Articles | Volume 17, issue 5
https://doi.org/10.5194/gmd-17-2077-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-2077-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A generic algorithm to automatically classify urban fabric according to the local climate zone system: implementation in GeoClimate 0.0.1 and application to French cities
Department of Earth Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
University of Savoie Mont-Blanc, LOCIE, UMR 5271, 73376 Le Bourget du Lac, France
CNRS, Lab-STICC, UMR 6285, Vannes, France
Erwan Bocher
CNRS, Lab-STICC, UMR 6285, Vannes, France
Matthieu Gousseff
CNRS, Lab-STICC, UMR 6285, Vannes, France
Université Bretagne Sud, Lab-STICC, UMR 6285, Vannes, France
François Leconte
Université de Lorraine, INRAE, LERMaB, 88000, Epinal, France
Elisabeth Le Saux Wiederhold
Université Bretagne Sud, Lab-STICC, UMR 6285, Vannes, France
Related authors
Jérémy Bernard, Tim Nagel, Valéry Masson, Aude Lemonsu, Jean Wurtz, Pierre Tulet, and Quentin Rodier
EGUsphere, https://doi.org/10.5194/egusphere-2025-4829, https://doi.org/10.5194/egusphere-2025-4829, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Cities are particularly vulnerable to heat-waves because of their dense population combined with an amplification of the heat hazard caused by the urban heat island phenomenon. Heat event are sometimes associated with aerosol plume in the atmosphere, which affect the thermal comfort. This study shows that it can result in a thermal comfort improvement of up to 1 °C in sunny areas in cities while no difference in the shade of suburban areas.
Jérémy Bernard, Fredrik Lindberg, and Sandro Oswald
Geosci. Model Dev., 16, 5703–5727, https://doi.org/10.5194/gmd-16-5703-2023, https://doi.org/10.5194/gmd-16-5703-2023, 2023
Short summary
Short summary
The UMEP plug-in integrated in the free QGIS software can now calculate the spatial variation of the wind speed within urban settings. This paper shows that the new wind model, URock, generally fits observations well and highlights the main needed improvements. According to this work, pedestrian wind fields and outdoor thermal comfort can now simply be estimated by any QGIS user (researchers, students, and practitioners).
Jérémy Bernard, Erwan Bocher, Elisabeth Le Saux Wiederhold, François Leconte, and Valéry Masson
Geosci. Model Dev., 15, 7505–7532, https://doi.org/10.5194/gmd-15-7505-2022, https://doi.org/10.5194/gmd-15-7505-2022, 2022
Short summary
Short summary
OpenStreetMap is a collaborative project aimed at creaing a free dataset containing topographical information. Since these data are available worldwide, they can be used as standard data for geoscience studies. However, most buildings miss the height information that constitutes key data for numerous fields (urban climate, noise propagation, air pollution). In this work, the building height is estimated using statistical modeling using indicators that characterize the building's environment.
Jérémy Bernard, Tim Nagel, Valéry Masson, Aude Lemonsu, Jean Wurtz, Pierre Tulet, and Quentin Rodier
EGUsphere, https://doi.org/10.5194/egusphere-2025-4829, https://doi.org/10.5194/egusphere-2025-4829, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Cities are particularly vulnerable to heat-waves because of their dense population combined with an amplification of the heat hazard caused by the urban heat island phenomenon. Heat event are sometimes associated with aerosol plume in the atmosphere, which affect the thermal comfort. This study shows that it can result in a thermal comfort improvement of up to 1 °C in sunny areas in cities while no difference in the shade of suburban areas.
Jérémy Bernard, Fredrik Lindberg, and Sandro Oswald
Geosci. Model Dev., 16, 5703–5727, https://doi.org/10.5194/gmd-16-5703-2023, https://doi.org/10.5194/gmd-16-5703-2023, 2023
Short summary
Short summary
The UMEP plug-in integrated in the free QGIS software can now calculate the spatial variation of the wind speed within urban settings. This paper shows that the new wind model, URock, generally fits observations well and highlights the main needed improvements. According to this work, pedestrian wind fields and outdoor thermal comfort can now simply be estimated by any QGIS user (researchers, students, and practitioners).
Jérôme Jacovella-St-Louis, Erwan Bocher, Olivier Ertz, and Maxime Collombin
Abstr. Int. Cartogr. Assoc., 6, 103, https://doi.org/10.5194/ica-abs-6-103-2023, https://doi.org/10.5194/ica-abs-6-103-2023, 2023
J. Mercier, N. Chabloz, G. Dozot, C. Audrin, O. Ertz, E. Bocher, and D. Rappo
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W7-2023, 133–140, https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-133-2023, https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-133-2023, 2023
Jérémy Bernard, Erwan Bocher, Elisabeth Le Saux Wiederhold, François Leconte, and Valéry Masson
Geosci. Model Dev., 15, 7505–7532, https://doi.org/10.5194/gmd-15-7505-2022, https://doi.org/10.5194/gmd-15-7505-2022, 2022
Short summary
Short summary
OpenStreetMap is a collaborative project aimed at creaing a free dataset containing topographical information. Since these data are available worldwide, they can be used as standard data for geoscience studies. However, most buildings miss the height information that constitutes key data for numerous fields (urban climate, noise propagation, air pollution). In this work, the building height is estimated using statistical modeling using indicators that characterize the building's environment.
