Articles | Volume 17, issue 4
https://doi.org/10.5194/gmd-17-1667-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-1667-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution multi-scaling of outdoor human thermal comfort and its intra-urban variability based on machine learning
Ferdinand Briegel
CORRESPONDING AUTHOR
Chair of Environmental Meteorology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg im Breisgau, Germany
Jonas Wehrle
Chair of Environmental Meteorology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg im Breisgau, Germany
Dirk Schindler
Chair of Environmental Meteorology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg im Breisgau, Germany
Andreas Christen
Chair of Environmental Meteorology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg im Breisgau, Germany
Related authors
No articles found.
Russell H. Glazer, Sue Grimmond, Lewis Blunn, Daniel Fenner, Humphrey Lean, Andreas Christen, Will Morrison, and Dana Looschelders
EGUsphere, https://doi.org/10.5194/egusphere-2025-2064, https://doi.org/10.5194/egusphere-2025-2064, 2025
Short summary
Short summary
In this study we use very high resolution numerical weather prediction model simulations of the Berlin, Germany region along with assessment of field campaign observations to understand better the impact of urban areas on the near-surface boundary layer. We find that there a clear affect of urban areas up to 15 kilometers downwind of the city centre in both the field campaign observations and the high resolution model.
William Morrison, Dana Looschelders, Jonnathan Céspedes, Bernie Claxton, Marc-Antoine Drouin, Jean-Charles Dupont, Aurélien Faucheux, Martial Haeffelin, Christopher C. Holst, Simone Kotthaus, Valéry Masson, James McGregor, Jeremy Price, Matthias Zeeman, Sue Grimmond, and Andreas Christen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-167, https://doi.org/10.5194/essd-2025-167, 2025
Preprint under review for ESSD
Short summary
Short summary
We conducted research using sophisticated wind sensors to better understand wind patterns in Paris. By installing these sensors across the city, we gathered detailed data on wind speeds and directions from 2022 to 2024. This information helps improve weather and climate models, making them more accurate for city environments. Our findings offer valuable insights for scientists studying urban air and weather, improving predictions and understanding of city-scale atmospheric processes.
Rainer Hilland, Josh Hashemi, Stavros Stagakis, Dominik Brunner, Lionel Constantin, Natascha Kljun, Betty Molinier, Samuel Hammer, Lukas Emmenegger, and Andreas Christen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1088, https://doi.org/10.5194/egusphere-2025-1088, 2025
Short summary
Short summary
We present a study of simultaneously measured fluxes of carbon dioxide (CO2) and co-emitted species in the city of Zurich. Flux measurements of CO2 alone can’t be attributed to specific emission sectors, such as road transport or residential heating. We present a model which uses the measured ratios of CO2 to carbon monoxide (CO) and nitrogen oxides (NOx) as well as sector-specific reference ratios, to attribute measured fluxes to their emission sectors.
Ann-Kristin Kunz, Lars Borchardt, Andreas Christen, Julian Della Coletta, Markus Eritt, Xochilt Gutiérrez, Josh Hashemi, Rainer Hilland, Armin Jordan, Richard Kneißl, Virgile Legendre, Ingeborg Levin, Susanne Preunkert, Pascal Rubli, Stavros Stagakis, and Samuel Hammer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3175, https://doi.org/10.5194/egusphere-2024-3175, 2025
Short summary
Short summary
We present, to our knowledge, the first relaxed eddy accumulation system explicitly tailored to a radiocarbon (14C)-based partitioning of fossil and non-fossil urban CO2 fluxes. Laboratory tests and in-depth quality and performance checks prove that the system meets the technical requirements. A pilot application on a tall-tower in the city of Zurich, Switzerland, demonstrates the ability to separate fossil and non-fossil CO2 fluxes within the typical precision of 14C measurements.
Matthias Zeeman, Andreas Christen, Sue Grimmond, Daniel Fenner, William Morrison, Gregor Feigel, Markus Sulzer, and Nektarios Chrysoulakis
Geosci. Instrum. Method. Data Syst., 13, 393–424, https://doi.org/10.5194/gi-13-393-2024, https://doi.org/10.5194/gi-13-393-2024, 2024
Short summary
Short summary
This study presents an overview of a data system for documenting, processing, managing, and publishing data streams from research networks of atmospheric and environmental sensors of varying complexity in urban environments. Our solutions aim to deliver resilient, near-time data using freely available software.
