its high temporal resolu-
tion of 10 s allowed us to investigate the effect of the calling
frequency on the performance of our new solver by compar-
ing results obtained at this high calling frequency to those re-
trieved at lower calling frequencies, where the radiative field
changes more noticeably in between two time steps. Four dif-
ferent solvers were applied to this time series: besides our
newly developed dynamic TenStream solver with a low num-
ber of two Gauß–Seidel iterations per call, a traditional 1D
δ-Eddington approximation was used as a worst-case bench-
mark that we should definitely surpass, whereas the original
TenStream solver served as a best-case benchmark – since
our new solver is based on the TenStream solver, retrieving
the exact same results while relying on incomplete solves
would have been the best outcome that we could have ex-
pected. Simulations performed by the 3D Monte Carlo solver
MYSTIC served as benchmark results for all the solvers, es-
sentially providing a ground truth.

Using these results, we evaluated the performance of our
new solver in determining heating rates and net irradiances
at the upper and lower domain boundaries in terms of both
speed and accuracy. In terms of speed, we saw that the dy-
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namic TenStream solver is about 3 times slower than a tra-
ditional 1D δ-Eddington approximation, but it delivers a no-
ticeable increase in performance when compared to the other
two 3D solvers, which are at least a factor of 5 slower. To
evaluate the accuracy of the aforementioned solvers with re-
spect to the MYSTIC benchmark run, we used two differ-
ent error measures: while the mean absolute error allowed
us to investigate the average error a certain solver generates
for an individual grid box, the mean bias error allowed us
to observe whether the domain-average results for a certain
solver deviate from the domain-average benchmark results.
In terms of heating rates, we saw that our new solver is al-
most able to reproduce the results of the original TenStream
solver, even when operated at lower calling frequencies. At
these lower calling frequencies, however, we observed that
the incomplete solves in the dynamic TenStream solver lead
to the buildup of a bias with time that is larger the lower
the calling frequency. However, even at the lowest calling
frequency investigated, this buildup stabilized itself at some
point and remained lower than the bias of any 1D run at any
point in time. More importantly, the time-average dynamic
TenStream results were better in terms of both error mea-
sures when compared to 1D simulations carried out with a
similar computational demand. Next, we saw that mean ab-
solute errors in the net irradiance at the top and bottom of the
domain were also significantly lower than the corresponding
1D errors, even when using lower calling frequencies. Only
the bias in the net irradiances was larger than in the 1D simu-
lations at any point in time. However, this bias could already
be observed in the original TenStream results and was thus
not expected to be improved by applying incomplete solves.
Finally, we observed that using more than just two Gauß–
Seidel iterations per call primarily counteracts the buildup of
this bias with time at a relatively small computational cost.

Overall, the results of this test case clearly demonstrated
the capabilities of the dynamic TenStream solver. Using a
first example, we were able to show that the introduction
of a time-stepping scheme and the application of incomplete
solves are able to retrieve heating rates and net irradiances at
the upper and lower domain boundaries that are much closer
to the 3D benchmark results than to currently employed 1D
solvers, even when operated with a similar computational de-
mand. These results become even more interesting when we
consider recent developments in the field of another major
computational bottleneck in radiative-transfer calculations,
namely the number of quadrature points required to calculate
accurate integrated longwave and shortwave heating rates.
In our evaluation, we used the wavelength parameterization
by Fu and Liou (1992, 1993), which features a total of 54
and 67 quadrature points in the solar and thermal spectral
ranges, respectively (Oreopoulos et al., 2012). That is already
a pretty low number considering that most models currently
use the newer and more precise RRTMg parameterization
(Mlawer et al., 1997; AER, 2024), which even takes a to-
tal of 112 and 140 quadrature points in the solar and thermal

