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Abstract. As the frequency and intensity of heatwaves
will continue to increase in the future, accurate and high-
resolution mapping and forecasting of human outdoor ther-
mal comfort in urban environments are of great importance.
This study presents a machine-learning-based outdoor ther-
mal comfort model with a good trade-off between computa-
tional cost, complexity, and accuracy compared to common
numerical urban climate models. The machine learning ap-
proach is basically an emulation of different numerical urban
climate models. The final model consists of four submodels
that predict air temperature, relative humidity, wind speed,
and mean radiant temperature based on meteorological forc-
ing and geospatial data on building forms, land cover, and
vegetation. These variables are then combined into a thermal
index (universal thermal climate index – UTCI). All four sub-
model predictions and the final model output are evaluated
using street-level measurements from a dense urban sensor
network in Freiburg, Germany. The final model has a mean
absolute error of 2.3 K. Based on a city-wide simulation for
Freiburg, we demonstrate that the model is fast and versa-
tile enough to simulate multiple years at hourly time steps to
predict street-level UTCI at 1 m spatial resolution for an en-
tire city. Simulations indicate that neighbourhood-averaged
thermal comfort conditions vary widely between neighbour-
hoods, even if they are attributed to the same local climate
zones, for example, due to differences in age and degree of
urban vegetation. Simulations also show contrasting differ-
ences in the location of hotspots during the day and at night.

1 Introduction

The frequency and severity of heatwaves have increased and
are expected to increase even further due to human-caused
climate change (IPCC, 2021). In addition, heatwaves are oc-
curring earlier in summer, resulting in a longer period of po-
tential heat stress (IPCC, 2021). Rousi et al. (2022) found
that the frequency and intensity of heatwaves increased 3–4
times faster in Europe than in the rest of the mid-latitudes
over the past decades. In 2020, heatwaves in western Eu-
rope accounted for 42 % of all reported global deaths from
extreme weather events, with a total of 6340 deaths (CRED
and UNDRR, 2021). As the severity of heatwaves also de-
pends on land cover and land use, urban areas are even more
exposed to extreme heatwave events than rural areas due to
their physical characteristics (Masson et al., 2020; Unger et
al., 2020), including reduced nocturnal cooling and limited
access to cool microenvironments for urban populations.

Human thermal comfort is influenced not only by air tem-
perature (Ta) but also by wind speed (U ), radiation, and hu-
midity. The variables expressing the effect of radiation and
humidity are the mean radiant temperature (Tmrt) and rela-
tive humidity (RH), respectively. Thermal indices combine
these four environmental variables to describe the thermal
comfort and overall thermal stress of an individual (Epstein
and Moran, 2006). Multiple thermal indices have been de-
veloped, such as the physiological equivalent temperature
(PET) or the universal thermal climate index (UTCI) (Coc-
colo et al., 2016; Potchter et al., 2018). Several studies have
concluded that Tmrt is the driver of outdoor human thermal
comfort during the daytime (Cohen et al., 2012; Holst and
Mayer, 2011; Kántor and Unger, 2011). In addition to terrain,
the complex and heterogeneous three-dimensional structure
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of cities causes high spatial and temporal variability of these
environmental variables. Tmrt and U have the highest vari-
ability at the micro-scale (Matzarakis et al., 2016). However,
Ta also varies locally, although less strongly (Fenner et al.,
2017; Quanz et al., 2018; Shreevastava et al., 2021). In par-
ticular, Ta is more relevant to human thermal comfort dur-
ing the nighttime than Tmrt (Lee et al., 2013). As this study
is concerned with a city-wide multi-scale approach to mod-
elling outdoor human thermal comfort, the focus is on mod-
elling Ta, RH, U , and Tmrt within the urban canopy layer
(at about 1.1–2.0 m a.g.l.) at the neighbourhood scale (Ta and
RH: 500× 500 m) and building-resolving scale (Tmrt and U :
1× 1 m).

In recent years, several deterministic and stochastic mod-
elling approaches have been developed to map urban cli-
mate, outdoor thermal comfort, and canopy urban heat is-
land (UHI) at different scales and layers and with varying
complexity (Mirzaei, 2015). Mesoscale models have been
parameterized for urban surfaces, the so-called slab or bulk
models (Dupont et al., 2006), and coupled with urban canopy
models (Chen et al., 2011; Hamdi et al., 2012; Martilli et
al., 2002; Masson, 2000; Rafael et al., 2020). Urban canopy
models, on the other hand, have also been used as standalone
(offline) models to investigate the urban surface energy and
water balance at the local scale (Best and Grimmond, 2015;
Grimmond et al., 2011). In addition to numerical urban cli-
mate models, statistical models (Chen et al., 2022; Ho et al.,
2014; Straub et al., 2019) and dense measurement networks
(Gubler et al., 2021) have been used to map urban climate. It
can be concluded that there are several ways to model urban
climate on various scales. However, as pointed out by Hamdi
et al. (2020) and Masson et al. (2020), the complexity of the
model should depend on the application and should only be
as complex as necessary.

Recently, machine learning (ML) and deep learning mod-
els have gained increasing attention in urban meteorology
and have been used to emulate numerical urban climate mod-
els (Briegel et al., 2023; Meyer et al., 2022). The micro-
scale Tmrt model SOLWEIG (solar and longwave environ-
mental irradiance geometry; Lindberg and Grimmond, 2019)
was emulated by a deep convolutional encoder–decoder ap-
proach called U-Net, which showed a promising trade-off be-
tween accuracy and computational cost (Briegel et al., 2023).
Meyer et al. (2022) emulated an ensemble of urban land sur-
face models (ULSMs) using a simple multi-layer perceptron
(MLP). The MLP was used to model energy and radiation
fluxes and was compared to a reference ULSM (Town En-
ergy Balance model). The MLP was found to be more accu-
rate and more stable, especially in online mode. It can be con-
cluded from these studies that the advantage of ML models
lies in their lower computational cost once trained. Neverthe-
less, an emulated ML model can never exceed the accuracy
of a numerical model as it is trained on its model results.