Mathew Lipson, Sue Grimmond, Martin Best, Winston T. L. Chow, Andreas Christen, Nektarios Chrysoulakis, Andrew Coutts, Ben Crawford, Stevan Earl, Jonathan Evans, Krzysztof Fortuniak, Bert G. Heusinkveld, Je-Woo Hong, Jinkyu Hong, Leena Järvi, Sungsoo Jo, Yeon-Hee Kim, Simone Kotthaus, Keunmin Lee, Valéry Masson, Joseph P. McFadden, Oliver Michels, Wlodzimierz Pawlak, Matthias Roth, Hirofumi Sugawara, Nigel Tapper, Erik Velasco, and Helen Claire Ward
Earth Syst. Sci. Data, 14, 5157–5178, https://doi.org/10.5194/essd-14-5157-2022, https://doi.org/10.5194/essd-14-5157-2022, 2022
Short summary
Short summary
We describe a new openly accessible collection of atmospheric observations from 20 cities around the world, capturing 50 site years. The observations capture local meteorology (temperature, humidity, wind, etc.) and the energy fluxes between the land and atmosphere (e.g. radiation and sensible and latent heat fluxes). These observations can be used to improve our understanding of urban climate processes and to test the accuracy of urban climate models.
Toby D. Jackson, Sarab Sethi, Ebba Dellwik, Nikolas Angelou, Amanda Bunce, Tim van Emmerik, Marine Duperat, Jean-Claude Ruel, Axel Wellpott, Skip Van Bloem, Alexis Achim, Brian Kane, Dominick M. Ciruzzi, Steven P. Loheide II, Ken James, Daniel Burcham, John Moore, Dirk Schindler, Sven Kolbe, Kilian Wiegmann, Mark Rudnicki, Victor J. Lieffers, John Selker, Andrew V. Gougherty, Tim Newson, Andrew Koeser, Jason Miesbauer, Roger Samelson, Jim Wagner, Anthony R. Ambrose, Andreas Detter, Steffen Rust, David Coomes, and Barry Gardiner
Biogeosciences, 18, 4059–4072, https://doi.org/10.5194/bg-18-4059-2021, https://doi.org/10.5194/bg-18-4059-2021, 2021
Short summary
Short summary
We have all seen trees swaying in the wind, but did you know that this motion can teach us about ecology? We summarized tree motion data from many different studies and looked for similarities between trees. We found that the motion of trees in conifer forests is quite similar to each other, whereas open-grown trees and broadleaf forests show more variation. It has been suggested that additional damping or amplification of tree motion occurs at high wind speeds, but we found no evidence of this.
June Skeeter, Andreas Christen, Andrée-Anne Laforce, Elyn Humphreys, and Greg Henry
Biogeosciences, 17, 4421–4441, https://doi.org/10.5194/bg-17-4421-2020, https://doi.org/10.5194/bg-17-4421-2020, 2020
Short summary
Short summary
This study investigates carbon fluxes at Illisarvik, an artificial drained thermokarst lake basin (DTLB) in Canada's Northwest Territories. This is the first carbon balance study in a DTLB outside of Alaska. We used neural networks to identify the factors controlling fluxes and to model the effects of the controlling factors. We discuss the role of vegetation heterogeneity in fluxes, especially of methane, and we show how the carbon fluxes differ from Alaskan DTLBs.
Cited articles
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: A Next-Generation Hyperparameter Optimization Framework, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2623–2631, https://doi.org/10.1145/3292500.3330701, 2019.
Albertson, J. D. and Parlange, M. B.: Natural integration of scalar fluxes from complex terrain, Adv. Water Resour., 23, 239–252, https://doi.org/10.1016/S0309-1708(99)00011-1, 1999a.
Albertson, J. D. and Parlange, M. B.: Surface length scales and shear stress: Implications for land-atmosphere interaction over complex terrain, Water Resour. Res., 35, 2121–2132, https://doi.org/10.1029/1999WR900094, 1999b.
