Articles | Volume 17, issue 5
https://doi.org/10.5194/gmd-17-2077-2024
https://doi.org/10.5194/gmd-17-2077-2024
Model description paper
 | 
13 Mar 2024
Model description paper |  | 13 Mar 2024

A generic algorithm to automatically classify urban fabric according to the local climate zone system: implementation in GeoClimate 0.0.1 and application to French cities

Jérémy Bernard, Erwan Bocher, Matthieu Gousseff, François Leconte, and Elisabeth Le Saux Wiederhold

Related authors

Numerical study of dust plume impact on urban thermal comfort
Jérémy Bernard, Tim Nagel, Valéry Masson, Aude Lemonsu, Jean Wurtz, Pierre Tulet, and Quentin Rodier
EGUsphere, https://doi.org/10.5194/egusphere-2025-4829,https://doi.org/10.5194/egusphere-2025-4829, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
URock 2023a: an open-source GIS-based wind model for complex urban settings
Jérémy Bernard, Fredrik Lindberg, and Sandro Oswald
Geosci. Model Dev., 16, 5703–5727, https://doi.org/10.5194/gmd-16-5703-2023,https://doi.org/10.5194/gmd-16-5703-2023, 2023
Short summary
Estimation of missing building height in OpenStreetMap data: a French case study using GeoClimate 0.0.1
Jérémy Bernard, Erwan Bocher, Elisabeth Le Saux Wiederhold, François Leconte, and Valéry Masson
Geosci. Model Dev., 15, 7505–7532, https://doi.org/10.5194/gmd-15-7505-2022,https://doi.org/10.5194/gmd-15-7505-2022, 2022
Short summary

Cited articles

Baklanov, A., Cárdenas, B., Lee, T.-C., Leroyer, S., Masson, V., Molina, L. T., Müller, T., Ren, C., Vogel, F. R., and Voogt, J. A.: Integrated urban services: Experience from four cities on different continents, Urban Clim., 32, 100610, https://doi.org/10.1016/j.uclim.2020.100610, 2020. a
Bernard, J., Bocher, E., Petit, G., and Palominos, S.: Sky view factor calculation in urban context: computational performance and accuracy analysis of two open and free GIS tools, Climate, 6, 60, https://doi.org/10.3390/cli6030060, 2018. a
Bernard, J., Bocher, E., Le Saux Wiederhold, E., Leconte, F., and Masson, V.: Estimation of missing building height in OpenStreetMap data: a French case study using GeoClimate 0.0.1, Geosci. Model Dev., 15, 7505–7532, https://doi.org/10.5194/gmd-15-7505-2022, 2022. a, b, c, d, e
Bernard, J., Bocher, E., Gousseff, M., Wiederhold, L. S., and Leconte, F.: GeoClimate 0.0.1 LCZ calculation: Code and data, Zenodo [code and data set], https://doi.org/10.5281/zenodo.7687911, 2023. a, b
Bocher, B., Wiederhold, L. S., Leconte, Petit, Palominos, and Noûs: GeoClimate: a Geospatial processing toolbox for environmental and climate studies, Zenodo [code], https://doi.org/10.5281/zenodo.6372337, 2022. a, b
Download
Short summary
Geographical features may have a considerable effect on local climate. The local climate zone (LCZ) system proposed by Stewart and Oke (2012) is seen as a standard approach for classifying any zone according to a set of geographic indicators. While many methods already exist to map the LCZ, only a few tools are openly and freely available. We present the algorithm implemented in GeoClimate software to identify the LCZ of any place in the world using OpenStreetMap data.
Share