This study proposes a novel and fast computational ML
approach to model outdoor human thermal comfort at 1×

1 m resolution in complex urban areas, hereafter called the
Human Thermal Comfort Neural Network (HTC-NN). The
HTC-NN can be used to downscale numerical weather pre-
diction models or reanalysis data considering urban geome-
try and function and can predict outdoor human thermal com-
fort at a high resolution at a limited computational cost. The
HTC-NN consists of four submodels: two neighbourhood-
scale MLP models for modelling Ta and RH, a building-
resolved U-Net model for modelling Tmrt, and a building-
resolved statistical wind field. We use the MLPs to emu-
late a surface energy balance model to model Ta and RH
at the neighbourhood scale (500× 500 m) at 2.0 m a.g.l. and
a U-Net to emulate a Tmrt model at the building-resolved
scale (1× 1 m) at 1.1 m a.g.l. (Briegel et al., 2023). In ad-
dition, large eddy simulations (LESs) are emulated by a ran-
dom forest (RF) model to compute statistical wind fields at
1.0 m a.g.l. in the urban canopy layer with a 1× 1 m resolu-
tion for the four cardinal wind directions in relation to the
forcing data. The wind fields are calculated from the x, y,
and z wind components. The single-layer model surface ur-
ban energy and water balance scheme (SUEWS) is used as
surface energy model for the neighbourhood-scale modelling
of Ta and RH (Järvi et al., 2011; Sun and Grimmond, 2019;
Ward et al., 2016). SOLWEIG is the building-resolved Tmrt
model (Lindberg and Grimmond, 2019). The U-Net that em-
ulates SOLWEIG has already been developed and validated
(Briegel et al., 2023). LESs are used to obtain the scaling
matrices and maps of mean wind speed in relation to forc-
ing wind speed based on the LES of Albertson and Parlange
(1999a, b).

The objectives of this study are (i) to develop and vali-
date ML models emulating numerical urban climate models
to predict Ta, RH, and U at different scales; (ii) to link these
models to predict and validate spatially distributed UTCI at
1×1 m resolution; and (iii) to map UTCI at a high resolution
in a case study of an entire urbanized area (Freiburg, Ger-
many) over many years to derive a climatology of intra-urban
variability of outdoor thermal climate.

2 Data

2.1 Study area

The study area covers the urbanized area of Freiburg im
Breisgau, Germany, and is partially identical to the study
area reported in Briegel et al. (2023). According to the Lo-
cal Climate Zone (LCZ) classification, the urbanized area of
Freiburg can be mainly classified into LCZs 5 (open mid-
rise), 6 (open low-rise), and 8 (large low-rise), while some
parts of the city centre are LCZs 2 (compact mid-rise) and
3 (compact low-rise) (Stewart and Oke, 2012; Demuzere et
al., 2022). Due to different training requirements, the train-
ing and test model domains for the individual submodels,
as well as the HTC-NN prediction domain, differ. The MLP
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submodel training domains have an extent of 15×15 km and
a grid size of 500 m, resulting in 436 grid cells. The training
domain of the MLPs is larger than the actual HTC-NN pre-
diction domain. The RF U submodel training domain cov-
ers 12 areas of varying grid size ranging from 122× 122 to
500× 500 m. The final HTC-NN model prediction domain
has an extent of 10× 7 km and a grid size of 1× 1 m. An
overview of the training and prediction domains, individual
training and test areas, and the urban sensor network is given
in Fig. 1.

2.2 Spatial and forcing data

Spatial and forcing data are largely similar for the numer-
ical models and their corresponding ML submodels; how-
ever, the MLPs use only a subset of all SUEWS input data
(see Sect. 2.4), and the RF uses additional spatial predictors.
The derivation of all spatial data other than anthropogenic
dynamics is described in Briegel et al. (2023). A detailed
overview of the spatial input and forcing data required for
each submodel and their derivation is given in Table 2.

SUEWS does not require explicit building-resolved data
but rather requires local-scale averaged spatial data. Infor-
mation on urban morphology, land cover classes, and anthro-
pogenic dynamics is required for SUEWS. Population den-
sity for each grid cell is derived from demographic data by
city district (City of Freiburg im Breisgau – Bevölkerung,
2022). The remaining spatial input data, such as emissivity
and albedo, are left at the default (Sun et al., 2021; Sun and
Grimmond, 2019).

LESs and SOLWEIG require three-dimensional building
geometry and tree characteristics derived from digital sur-
face models (DSMs), digital elevation models (DEMs), and
building outline data (Briegel et al., 2023), hereafter referred
to as DSMb and DSMv.

Measurements from the urban weather station of the Uni-
versity of Freiburg are used as meteorological forcing data.
The weather station is located on a rooftop (≈ 55 m a.g.l.;
48.0011° N, 7.8486° E) close to the city centre (Fig. 1). A de-
tailed description of the urban weather station can be found
in Briegel et al. (2023). The following variables are used as
forcing data for SUEWS, the corresponding MLPs, and the
U-Net: Ta, RH, atmospheric pressure, downwelling short-
wave radiation, downwelling longwave radiation, precipita-
tion, U , and wind direction. LESs and the RF model require
only standard forcing related to an initial shear velocity of
1 m s−1.

2.3 Validation data

Validation data for the MLPs and HTC-NN are derived from
an urban weather sensor network in Freiburg (Fig. 1), which
was installed in the summer of 2022. The sensor network
covers the entire urbanized area and some rural areas, adja-
cent valleys, and hills to account for local weather phenom-

ena such as mountain–valley wind systems or elevation ef-
fects which are not resolved by the ML model.

The stations of the sensor network can be divided into
tier-I stations or biometeorological stations (7 stations) and
tier-II stations (30 stations). Tier-I stations measure Ta, pre-
cipitation, RH, wind speed and direction, global radiation,
and black-globe temperature (Feigel et al., 2023), while tier-
II stations measure only Ta, precipitation, and RH (Plein
et al., 2023). Tier-I stations are equipped with full weather
sensors (ClimaVUE50, Campbell Scientific Inc., Logan,
UT, USA) and black globe temperature sensors (model
BLACKGLOBE-L, Campbell Scientific Inc., Logan, UT,
USA). All sensors are mounted at 3.0 m a.g.l. on streetlights
or custom poles, and the measuring interval is 1 min. Sensor
network data in this study are aggregated to hourly values.

Besides the sensor network, SOLWEIG is run for small
subsets (50× 50 m) around the tier-I stations to derive UTCI
and Tmrt data for the specific locations of the tier-I stations
(POI (point of interest) function; Lindberg and Grimmond,
2019). This allows a more detailed evaluation and a better
attribution of the HTC-NN results.