Ao, X., Grimmond, C. S. B., Ward, H. C., Gabey, A. M., Tan, J., Yang, X.-Q., Liu, D., Zhi, X., Liu, H., and Zhang, N.: Evaluation of the Surface Urban Energy and Water Balance Scheme (SUEWS) at a Dense Urban Site in Shanghai: Sensitivity to Anthropogenic Heat and Irrigation, J. Hydrometeorol., 19, 1983–2005, https://doi.org/10.1175/JHM-D-18-0057.1, 2018.
Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B.: Algorithms for Hyper-Parameter Optimization, in: Proceedings of the 24th International Conference on Neural Information Processing Systems, 2546–2554, ISBN 9781618395993, 2011.
Bergstra, J., Yamins, D., and Cox, D.: Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures, in: Proceedings of the 30th International Conference on Machine Learning, 115–123, https://doi.org/10.48550/arXiv.1209.5111, 2013.
Best, M. J. and Grimmond, C. S. B.: Key Conclusions of the First International Urban Land Surface Model Comparison Project, B. Am. Meteorol. Soc., 96, 805–819, https://doi.org/10.1175/BAMS-D-14-00122.1, 2015.
Błażejczyk, K., Jendritzky, G., Bröde, P., Fiala, D., Havenith, G., Epstein, Y., Psikuta, A., and Kampmann, B.: An introduction to the Universal Thermal Climate Index (UTCI), Geographia Polonica, 86, 5–10, https://doi.org/10.7163/GPol.2013.1, 2013.
Briegel, F.: Code HTC-NN, Zenodo [code], https://doi.org/10.5281/zenodo.7974472, 2023a.
Briegel, F.: Data HTC-NN, Zenodo [data set], https://doi.org/10.5281/zenodo.7974307, 2023b.
Briegel, F., Lee, S. C., Black, T. A., Jassal, R. S., and Christen, A.: Factors controlling long-term carbon dioxide exchange between a Douglas-fir stand and the atmosphere identified using an artificial neural network approach, Ecol. Model., 435, 109266, https://doi.org/10.1016/j.ecolmodel.2020.109266, 2020.
Briegel, F., Makansi, O., Brox, T., Matzarakis, A., and Christen, A.: Modelling long-term thermal comfort conditions in urban environments using a deep convolutional encoder-decoder as a computational shortcut, Urban Clim., 47, 101359, https://doi.org/10.1016/j.uclim.2022.101359, 2023.
Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C. S. B., Grossman-Clarke, S., Loridan, T., Manning, K. W., Martilli, A., Miao, S., Sailor, D., Salamanca, F. P., Taha, H., Tewari, M., Wang, X., Wyszogrodzki, A. A., and Zhang, C.: The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems, Int. J. Climatol., 31, 273–288, https://doi.org/10.1002/joc.2158, 2011.
Chen, S., Yang, Y., Deng, F., Zhang, Y., Liu, D., Liu, C., and Gao, Z.: A high-resolution monitoring approach of canopy urban heat island using a random forest model and multi-platform observations, Atmos. Meas. Tech., 15, 735–756, https://doi.org/10.5194/amt-15-735-2022, 2022.
City of Freiburg im Breisgau – Bevölkerung: https://www.freiburg.de/pb/site/Freiburg/node/207904?QUERYSTRING=Stadtbezirk 20Wohnbevoelkerung, last access: 22 June 2022.
Coccolo, S., Kämpf, J., Scartezzini, J.-L., and Pearlmutter, D.: Outdoor human comfort and thermal stress: A comprehensive review on models and standards, Urban Clim., 18, 33–57, https://doi.org/10.1016/j.uclim.2016.08.004, 2016.
Cohen, P., Potchter, O., and Matzarakis, A.: Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort, Build Environ., 51, 285–295, https://doi.org/10.1016/j.buildenv.2011.11.020, 2012.
CRED and UNDRR: The Non-COVID Year in Disasters, Brussels, CRED, https://emdat.be/sites/default/files/adsr_2020.pdf (last access: 19 February 2024), 2021.
Demuzere, M., Kittner, J., Martilli, A., Mills, G., Moede, C., Stewart, I. D., van Vliet, J., and Bechtel, B.: A global map of local climate zones to support earth system modelling and urban-scale environmental science, Earth Syst. Sci. Data, 14, 3835–3873, https://doi.org/10.5194/essd-14-3835-2022, 2022.