Cited articles
Baklanov, A., Cárdenas, B., Lee, T.-C., Leroyer, S., Masson, V., Molina, L. T., Müller, T., Ren, C., Vogel, F. R., and Voogt, J. A.: Integrated urban services: Experience from four cities on different continents, Urban Clim., 32, 100610, https://doi.org/10.1016/j.uclim.2020.100610, 2020. a
Bernard, J., Bocher, E., Petit, G., and Palominos, S.: Sky view factor calculation in urban context: computational performance and accuracy analysis of two open and free GIS tools, Climate, 6, 60, https://doi.org/10.3390/cli6030060, 2018. a
Bernard, J., Bocher, E., Gousseff, M., Wiederhold, L. S., and Leconte, F.: GeoClimate 0.0.1 LCZ calculation: Code and data, Zenodo [code and data set], https://doi.org/10.5281/zenodo.7687911, 2023. a, b
Bocher, B., Wiederhold, L. S., Leconte, Petit, Palominos, and Noûs: GeoClimate: a Geospatial processing toolbox for environmental and climate studies, Zenodo [code], https://doi.org/10.5281/zenodo.6372337, 2022. a, b
Ching, J., Mills, G., Bechtel, B., See, L., Feddema, J., Wang, X., Ren, C., Brousse, O., Martilli, A., Neophytou, M., Mouzourides, P., Stewart, I., Hanna, A., Ng, E., Foley, M., Alexander, P., Aliaga, D., Niyogi, D., Shreevastava, A., Bhalachandran, P., Masson, V., Hidalgo, J., Fung, J., Andrade, M., Baklanov, A., Dai, W., Milcinski, G., Demuzere, M., Brunsell, N., Pesaresi, M., Miao, S., Mu, Q., Chen, F., and Theeuwes, N.: WUDAPT: An urban weather, climate, and environmental modeling infrastructure for the anthropocene, B. Am. Meteorol. Soc., 99, 1907–1924, 2018. a
Davenport, A. G., Grimmond, C. S. B., Oke, T. R., and Wieringa, J.: Estimating the roughness of cities and sheltered country, in: Preprints, 12th Conf. on Applied Climatology, Asheville, NC, Amer. Meteor. Soc, vol. 96, p. 99, https://ams.confex.com/ams/May2000/webprogram/Paper13744.html (last access: 4 March 2024), 2000. a
Demuzere, M., Bechtel, B., Middel, A., and Mills, G.: Mapping Europe into local climate zones, PloS one, 14, e0214474, https://doi.org/10.1371/journal.pone.0214474, 2019. a
Demuzere, M., Hankey, S., Mills, G., Zhang, W., Lu, T., and Bechtel, B.: Combining expert and crowd-sourced training data to map urban form and functions for the continental US, Sci. Data, 7, 264, https://doi.org/10.1038/s41597-020-00605-z, 2020. a
Demuzere, M., Kittner, J., and Bechtel, B.: LCZ Generator: a web application to create Local Climate Zone maps, Front. Environ. Sci., 9, 637455, https://doi.org/10.3389/fenvs.2021.637455, 2021. a
Geletič, J., Lehnert, M., and Dobrovolnỳ, P.: Land surface temperature differences within local climate zones, based on two central European cities, Remote Sens., 8, 788, https://doi.org/10.3390/rs8100788, 2016. a
Gousseff, M. lczexplore: an R package to compare different local climate zone classifications on same geographical areas, Zenodo [code], https://doi.org/10.5281/zenodo.7646866, 2023. a, b
Grimmond, S., Bouchet, V., Molina, L. T., Baklanov, A., Tan, J., Schlünzen, K. H., Mills, G., Golding, B., Masson, V., Ren, C., Voogt, J., Miao, S., Lean, H., Heusinkveld, B., Hovespyan, A., Teruggi, G., Parrish, P., and Joe, P.: Integrated urban hydrometeorological, climate and environmental services: Concept, methodology and key messages, Urban Clim., 33, 100623, https://doi.org/10.1016/j.uclim.2020.100623, 2020. a
Hanna, S. R. and Britter, R. E.: Wind flow and vapor cloud dispersion at industrial and urban sites, John Wiley & Sons, ISBN 0-8169-0863-X, 2010. a
Leconte, F., Bouyer, J., Claverie, R., and Pétrissans, M.: Using Local Climate Zone scheme for UHI assessment: Evaluation of the method using mobile measurements, Build. Environ., 83, 39–49, https://doi.org/10.1016/j.buildenv.2014.05.005, 2015. a
Masson, V., Heldens, W., Bocher, E., Bonhomme, M., Bucher, B., Burmeister, C., de Munck, C., Esch, T., Hidalgo, J., Kanani-Sühring, F., Kwok, J.-T., Lemonsu, A., Lévy, J.-P., Maronga, B., Pavlik, D., Petit, G., See, L., Schoetter, R., Tornay, N., Votsis, A., and Zeidler, J.: City-descriptive input data for urban climate models: Model requirements, data sources and challenges, Urban Clim., 31, 100536, https://doi.org/10.1016/j.uclim.2019.100536, 2020. a
Quan, S. J., Dutt, F., Woodworth, E., Yamagata, Y., and Yang, P. P.-J.: Local climate zone mapping for energy resilience: a fine-grained and 3D approach, Enrgy. Proced., 105, 3777–3783, 2017. a
Skarbit, N., Stewart, I. D., Unger, J., and Gál, T.: Employing an urban meteorological network to monitor air temperature conditions in the “local climate zones” of Szeged, Hungary, Int. J. Climatol., 37, 582–596, 2017. a
Stewart, I. D.: Redefining the urban heat island, Ph. D. thesis, University of British Columbia, https://doi.org/10.14288/1.0072360, 2011. a
Short summary
Geographical features may have a considerable effect on local climate. The local climate zone (LCZ) system proposed by Stewart and Oke (2012) is seen as a standard approach for classifying any zone according to a set of geographic indicators. While many methods already exist to map the LCZ, only a few tools are openly and freely available. We present the algorithm implemented in GeoClimate software to identify the LCZ of any place in the world using OpenStreetMap data.
Geographical features may have a considerable effect on local climate. The local climate zone...