2.4 Study period

The study period is aligned with the sensor network data
which are collected from June 2022 onwards. The entire
model period is from 2018 to 2022, with 2018 used as a
spin-up year for SUEWS. The MLPs are trained with data
from 2019 to 2021 and tested for 2022 (January–December).
Model validation of SUEWS and the MLPs is performed
with measurement data from June to December 2022, while
the HTC-NN is validated with data from August to Decem-
ber 2022. During the entire model period, the mean annual Ta
is 13.00 °C, the mean summer (June–August) Ta is 21.32 °C,
and the mean maximum daily summer Ta is 26.27 °C. The
number of hot days (maximum Ta ≥ 30 °C) of the consecu-
tive years from 2019 to 2022 is 26, 20, 9, and 37, respectively.

3 Modelling approach

The development of the HTC-NN requires four steps (Fig. 2).
The first step is to generate initial spatial and meteorological
data from various sources, which are listed in Table 2. In the
second step, the so-called “ground truth” data (Ta, RH, Tmrt,
and U ) for the four HTC-NN submodels (two MLPs, U-Net,
and RF) are calculated using numerical models (SUEWS,
SOLWEIG, and LES). Training and evaluation of the HTC-
NN submodels are done in the third step, while the fourth
step is to link these submodels by calculating UTCI. As the
U-Net has already been trained and validated, only the devel-
opment and the requirements of the MLPs and the RF (spatial
and temporal data, SUEWS, and LES) are explained.
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Table 1. Overview of the abstract input data, the spatial data, and the method used to derive the abstract input data. Most calculations are
performed by the Urban Multi-scale Environmental Predictor (UMEP (Lindberg et al., 2018)). Spatial data contain land cover class (LCC),
digital elevation model (DEM), and digital surface model (DSM). The suffix “b” indicates building data and the suffix “v” vegetation data.

Abstract spatial input Spatial data Method

Surface cover fractions LCC map UMEP Land Cover Fraction
Zero displacement height (b/v) DEM, DSMb/DSMv UMEP Morphometric Calculator (Kanda et al., 2007)
Roughness length (b/v) DEM, DSMb/DSMv UMEP Morphometric Calculator (Kanda et al., 2007)
Mean height (b/v) DEM, DSMb/DSMv UMEP Morphometric Calculator (Kanda et al., 2007)
Frontal area index (b/v) DEM, DSMb/DSMv UMEP Morphometric Calculator (Kanda et al., 2007)
Elevation DEM Mean elevation of grid cell
Population density Population data by district Weighted mean of different districts in specific grid cell

3.1 Numerical modelling

3.1.1 Local-scale Ta and RH modelling (SUEWS)

SUEWS (version 2020a) is used to model Ta and RH
at 2.0 m a.g.l. for 436 grid cells with a resolution of
500× 500 m (Järvi et al., 2011; Ward et al., 2016). SUEWS
has been validated in different cities under different climatic
conditions (Ao et al., 2018; Järvi et al., 2011; Ward et al.,
2016). Besides the following parameters, SUEWS is run in
default mode: net radiation method, maximum and minimum
porosity, and roughness length of the momentum method.
The net radiation method is set to 1 as downwelling long-
wave radiation data are available. The maximum and min-
imum porosities of deciduous trees are set to 0.6 and 0.2,
respectively (Ward et al., 2013). Roughness length and zero
displacement height are calculated according to Kanda et
al. (2007) and are provided to SUEWS, so the roughness
length method is set to 1. As mentioned, SUEWS is run for
2018–2022, while 2018 is excluded from subsequent mod-
elling as it serves as a spin-up year.

3.1.2 Micro-scale U modelling (LES)

LESs are used to obtain micro-scale (1× 1 m) wind fields
for 12 areas ranging in size from 122× 122 to 500× 500 m.
The LES model code and set-up are described in Giometto et
al. (2016) and (2017). LES needs DSMb and DSMv as spa-
tial input data. Training and test areas are carefully selected
to ensure that the variability of the urban environment is ad-
equately represented. For each area, four LESs are computed
for pressure gradients that cause northward, eastward, south-
ward, and westward inflow directions. The simulations are
set up with an identical standard forcing related to an initial
shear velocity of 1 m s−1. Each simulation contains 30 min
(steady-state) wind field data in 2 s steps, which are then time
averaged.

3.2 Machine learning models

3.2.1 Multi-layer perceptron model development

The MLPs are designed using Python and the PyTorch li-
brary. To determine the best model architecture, a model-
based Bayesian hyperparameter optimization is performed.
For this purpose, the Optuna software framework (Akiba et
al., 2019) is used in combination with PyTorch. Training and
prediction are conducted on an NVIDIA GeForce RTX 3080.

Ta and RH are each modelled with their own deep learning
model. Differently to the Tmrt deep learning model, which is
based on a convolutional neural network, Ta and RH mod-
els are built from fully connected feed-forward artificial neu-
ral networks known as MLPs. This is because the different
SUEWS grid cells are not connected and have no spatial re-
lationship. MLPs consist of three different types of layers: an
input layer, hidden layer, and an output layer. Bayesian opti-
mization determines the number of hidden layers and neu-
rons, the presence or absence of a dropout layer, and the
learning rate that leads to the highest model accuracy. In
total, 30 hyperparameter combinations (trials) are tested for
each model. For this purpose, the training dataset is further
divided into training and evaluation datasets, and a 3-fold
cross-validation is used to validate each hyperparameter trial.
The hyperparameter combination of each trial is defined by
the Tree-structured Parzen Estimator (TPE) (Bergstra et al.,
2011, 2013), which is a Bayesian hyperparameter optimiza-
tion algorithm. The best architectures of both MLPs have
three hidden layers with 60, 49, and 42 neurons for the Ta
MLP and 34, 53, and 54 neurons for the RH MLP. Learning
rates are best at 0.0014 and 0.0011 for the Ta MLP and RH
MLP, respectively. Drop-out layers do not improve the model
accuracy and are not added to the final models. The remain-
ing hyperparameters, such as activation function, optimizer,
and initial weight distribution, are taken from the literature
(Table 3 and Briegel et al., 2020). As an evaluation metric
(loss function), mean squared error (MSE) is used. For fur-
ther comparisons, root mean square error (RMSE) and mean
bias error (MBE) are used.
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Figure 1. Model domain of the city of Freiburg, Germany. The red star shows the location of the rooftop weather station used for forcing
data. Orange and turquoise points show the locations of the urban sensor network used for model evaluation. Grey grid cells show the training
areas of the Ta and RH submodels, while yellow grids show the test areas. Red and blue squares show the training and test areas of the U

submodel, respectively. The pink border shows the prediction area of UTCI. Orthophoto in the background based on data from the City of
Freiburg, http://www.freiburg.de (last access: 4 May 2021).