Dupont, S., Mestayer, P. G., Guilloteau, E., Berthier, E., and Andrieu, H.: Parameterization of the Urban Water Budget with the Submesoscale Soil Model, J. Appl. Meteorol. Clim., 45, 624–648, https://doi.org/10.1175/JAM2363.1, 2006.
Epstein, Y. and Moran, D. S.: Thermal Comfort and the Heat Stress Indices, Ind. Health, 44, 388–398, https://doi.org/10.2486/indhealth.44.388, 2006.
Feigel, G., Plein, M., Zeeman, M., Briegel, F., and Christen, A.: A compact and customisable street-level sensor system for real-time weather monitoring and outreach in Freiburg, Germany, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-15609, https://doi.org/10.5194/egusphere-egu23-15609, 2023.
Fenner, D., Meier, F., Bechtel, B., Otto, M., and Scherer, D.: Intra and inter “local climate zone” variability of air temperature as observed by crowdsourced citizen weather stations in Berlin, Germany, Meteorol. Z., 26, 525–547, https://doi.org/10.1127/metz/2017/0861, 2017.
Giometto, M. G., Christen, A., Meneveau, C., Fang, J., Krafczyk, M., and Parlange, M. B.: Spatial Characteristics of Roughness Sublayer Mean Flow and Turbulence Over a Realistic Urban Surface, Bound.-Lay. Meteorol., 160, 425–452, https://doi.org/10.1007/s10546-016-0157-6, 2016.
Giometto, M. G., Christen, A., Egli, P. E., Schmid, M. F., Tooke, R. T., Coops, N. C., and Parlange, M. B.: Effects of trees on mean wind, turbulence and momentum exchange within and above a real urban environment, Adv. Water Resour., 106, 154–168, https://doi.org/10.1016/j.advwatres.2017.06.018, 2017.
Grimmond, C. S. B., Blackett, M., Best, M. J., Baik, J.-J., Belcher, S. E., Beringer, J., Bohnenstengel, S. I., Calmet, I., Chen, F., Coutts, A., Dandou, A., Fortuniak, K., Gouvea, M. L., Hamdi, R., Hendry, M., Kanda, M., Kawai, T., Kawamoto, Y., Kondo, H., Krayenhoff, E. S., Lee, S.-H., Loridan, T., Martilli, A., Masson, V., Miao, S., Oleson, K., Ooka, R., Pigeon, G., Porson, A., Ryu, Y.-H., Salamanca, F., Steeneveld, G. J., Tombrou, M., Voogt, J. A., Young, D. T., and Zhang, N.: Initial results from Phase 2 of the international urban energy balance model comparison, Int. J. Climatol., 31, 244–272, https://doi.org/10.1002/joc.2227, 2011.
Gubler, M., Christen, A., Remund, J., and Brönnimann, S.: Evaluation and application of a low-cost measurement network to study intra-urban temperature differences during summer 2018 in Bern, Switzerland, Urban Clim., 37, 100817, https://doi.org/10.1016/j.uclim.2021.100817, 2021.
Hamdi, R., Degrauwe, D., and Termonia, P.: Coupling the Town Energy Balance (TEB) Scheme to an Operational Limited-Area NWP Model: Evaluation for a Highly Urbanized Area in Belgium, Weather Forecast., 27, 323–344, https://doi.org/10.1175/WAF-D-11-00064.1, 2012.
Hamdi, R., Kusaka, H., Doan, Q.-V., Cai, P., He, H., Luo, G., Kuang, W., Caluwaerts, S., Duchêne, F., van Schaeybroek, B., and Termonia, P.: The State-of-the-Art of Urban Climate Change Modeling and Observations, Earth Syst. Environ., 4, 631–646, https://doi.org/10.1007/s41748-020-00193-3, 2020.
Ho, H. C., Knudby, A., Sirovyak, P., Xu, Y., Hodul, M., and Henderson, S. B.: Mapping maximum urban air temperature on hot summer days, Remote Sens. Environ., 154, 38–45, https://doi.org/10.1016/j.rse.2014.08.012, 2014.
Holst, J. and Mayer, H.: Impacts of street design parameters on human-biometeorological variables, Meteorol. Z., 20, 241–552, 2011.
IPCC: Index, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896, 2021.