spectral ranges into account, respectively. However, recent
developments showed that these numbers can be dramati-
cally reduced without incurring a significant loss in precision
in the calculation of both radiative fluxes and heating rates.
de Mourgues et al. (2023), for example, showed that in the
thermal spectral range, even 30 quadrature points are suffi-
cient to calculate heating rates that are very similar to those
obtained by a line-by-line calculation. Compared to RRTMg,
this is more than 4 times fewer quadrature points. Similar re-
sults have been obtained by Hogan and Matricardi (2022),
who showed that just 32 quadrature points in both the so-
lar and the thermal spectral ranges are able to produce very
accurate irradiances and heating rates, with more quadra-
ture points adding little to no further precision. These more
efficient spectral parameterizations, together with the speed
improvements achieved with the dynamic TenStream solver,
would allow 3D radiative transfer to be accelerated towards
the speed of currently employed 1D solvers, potentially al-
lowing the use of 3D radiative transfer in NWP models for
the first time ever.

Before this vision becomes reality, however, the dynamic
TenStream solver needs more work. First of all, further per-
formance tests should include multiple-layer cloud fields –
e.g., shallow cumulus clouds with cirrus clouds above – as
well as deep convective clouds to investigate whether two
Gauß–Seidel iterations per call, as used in this paper, are
still sufficient under these circumstances, as more complex
cloud fields involve more radiative interaction in the vertical.
Earlier simulations carried out with the dynamic TenStream
solver have shown that incomplete solves can lead to “ping-
pong” effects in these cases, where distant grid boxes up-
date radiative influences on each other back and forth in be-
tween different dynamic TenStream calls. These ping-pong
effects were vastly reduced due to the use of the Gauß–Seidel
method, but it will be interesting to see whether vertically
more complex cloud fields pose a greater challenge to our
solver. In addition, the derivation of a rule for how many
Gauß–Seidel iterations to use to ensure reliable results de-
pending on the model setup is another main future target.
In this context, it would also be interesting to investigate
whether occasional full solves are a computationally feasible
means of ensuring that the results of the dynamic TenStream
solver do not deviate too much from those of the original
TenStream solver. Additionally, we could think about deriv-
ing an even more sophisticated first guess for the incomplete
solves by advecting the radiative field of the previous time
step with the rest of the atmospheric fields. As we assume
that the radiative field does not totally change in between
two different calls of the radiation model, such a first guess
should already better account for the updated position of the
clouds, so the incomplete solves could primarily focus on
correcting for the changed optical properties of the clouds,
which could speed up convergence even more. Coupled to
dynamics, it will also be very interesting to investigate how
the incomplete solves in the dynamic TenStream solver in-
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fluence the development of clouds. Finally, when shifting
to the NWP scale, we will certainly need to consider sub-
grid-scale cloud variability by, for example, extending the
TenStream lookup tables to account for the cloud fraction.
And, on top of that, we will certainly have to parallelize the
solver in order to make it computationally more efficient. As
in the development of this new solver, we can build upon
the original TenStream solver for that, as this solver is al-
ready fully parallelized (Jakub and Mayer, 2015) and can
be interactively coupled to LES models (Jakub and Mayer,
2016). The native TenStream framework is especially suit-
able for these purposes, since the main features of the new
dynamic TenStream solver – among them, the ability to per-
form incomplete solves, the correct calculation of 3D heating
rates in this case and the speed-up in convergence achieved
by properly iterating through the underlying linear-equation
system – have already been included as options for the native
TenStream solver in the meantime.

Code and data availability. The dynamic TenStream solver pre-
sented in this paper was developed as part of the libRadtran library
for radiative transfer (Emde et al., 2016; Mayer and Kylling, 2005)
and can be accessed via Mayer et al. (2023) (DOI: https://doi.org/
10.5281/zenodo.10288179). However, we recommend obtaining
the latest version of the library from https://www.libradtran.org (li-
bRadtran, 2024). The user manual can be found in the “doc” folder
of the library. The shallow-cumulus-cloud time series used to eval-
uate the performance of the new solver has been published by Jakub
and Gregor (2022) (DOI: https://doi.org/10.57970/5D0K9-Q2N86),
while the modifications and methods applied to it to reproduce the
results of Sect. 4 are described in Sect. 3 of this paper.
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