Table 2. Overview of required spatial and forcing data for the numerical and machine learning models. Note that SUEWS and MLP use
abstract spatial data (see Table 1), and the RF model uses additional spatial predictors derived from DEM, DSMb, and DSMv which are not
listed here.

Data SUEWS/MLP SOLWEIG/U-Net LES/RF
(500× 500 m) (1× 1 m) (1× 1 m)

LCC map x x –
DEM x x x
DSMb x x x
DSMv x x x
Sky view factor – x –
Wall height and aspect – x –
Soil characteristics x – –
U x x x
Ta, RH, atmospheric pressure, downwelling shortwave radiation, downwelling
longwave radiation, precipitation, wind direction

x x –
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Figure 2. Workflow of the HTC-NN model development: (1) data pre-processing, (2) numerical modelling of ground truth, (3) training and
evaluation of machine learning models, and (4) calculation of UTCI.

3.2.2 Random forest model development (U )

The RF modelling is conducted in MATLAB (The Math-
works, Natick, MA, USA, version 2021b) using a regression-
bagging approach with 50 learning cycles. In addition to
spatial building and tree data, spatial features (derived from
DSMb) are predictors. These predictors are indices pertain-
ing to the street length and width, frontal area index rela-
tive to the flow direction, horizontal Euclidean distance, and
up- and downwind distances to buildings. For each of the 12
training areas and the three components of the wind field,
individual models are trained (u: streamwise, v: normal-to-
streamwise horizontal, w: vertical), resulting in 36 models.
This model ensemble makes predictions for each component,
which are then assembled as the Euclidean norm of u, v, and
w to obtain the final wind field. The RF models can theoret-
ically compute wind fields for any wind direction over the
city, requiring only an adjustment of the predictors. How-
ever, for the purpose of calculating outdoor thermal comfort,
citywide wind fields are computed only for the northward
(315–45°), eastward (45–135°), southward (135–225°), and
westward (225–315°) inflow directions, each covering a 90°
angle. The LES wind fields are scale-independent, allowing
a linear rescaling of the RF model output. Thus, a time series
of city-wide wind fields can be computed by hourly wind
speed data from the urban weather station.

Table 3. Hyper-parameters of both MLP models.

Hyper-parameter Value

Activation function ReLU

Optimizer Adam

Initial weight distributions He uniform

Loss function MSE

Epochs 20

Batch size 62

Hidden layers Ta MLP: 3
RH MLP: 3

Neurons Ta MLP: 60, 49, 42
RH MLP: 34, 53, 54

Learning rate Ta MLP: 0.0014
RH MLP: 0.0011

3.3 Thermal indices

In the final model step, the results of the above-mentioned
submodels are combined into a thermal comfort index with a
spatial resolution of 1× 1 m. However, not all indices are ap-
propriate for human thermal comfort (Staiger et al., 2019).
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Therefore, only UTCI (Błażejczyk et al., 2013), which is
widely used in urban climate science and planning, is con-
sidered in this study. The reference conditions of UTCI cor-
respond to an individual walking outdoors with Tmrt equal to
Ta, no wind, and RH at 50 %. The UTCI values can be cat-
egorized based on thermal stress; e.g. UTCI values ranging
from 32 to 36 °C are assigned to strong heat stress. The dif-
ferent UTCI stress categories and the corresponding UTCI
ranges are listed in Table A1 in the Appendix.

4 Results

This section presents the evaluation of the three submodels
of the HTC-NN (Sect. 4.1), the HTC-NN itself (Sect. 4.2),
and the high-resolution UTCI mapping of the HTC-NN
(Sect. 4.3).

4.1 Evaluation of Ta, RH, and U submodels

The accuracies of SUEWS, SOLWEIG, the MLPs, U-Net,
and RF relative to the sensor network are shown in Fig. 3
and Table 4. A spatial evaluation of machine learning models
in relation to numerical models in their specific test areas is
given in Table B1.

With RMSEs of 1.50 and 1.51 K, respectively, the SUEWS
and Ta MLP models demonstrate similar performances com-
pared to the sensor network data. Both models’ RMSEs
are about 0.30 K lower than the forcing data. The errors of
SUEWS and the MLPs across the different stations are sim-
ilar (Fig. 3a), with a higher variability during the night than
during the day. Figure 4b shows a moving average of RMSE
over time for the final HTC-NN model and for the Ta and
RH MLPs (Fig. 4c and d). It can be seen that the RMSE
of the Ta MLP shows two peaks in late October and mid-
December, while the RMSE fluctuates around 1.00 K during
the remaining time. Overall, the Ta MLP shows good ac-
curacy compared to the SUEWS model (R2 of 0.997 and
RMSE of 0.50 K). Similar observations can be made for
the RH MLP. RMSEs for SUEWS and the MLP model are
7.79 % and 8.14 %, respectively, while the RMSE of the forc-
ing data is 9.08 %. Similarly to the Ta models, the RMSE
of the RH MLP has two strong peaks in late October and
mid-December, with RMSE values up to 15 %, while RMSE
fluctuates around 5 % to 6 % during the remaining time. R2

values of SUEWS and the RH MLP are lower at 0.88 and
0.87 compared to 0.97 for the Ta models. Nevertheless, the
overall R2 between SUEWS and the RH MLP is high at 0.98,
and with an overall RMSE of 3.28 %, the accuracy of the RH
MLP is considered to be satisfactory. The Tmrt U-Net has
a slightly lower accuracy than SOLWEIG (RMSE of 6.18
to 5.86 K; R2 of 0.84 to 0.86). A detailed evaluation can be
found in Briegel et al. (2023). The RF has an R2 of 0.28 and
an RMSE of 0.74 m s−1 in relation to sensor network data
and shows a large improvement compared to forcing data

(RMSE of 2.85 m s−1). However, the R2 of RF U is lower
than the R2 of forcing data. The RF model has an overall ac-
curacy of 0.76 m s−1 (RMSE) compared to the LES model
(Table B1).