Järvi, L., Grimmond, C. S. B., and Christen, A.: The Surface Urban Energy and Water Balance Scheme (SUEWS): Evaluation in Los Angeles and Vancouver, J. Hydrol., 411, 219–237, https://doi.org/10.1016/j.jhydrol.2011.10.001, 2011.
Kanda, M., Kanega, M., Kawai, T., Moriwaki, R., and Sugawara, H.: Roughness Lengths for Momentum and Heat Derived from Outdoor Urban Scale Models, J. Appl. Meteorol. Clima., 46, 1067–1079, https://doi.org/10.1175/JAM2500.1, 2007.
Kántor, N. and Unger, J.: The most problematic variable in the course of human-biometeorological comfort assessment – the mean radiant temperature, Open Geosci., 3, 90–100, https://doi.org/10.2478/s13533-011-0010-x, 2011.
Krayenhoff, E. S. and Voogt, J. A.: A microscale three-dimensional urban energy balance model for studying surface temperatures, Bound.-Lay. Meteorol., 123, 433–461, https://doi.org/10.1007/s10546-006-9153-6, 2007.
Lee, H., Holst, J., and Mayer, H.: Modification of Human-Biometeorologically Significant Radiant Flux Densities by Shading as Local Method to Mitigate Heat Stress in Summer within Urban Street Canyons, Adv. Meteorol., 2013, 312572, https://doi.org/10.1155/2013/312572, 2013.
Lindberg, F. and Grimmond, C. S. B.: SOLWEIG_v2019a, Department of Earth Sciences, University of Gothenburg, Sweden, University of Reading, UK, https://umep-docs.readthedocs.io/en/latest/OtherManuals/SOLWEIG.html (last access: 19 February 2024), 2019.
Martilli, A., Clappier, A., and Rotach, M. W.: An Urban Surface Exchange Parameterisation for Mesoscale Models, Bound.-Lay. Meteorol., 104, 261–304, https://doi.org/10.1023/A:1016099921195, 2002.
Masson, V.: A Physically-Based Scheme For The Urban Energy Budget In Atmospheric Models, Bound.-Lay. Meteorol., 94, 357–397, https://doi.org/10.1023/A:1002463829265, 2000.
Masson, V., Lemonsu, A., Hidalgo, J., and Voogt, J.: Urban Climates and Climate Change, Annu. Rev. Environ. Resour., 45, 411–444, https://doi.org/10.1146/annurev-environ-012320-083623, 2020.
Matzarakis, A., Martinelli, L., and Ketterer, C.: Relevance of Thermal Indices for the Assessment of the Urban Heat Island, in: Counteracting Urban Heat Island Effects in a Global Climate Change Scenario, edited by: Musco, F., Springer International Publishing, Cham, 93–107, https://doi.org/10.1007/978-3-319-10425-6_4, 2016.
Meili, N., Acero, J. A., Peleg, N., Manoli, G., Burlando, P., and Fatichi, S.: Vegetation cover and plant-trait effects on outdoor thermal comfort in a tropical city, Build. Environ., 195, 107733, https://doi.org/10.1016/j.buildenv.2021.107733, 2021.
Meyer, D., Grimmond, S., Dueben, P., Hogan, R., and van Reeuwijk, M.: Machine Learning Emulation of Urban Land Surface Processes, J. Adv. Model Earth Sy., 14, e2021MS002744, https://doi.org/10.1029/2021MS002744, 2022.
Mirzaei, P. A.: Recent challenges in modeling of urban heat island, Sustain. Cities Soc., 19, 200–206, https://doi.org/10.1016/j.scs.2015.04.001, 2015.
Muñoz Sabater, J.: ERA5-Land hourly data from 1981 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/Cds.E2161bac, 2019.
Nice, K. A., Coutts, A. M., and Tapper, N. J.: Development of the VTUF-3D v1.0 urban micro-climate model to support assessment of urban vegetation influences on human thermal comfort, Urban Clim., 24, 1052–1076, https://doi.org/10.1016/j.uclim.2017.12.008, 2018.
Plein, M., Feigel, G., Zeeman, M., Briegel, F., Dormann, C., and Christen, A.: A sensor network for real-time monitoring and modelling of street-level heat exposure in Freiburg, Germany, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-13816, https://doi.org/10.5194/egusphere-egu23-13816, 2023.
