Articles | Volume 17, issue 5
https://doi.org/10.5194/gmd-17-2077-2024
https://doi.org/10.5194/gmd-17-2077-2024
Model description paper
 | 
13 Mar 2024
Model description paper |  | 13 Mar 2024

A generic algorithm to automatically classify urban fabric according to the local climate zone system: implementation in GeoClimate 0.0.1 and application to French cities

Jérémy Bernard, Erwan Bocher, Matthieu Gousseff, François Leconte, and Elisabeth Le Saux Wiederhold

Related authors

URock 2023a: an open-source GIS-based wind model for complex urban settings
Jérémy Bernard, Fredrik Lindberg, and Sandro Oswald
Geosci. Model Dev., 16, 5703–5727, https://doi.org/10.5194/gmd-16-5703-2023,https://doi.org/10.5194/gmd-16-5703-2023, 2023
Short summary
Estimation of missing building height in OpenStreetMap data: a French case study using GeoClimate 0.0.1
Jérémy Bernard, Erwan Bocher, Elisabeth Le Saux Wiederhold, François Leconte, and Valéry Masson
Geosci. Model Dev., 15, 7505–7532, https://doi.org/10.5194/gmd-15-7505-2022,https://doi.org/10.5194/gmd-15-7505-2022, 2022
Short summary

Related subject area

Climate and Earth system modeling
Presentation, calibration and testing of the DCESS II Earth system model of intermediate complexity (version 1.0)
Esteban Fernández Villanueva and Gary Shaffer
Geosci. Model Dev., 18, 2161–2192, https://doi.org/10.5194/gmd-18-2161-2025,https://doi.org/10.5194/gmd-18-2161-2025, 2025
Short summary
Synthesizing global carbon–nitrogen coupling effects – the MAGICC coupled carbon–nitrogen cycle model v1.0
Gang Tang, Zebedee Nicholls, Alexander Norton, Sönke Zaehle, and Malte Meinshausen
Geosci. Model Dev., 18, 2193–2230, https://doi.org/10.5194/gmd-18-2193-2025,https://doi.org/10.5194/gmd-18-2193-2025, 2025
Short summary
Historical trends and controlling factors of isoprene emissions in CMIP6 Earth system models
Ngoc Thi Nhu Do, Kengo Sudo, Akihiko Ito, Louisa K. Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
Geosci. Model Dev., 18, 2079–2109, https://doi.org/10.5194/gmd-18-2079-2025,https://doi.org/10.5194/gmd-18-2079-2025, 2025
Short summary
Investigating carbon and nitrogen conservation in reported CMIP6 Earth system model data
Gang Tang, Zebedee Nicholls, Chris Jones, Thomas Gasser, Alexander Norton, Tilo Ziehn, Alejandro Romero-Prieto, and Malte Meinshausen
Geosci. Model Dev., 18, 2111–2136, https://doi.org/10.5194/gmd-18-2111-2025,https://doi.org/10.5194/gmd-18-2111-2025, 2025
Short summary
From weather data to river runoff: using spatiotemporal convolutional networks for discharge forecasting
Florian Börgel, Sven Karsten, Karoline Rummel, and Ulf Gräwe
Geosci. Model Dev., 18, 2005–2019, https://doi.org/10.5194/gmd-18-2005-2025,https://doi.org/10.5194/gmd-18-2005-2025, 2025
Short summary

Cited articles

Baklanov, A., Cárdenas, B., Lee, T.-C., Leroyer, S., Masson, V., Molina, L. T., Müller, T., Ren, C., Vogel, F. R., and Voogt, J. A.: Integrated urban services: Experience from four cities on different continents, Urban Clim., 32, 100610, https://doi.org/10.1016/j.uclim.2020.100610, 2020. a
Bernard, J., Bocher, E., Petit, G., and Palominos, S.: Sky view factor calculation in urban context: computational performance and accuracy analysis of two open and free GIS tools, Climate, 6, 60, https://doi.org/10.3390/cli6030060, 2018. a
Bernard, J., Bocher, E., Le Saux Wiederhold, E., Leconte, F., and Masson, V.: Estimation of missing building height in OpenStreetMap data: a French case study using GeoClimate 0.0.1, Geosci. Model Dev., 15, 7505–7532, https://doi.org/10.5194/gmd-15-7505-2022, 2022. a, b, c, d, e
Bernard, J., Bocher, E., Gousseff, M., Wiederhold, L. S., and Leconte, F.: GeoClimate 0.0.1 LCZ calculation: Code and data, Zenodo [code and data set], https://doi.org/10.5281/zenodo.7687911, 2023. a, b
Bocher, B., Wiederhold, L. S., Leconte, Petit, Palominos, and Noûs: GeoClimate: a Geospatial processing toolbox for environmental and climate studies, Zenodo [code], https://doi.org/10.5281/zenodo.6372337, 2022. a, b
Download
Short summary
Geographical features may have a considerable effect on local climate. The local climate zone (LCZ) system proposed by Stewart and Oke (2012) is seen as a standard approach for classifying any zone according to a set of geographic indicators. While many methods already exist to map the LCZ, only a few tools are openly and freely available. We present the algorithm implemented in GeoClimate software to identify the LCZ of any place in the world using OpenStreetMap data.
Share