4.2 HTC-NN evaluation

The HTC-NN has an RMSE of about 3.00 K and an R2 of
0.92 (in relation to the sensor network), while SOLWEIG
has an RMSE of 3.29 K and R2 of 0.90 (Table 4). Mov-
ing averages of UTCI and RMSE (window size of 7 d) over
time (August–December 2022) and diurnal error patterns
are shown in Figs. 4 and 5. The annual RMSE of UTCI
ranges between 2 and 4 K, with the highest RMSE values
in mid-September, late October, and mid-December. Ta and
RH show a similar pattern in October and December, while
Tmrt has its largest errors in August and September, rang-
ing from 6 to 8 K. The RMSE of U varies between 0.5 and
1 m s−1, with the highest values in August, late October, and
late December. The elevated RMSE values of UTCI in mid-
September coincide with the RMSE peak of Tmrt in mid-
September, while the RMSE peaks for UTCI in late October
and December match the high RMSE values for Ta and RH
in those periods. In Fig. 4b and e, results from SOLWEIG
are added (violet lines). SOLWEIG is more accurate than
the HTC-NN in modelling UTCI and Tmrt in summer, while
the HTC-NN is more accurate in autumn and winter. Diur-
nal patterns of UTCI accuracy are shown in Fig. 5a. Model
errors are lower during the night than during the day, with
the highest errors during the morning. The U-Net Tmrt error
is also lowest during the night but has its highest errors in
early evening (see also Briegel et al., 2023). The Ta and RH
MLPs have similar error patterns and are lowest in the late
afternoon. The diurnal pattern of the U RF model accuracy
shows higher accuracy during the day than at night.

Figure 6 shows sensor network and modelled UTCI values
(HTC-NN and SOLWEIG) at five stations during an exem-
plary heatwave event in August 2022. Daytime UTCI is over-
estimated by the HTC-NN to varying degrees (between 1 and
5 K), while nighttime predictions are in line with measure-
ments. In Fig. 6c, the HTC-NN underestimated UTCI in the
afternoon, which is in line with underestimated Tmrt. SOL-
WEIG, on the contrary, underestimates UTCI in the morn-
ing and overestimates it in the afternoon and evening. Fig-
ure 6e shows significantly lower UTCI and Tmrt values for
SOLWEIG during the afternoon, while the HTC-NN does
not show this pattern.

In Fig. 7, distributions of both sensors and models and
their differences are shown. The HTC-NN has a higher share
of values between 15 and 25 °C, whereas shares of UTCI
greater than 25 °C are equal. SOLWEIG, on the contrary, has
lower shares for almost all the bins below 2.5 °C and higher
shares between 5 and 12.5 °C.
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Table 4. MAE, MBE, RMSE, and coefficient of determination (R2) of numerical and machine learning models and sensor network data for
Ta, RH, U , Tmrt, and UTCI. Additionally, errors between forcing data and sensor network data are added for Ta, RH, and U (as baseline).
Note that Ta and RH are validated on tier-I and tier-II stations, while U , Tmrt, and UTCI are only validated on tier-I stations.

Variable Model/data MAE MBE RMSE R2

Ta SUEWS 1.07 K −0.15 K 1.50 K 0.97
MLP 1.08 K −0.17 K 1.51 K 0.97
Forcing 1.32 K −0.12 K 1.83 K 0.95

RH SUEWS 5.80 % −0.44 % 7.97 % 0.88
MLP 5.99 % −0.33 % 8.14 % 0.87
Forcing 6.54 % −1.52 % 9.08 % 0.84

U RF 0.52 m s−1 0.24 m s−1 0.73 m s−1 0.28
Forcing 2.27 m s−1

−2.24 m s−1 2.85 m s−1 0.35

Tmrt U-Net 4.25 K −1.53 K 6.18 K 0.84
SOLWEIG 3.83 K −0.97 K 5.86 K 0.86

UTCI HTC-NN 2.27 K 1.34 K 3.00 K 0.92
SOLWEIG 2.48 K −0.66 K 3.29 K 0.90

Figure 3. Box plots of RMSEs of SUEWS and MLPs compared to sensor network data and between SUEWS and the MLPs for Ta (a) and
RH (b), respectively, and their differences between day and night. In (c) the RMSE of U between sensor network data and RF is shown. Box
plots show dispersion of different sensor network stations.
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Figure 4. Moving average of UTCI (a) and RMSE of UTCI (b), Ta (c), RH (d), Tmrt (e), and U (f) from August to December 2022. The
window size of the moving average is 7 d. Time series starts with the installation of the first tier-I stations in August 2022. In (c) and (d)
RMSEs of SUEWS predictions are added for comparison (orange lines). In (b) and (e) RMSEs of SOLWEIG predictions are added (violet
lines). For U , no numerical model results exist. Shaded areas represent 95 % confidence interval.

4.3 High-resolution UTCI mapping

This section presents an application of the developed HTC-
NN for mapping and downscaling the simulated UTCI at
1 m resolution for Freiburg. Calculating hourly UTCI over
4 years (35 064 time steps) and 42.5 million pixels using an
Intel Core i9 processor and NVIDIA GeForce RTX 3080
took only about 8 d. No individual runs are saved as this
would exceed storage capacities, and predictions are stored
as day- and nighttime sums of hours for each month within
1 °C UTCI bins.

Figure 8 shows the spatial distribution of cumulative day-
time hours with strong, very strong, or extreme heat stress.
This figure shows heat hotspots related to daytime heat stress
as UTCI values ≥ 32 °C are rarely reached at night without
solar radiation (Fig. 11b). Figure 10 shows the same map
extent but with nighttime hours exceeding a UTCI value of
22 °C. Figures 9 and B3 provide a more detailed view of four
exemplary urban areas representing the LCZs 2, 5, and 8.
These areas show not only the thermal comfort difference

between different LCZs but also the intra-LCZ variability
(Fig. 9c and d).

The four areas represent the densely built-up city cen-
tre with parts containing large trees but also large open and
paved areas (a), an industrial area with mostly paved surfaces
and only a few trees (b), an old building district with a large
and old tree stock (c), and a relatively new district built in the
period 1995–2005 (d).