Potchter, O., Cohen, P., Lin, T.-P., and Matzarakis, A.: Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification, Sci. Total Environ., 631–632, 390–406, https://doi.org/10.1016/j.scitotenv.2018.02.276, 2018.
Quanz, J. A., Ulrich, S., Fenner, D., Holtmann, A., and Eimermacher, J.: Micro-Scale Variability of Air Temperature within a Local Climate Zone in Berlin, Germany, during Summer, Climate, 6, 5, https://doi.org/10.3390/cli6010005, 2018.
Rafael, S., Martins, H., Matos, M. J., Cerqueira, M., Pio, C., Lopes, M., and Borrego, C.: Application of SUEWS model forced with WRF: Energy fluxes validation in urban and suburban Portuguese areas, Urban Clim., 33, 100662, https://doi.org/10.1016/j.uclim.2020.100662, 2020.
Rousi, E., Kornhuber, K., Beobide-Arsuaga, G., Luo, F., and Coumou, D.: Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia, Nat. Commun., 13, 3851, https://doi.org/10.1038/s41467-022-31432-y, 2022.
Shreevastava, A., Prasanth, S., Ramamurthy, P., and Rao, P. S. C.: Scale-dependent response of the urban heat island to the European heatwave of 2018, Environ. Res. Lett., 16, 104021, https://doi.org/10.1088/1748-9326/ac25bb, 2021.
Staiger, H., Laschewski, G., and Matzarakis, A.: Selection of Appropriate Thermal Indices for Applications in Human Biometeorological Studies, Atmosphere, 10, 18, https://doi.org/10.3390/atmos10010018, 2019.
Stewart, I. D. and Oke, T. R.: Local Climate Zones for Urban Temperature Studies, B. Am. Meteorol. Soc., 93, 1879–1900, https://doi.org/10.1175/BAMS-D-11-00019.1, 2012.
Straub, A., Berger, K., Breitner, S., Cyrys, J., Geruschkat, U., Jacobeit, J., Kühlbach, B., Kusch, T., Philipp, A., Schneider, A., Umminger, R., Wolf, K., and Beck, C.: Statistical modelling of spatial patterns of the urban heat island intensity in the urban environment of Augsburg, Germany, Urban Clim., 29, 100491, https://doi.org/10.1016/j.uclim.2019.100491, 2019.
Sun, T. and Grimmond, S.: A Python-enhanced urban land surface model SuPy (SUEWS in Python, v2019.2): development, deployment and demonstration, Geosci. Model Dev., 12, 2781–2795, https://doi.org/10.5194/gmd-12-2781-2019, 2019.
Sun, T., ljarvi, Omidvar, H., LewisB7, natalieth, biglimp, Li, Z., Grimmond, S., and pjaysuews: UMEP-dev/SUEWS: 2020a Release, Zenodo [code], https://doi.org/10.5281/zenodo.5723970, November 2021.
Unger, J., Skarbit, N., Kovács, A., and Gál, T.: Comparison of regional and urban outdoor thermal stress conditions in heatwave and normal summer periods: A case study, Urban Clim., 32, 100619, https://doi.org/10.1016/j.uclim.2020.100619, 2020.
Ward, H. C., Evans, J. G., and Grimmond, C. S. B.: Multi-season eddy covariance observations of energy, water and carbon fluxes over a suburban area in Swindon, UK, Atmos. Chem. Phys., 13, 4645–4666, https://doi.org/10.5194/acp-13-4645-2013, 2013.
Ward, H. C., Kotthaus, S., Järvi, L., and Grimmond, C. S. B.: Surface Urban Energy and Water Balance Scheme (SUEWS): Development and evaluation at two UK sites, Urban Clim., 18, 1–32, https://doi.org/10.1016/j.uclim.2016.05.001, 2016.
Short summary
We present a new approach to model heat stress in cities using artificial intelligence (AI). We show that the AI model is fast in terms of prediction but accurate when evaluated with measurements. The fast-predictive AI model enables several new potential applications, including heat stress prediction and warning; downscaling of potential future climates; evaluation of adaptation effectiveness; and, more fundamentally, development of guidelines to support urban planning and policymaking.
We present a new approach to model heat stress in cities using artificial intelligence (AI). We...