In Fig. 9, it is quickly apparent that there are large differ-
ences due to shading and tree canopy cover during the day
and night. Figures 9e and B3e show the distributions of the
spatially distributed numbers of hours in Fig. 9a–d. The dis-
tributions confirm the visual perspective. The industrial area
(b) and the new building district (d) have a higher share of
pixels, with more hours exceeding the threshold of 32 °C dur-
ing the day and fewer hours exceeding the threshold of 22 °C
during the night. In turn, the densely built-up city centre (a)
and the old building district (c) have fewer hours ≥ 32 °C but
more hours ≥ 22 °C. Figure 11 shows the summertime UTCI
distributions during the day- and nighttime for these four ar-
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Figure 5. Normalized diurnal RMSE of UTCI (a), Ta (b), RH (c), Tmrt (d), and U (e). In (b) and (c) RMSEs of SUEWS predictions are
added for comparison (orange lines). In (a) and (d) RMSEs of SOLWEIG predictions are added (violet lines). For U , no numerical model
results exist. Shaded areas represent 95 % confidence interval.

eas. The distributions underline the visual assumption that
tree-covered and less-paved areas are less affected by thermal
stress during the daytime but have higher UTCI values during
the nighttime. In addition, Fig. 11 shows the 80th percentiles
of the different areas, ranging from 29 °C (old building dis-
trict) to 32 °C (industrial area) during the daytime and from
21 to 22 °C during nighttime. The 80th percentiles highlight
the importance of shading to daytime outdoor thermal com-
fort. During the nighttime, however, the industrial area and
the new building district cool down more quickly, resulting
in lower UTCI values and 80th percentiles (21 °C vs. 22 °C).
Although there is a cooling effect at night, the shading ef-
fect during the day is stronger than the reduction in nighttime
cooling. These results indicate that outdoor thermal comfort
controls have an inverted effect during the day and the night.

There are differences not only between the different LCZs
but also within the same LCZ class. The old building and the
new building districts show strong differences in their day-
and nighttime UTCI distributions. The difference between
those two areas is larger than between the city centre and
the old building district or between the industrial and new
building districts. The areas do not differ much in their phys-

ical building characteristics and are both classified as LCZ 5.
However, the old building district has a tree cover fraction of
45 % and can be further defined as LCZ subclass 5b, while
the new building district has only 24 % tree cover and can
therefore defined as LCZ 5d.

In Fig. 10, sharp UTCI transitions are partially visi-
ble. These transitions occur between adjacent grid cells
(500× 500 m) of the Ta and RH MLPs (original SUEWS grid
cells). The transitions are more prominent in Fig. 10 than in
Fig. 8 as Tmrt influences diurnal UTCI more than Ta. The
transitions between grid cells also illustrate that Ta and RH
are modelled individually for each grid cell without interac-
tion with adjacent cells.

5 Discussion

5.1 Evaluation of the HTC-NN submodels

Both MLPs show promising results compared to measure-
ments and especially compared to the numerical model
SUEWS. With an overall (spatial) R2 of 0.997 and an
RMSE of 0.5 K, the Ta MLP shows excellent accuracy. Both
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Figure 6. Modelled and measured UTCI and Tmrt at five tier-I stations (a–e) during a heatwave event in August 2022.

SUEWS and the Ta MLP have an RMSE of around 1.5 K
in relation to sensor network data, while the MAE is only
around 1 K. RMSE also varies with time (Fig. 4c). Apart
from the two periods of late October and mid-December,
with RMSE values higher than 2 K, the RMSE fluctuates
around 1 K for most of the remaining time. This suggests that
the overall RMSE of 1.5 K is highly influenced by the two
outlier periods in late October and mid-December, with high
RMSE values between 2 and 3 K. For the RH MLP, similar
observations are made, having higher RMSEs in late October
and mid-December. Since the MLPs and the SUEWS model
have similar error patterns, the error must already be appar-
ent in forcing data (see also Fig. B1). The end of October
was unusually warm, with clear sunny days but cold nights.
As forcing data are measured on a rooftop at 55 m a.g.l., the
near-surface night cooling is not represented in these data,
leading to higher RMSE values. In December, on the other
hand, an uncommon weather event occurred with a surface
inversion between the surface and the rooftop at 55 m a.g.l.,
with colder air near the surface and warmer air above. Com-
pared to the ERA5-Land data, the forcing and model data
show higher errors during these periods in October and De-

cember, indicating that errors are already present in the forc-
ing data and are passed on to the model results. Both SUEWS
and the MLP have a lower RMSE than the forcing data in
relation to the sensor network data. However, the gain in ac-
curacy is moderate for RH at 1 % and for Ta at 0.3 K. One
reason could be that SUEWS is set up in default mode, and
no specific model calibrations are performed. In addition, the
modelled soil moisture has not been validated against mea-
surement data. Another reason could be that SUEWS is run
in offline mode. Running SUEWS in online mode, coupled to
a mesoscale weather model, would probably increase its ac-
curacy further as boundary conditions and tile interactions,
including local wind systems, would be better mapped.

The RF approach to modelling a statistical wind field for
the entire urbanized area of Freiburg shows good results for
outdoor thermal comfort modelling. Since the RF models a
statistical wind field only, not every wind gust can be accu-
rately represented. Still, as the model is forced with hourly
aggregated data, it is sufficient to predict hourly averaged U .

The results of the evaluation of the Ta and RH MLPs and
the RF illustrate the power and potential of deep and machine
learning models in the context of urban climate when appro-
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Figure 7. UTCI distributions from sensors, HTC-NN, and SOLWEIG (a) and the differences between models and sensor network (b).
Distributions are shown for bins with a size of 2.5 °C, along with their relative share in total hours (n= 18 669 h).

priate training data are available. It can also be seen that the
MLPs have similar model shortcomings to SUEWS, and an
enhanced MLP performance requires an improved numerical
model.

5.2 Evaluation of HTC-NN

The trade-off between the computational cost and model ac-
curacy of the HTC-NN compared to numerical models is
positive for both. The HTC-NN has a higher model accuracy
than SOLWEIG with its POI option. In addition, model ac-
curacy is constant throughout the year, with lower accuracy
during less common weather conditions. As mentioned, un-
common weather situations with strong surface inversions in
the city are hard to predict for numerical and deep learning
models. The overall RMSE of UTCI is around 3 K. The lower
RMSE of the HTC-NN compared to SOLWEIG can be ex-
plained by the combination of four submodels that downscale
Ta, RH, Tmrt, and U separately, while SOLWEIG downscales
only Tmrt comprehensively. Diurnal error patterns of UTCI
show higher errors during the day than during the night due
to higher errors in the Tmrt predictions. However, the highest
errors occur before noon, while in the late afternoon, when
thermal stress is highest, UTCI predictions are more accurate
(RMSE of about 3 K). During the heatwave event, the HTC-
NN overestimates UTCI to different degrees during the day.

It is also apparent that daytime UTCI follows the patterns of
Tmrt most of the time, emphasizing the importance of correct
shadow pattern data. Since Tmrt predictions of SOLWEIG
and HTC-NN are partly in line while UTCI values differ, the
prediction error must be related not only to Tmrt but also to
Ta and RH, while U is negligible on these days. These re-
sults indicate that the accuracy of the HTC-NN is affected
to varying degrees by its submodels under different weather
conditions and that an overall attribution of error to the sub-
models cannot be made but must be done individually for the
different weather conditions.

To the authors’ knowledge, not many comparisons (of at
least 1 week) have been made between UTCI models and
measurements. Nice et al. (2018) used a modified version of
the TUF-3D model (Krayenhoff and Voogt, 2007) to model
UTCI in a suburb of Melbourne for 4 weeks. Observed UTCI
values were calculated from Tmrt (black globe), Ta, RH, and
U measurements. A total of seven stations were installed and
compared to model results. The MAE between modelled and
observed UTCI ranged from 1.80 to 3.03 K, and the RMSE
ranged from 2.33 to 3.64 K, which aligns with HTC-NN. On
the other hand, Meili et al. (2021) applied the ecohydrolog-
ical model UT&C in Singapore with the model accuracy for
UTCI ranging from 1.9 to 3.1 K (RMSE). Since Freiburg is
hardly comparable to Melbourne or Singapore, these findings
still help to better evaluate the HTC-NN model results. The
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Figure 8. Map of Freiburg representing the average number of daytime hours with a UTCI ≥ 32 °C per pixel (corresponds to strong and
more heat stress). Note, colouring is in accordance with predicted UTCI quantiles. The spatial resolution of the map is 1× 1 m, and the time
period for averages is 2019–2022. Rectangles (a–d) define areas shown in more detail in Figs. 9, 11, and B3.

HTC-NN has a similar accuracy but allows for modelling
larger domains at a high resolution.

While the HTC-NN has a very good trade-off between ac-
curacy and computational cost, it has some limitations. First,
the HTC-NN is not coupled to a mesoscale model and thus
does not include local or mesoscale weather phenomena,
such as mountain–valley wind systems, cold-air drainage,
and advection of heat (e.g. heat island and urban plume).
Additionally, while large model domains are possible, the
500× 500 m model tiles for Ta and RH are modelled indi-
vidually, and no boundary or heat and moisture transport
effects are considered, similarly to the offline SUEWS ver-
sion. These constraints are related to the model structure of
the offline SUEWS version and could be partially resolved
by running it coupled to a mesoscale model. Another con-
straint is related to the forcing data. The HTC-NN is forced
with meteorological data from a weather station at 55 m a.g.l.
Measured Ta at this height may already be exposed to other
processes such as near-ground-level Ta, which may lead to
initial error propagation. Additionally, the larger the model
domain, the more difficult it is to force the model with data
from one weather station. This could be solved by forcing
the HTC-NN with reanalysis data or weather forecast prod-
ucts, which would reduce the model fit due to inconsistencies
between measured and reanalysis and forecast data. As the

submodels perform well in emulating the numerical models,
better numerical models would also be needed to increase the
accuracy of the model itself (Briegel et al., 2023). Neverthe-
less, the HTC-NN should only be applied to “known” spatial
and temporal data as ANNs are generally capable of inter-
polation but not extrapolation. This means that similar urban
structures and/or meteorological forcing data are suitable as
potential prediction data. However, any unknown spatial con-
figurations or unknown extreme weather events should be ap-
proached with caution and should undergo validation against
measurement or numerical model data.

The evaluation of the HTC-NN based on sensor network
data and the comparison with similar studies show that the
HTC-NN is a valuable tool for modelling outdoor thermal
comfort in complex urban areas.

5.3 High-resolution UTCI mapping

HTC-NN is used to predict UTCI for Freiburg for 4 years
with high temporal (hourly) and spatial resolutions (1 m).
Almost 1.5 trillion predictions were made, which took
around 8 d. To determine day and night heat hotspots, the
hours above the specific 80th percentiles (32 and 22 °C) are
summed up and mapped. In addition, four specific areas rep-
resenting LCZs 2, 5, and 8 are presented in more detail. The
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Figure 9. Four 500× 500 m subsets of different urban neighbourhoods of Freiburg. Average hours per year with a UTCI ≥ 32 °C are shown.
Panel (a) shows the city centre of Freiburg, panel (b) shows an industrial area in the north of Freiburg, panel (c) shows a district with old
buildings and dense or mature tree stock, and panel (d) shows a building district built after the year 1995. Panel (e) shows the distributions of
(a)–(e). Note, colouring is in accordance with predicted UTCI quantiles. The spatial resolution is 1× 1 m, and the time period is 2019–2022.

four areas differ in terms of their physical characteristics and
also strongly in terms of their UTCI distributions. The day-
time UTCI distributions of the new building district (d) and
the industrial area (b) are flatter and shifted to higher val-
ues compared to the distributions of the city centre (a) and
the old building district (c). The 80th percentiles are shifted
up to 3 °C. The new building district and the industrial area
also have more pixels with UTCI values ≥ 32 °C during the
day. At night, however, it is the other way around, and the
city centre and the old building district have more pixels with
UTCI values ≥ 22 °C, which is also present in the nighttime
UTCI distributions. This effect can be largely attributed to
the proportion of covered areas, either by tree canopies or
dense building structures. The denser the buildings and the
larger the trees, the lower the sky view factor. Since Tmrt is
the driving factor for outdoor thermal comfort during the day,
a reduced sky view factor reduces the radiation load and,
thus, the UTCI. At night, however, covered areas show re-
duced upward longwave radiation, leading to higher UTCI
values. These results indicate that adaption measures may
work inconsistently during the day and at night.

Besides the intra-urban variability in terms of outdoor
thermal comfort between different urban areas or LCZs, there
is also an intra-LCZ variability in terms of outdoor ther-
mal comfort. The old and new building districts have similar
building characteristics but show very different UTCI distri-

butions for day and night. Intra-LCZ variability has the same
magnitude as inter-LCZ variability, as seen by their distri-
butions and 80th percentiles. This is due to the remaining
land cover characteristics besides building structures, such
as tree or grass cover fraction. Outdoor thermal comfort has
high variability at the micro-scale due to U and Tmrt, high-
lighting the importance of high-resolution modelling. These
results further indicate that the urban climate characteristics
of a small city with large green areas, such as Freiburg, are
better described by the LCZ subclasses or directly by land
cover class fractions.

6 Conclusions

This study presents a novel deep learning approach to out-
door thermal comfort modelling, the Human Thermal Com-
fort Neural Network (HTC-NN). The HTC-NN consists of
four submodels that separately model Ta, RH, Tmrt, and U ,
followed by UTCI calculation. The submodels are trained on
numerical model results, essentially emulating the numeri-
cal models through machine learning methods. Each sub-
model and the final HTC-NN are validated separately with
data from a dense sensor network.

The research objective to develop and evaluate machine
learning models emulating numerical urban climate models
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Figure 10. Map of Freiburg representing the average number of nighttime hours with a UTCI ≥ 22 °C per pixel. Note, colouring is in
accordance with predicted UTCI quantiles. The spatial resolution is 1× 1 m, and the time period is 2019–2022. Rectangles (a–d) define
areas shown in more detailed in Figs. 9, 11, and B3.

could be achieved (research objective i). In addition, the eval-
uation of the HTC-NN shows promising results (research ob-
jective ii). Furthermore, we could show that the HTC-NN
has a positive trade-off between accuracy and computational
cost. The accuracy of the HTC-NN is comparable to numer-
ical urban climate models (RMSE of 3 to 3.3 K from SOL-
WEIG), while it is computationally superior. This compu-
tational superiority allows high-resolution modelling of out-
door thermal comfort for large domains and long periods.
The HTC-NN is used to model UTCI for 4 years (2019–
2022) for Freiburg with a temporal and spatial resolution of
1 h and 1× 1 m to determine intra-urban variability of out-
door thermal comfort (research objective iii). The advantage
of the HTC-NN is that it is able to model outdoor thermal
comfort with high spatial and temporal resolutions, which al-
lows the investigation of spatial and temporal patterns of out-
door thermal comfort. Therefore, high-resolution UTCI pre-
dictions can be aggregated either temporally or spatially (or
both). The HTC-NN further allows us to study thermal com-
fort patterns only for specific weather events, UTCI classes,
or selected areas.

We demonstrate that HTC-NN is fast and versatile enough
to continuously model long periods and entire cities using
a building-resolved approach. For urban climate services,
but also for urban climate assessments and environmental-

consulting applications, there is no longer a need to base as-
sessments on numerical simulations of a few selected case
studies; instead, we can build entire climatologies of thermal
comfort, including the corresponding exceedance frequen-
cies, explicitly based on end-user machines.

Nevertheless, the HTC-NN has limitations, and its appli-
cability to other cities needs further investigation. It does
not consider the city surroundings and its mountains, with
elevation differences up to 1000 m, as it is not coupled to
a mesoscale weather model. This means it does not con-
sider local wind systems, shading by hills, or interactions
between different local-scale grid cells (500× 500 m). In ad-
dition, heat advection is not taken into account. Regarding
the transferability to other cities, as long as the city has sim-
ilar building and vegetation characteristics, it could be eas-
ily transferred since the training data cover a wide range of
urban structures. However, mapping unknown urban forms,
such as skyscrapers or denser building structures, is critical
as they are not present in the training data. Nevertheless, it
could be applied to unknown cities after validation of the
trained submodels by numerical models or on measured data.

Although only one potential application of the HTC-NN
has been considered in the present paper, several applica-
tions are enabled by the low computational cost of the HTC-
NN. These applications include simple urban-specific ther-
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Figure 11. Summertime (May–September) distributions of UTCI of the four districts shown in Figs. 9 and B3 during the daytime (a) and
during the nighttime (b). On top of each figure the UTCI heat stress classes are presented (CS: cold stress; HS: heat stress). Vertical lines in
the colours of the four areas represent the 80th percentiles. The left y axis shows the relative number of hours, and the right y axis shows the
absolute number of hours. Note that the x axis has a bin size of 1 °C; the total number of hours varies between (a) and (b) because of the day
length in summer.

mal comfort predictions and warnings for the upcoming
days using weather forecast models. The HTC-NN, however,
could also be applied to the downscaling of potential future
climates to the building scale (e.g. using EURO-CORDEX
data) or to the assessment of the effectiveness of adaptation
measures by changing the input data on urban forms. Finally,
HTC-NN can be used to investigate the driving forces of ther-
mal comfort at different scales and hence, fundamentally, to
develop guidelines in support of urban planning and policy-
making.

Appendix A

Table A1. Universal thermal climate index (UTCI) classification of
thermal stress.

UTCI (°C) Stress category

>+46 Extreme heat stress
+38 to +46 Very strong heat stress
+32 to +36 Strong heat stress
+26 to +32 Moderate heat stress
+9 to +26 No thermal stress
0 to +9 Slight cold stress
−13 to 0 Moderate cold stress
−27 to −13 Strong cold stress
−40 to −27 Very strong cold stress
<−40 Extreme cold stress
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Appendix B

Figure B1. Moving average of RMSEs of Ta (a) and RH (b) from August to December 2022. As reference data, ERA5-Land data are used
(Muñoz Sabater, 2019). The window size of the moving average is 7 d. Time series starts with the installation of the first tier-I stations in
August 2022. Shaded areas represent 95 % confidence interval.

Table B1. Validation measures of the machine learning models against the numerical models. In contrast to Table 4, where only pointwise
comparisons are made, this table shows the mean, MAE, MBE, RMSE, and R2 for the entire test area (spatial comparison) for 2022.

Variable Model combination Mean MAE MBE RMSE R2

Ta SUEWS/MLP 13.36 °C/13.38 °C 0.31 K −0.02 K 0.50 K 0.997
RH SUEWS/MLP 70.43 %/70.69 % 2.14 % −0.26 % 3.28 % 0.97
U LES/RF 1.12 m s−1/0.58 m s−1 0.55 m s−1

−0.54 m s−1 0.76 m s−1 0.30
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Figure B2. Modelled and measured UTCI at five tier-I stations (a–e) during a cold front in December 2022.
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Figure B3. Four 500× 500 m subsets of different urban neighbourhoods of the city of Freiburg. Average nighttime hours with a UTCI
≥ 22 °C are shown. Panel (a) shows the city centre of Freiburg, panel (b) shows an industrial area in the north of Freiburg, panel (c) shows a
district with old buildings and dense or mature tree stock, and panel (d) shows a building district built after the year 1995. Panel (e) shows
the distributions of (a)–(e). Note, colouring is in accordance with predicted UTCI quantiles. The spatial resolution is 1× 1 m, and the time
period is 2019–2022.

Code and data availability. The codes of the MLPs,
the U-Net, and the UTCI calculation are available at
https://doi.org/10.5281/zenodo.7974472 (Briegel, 2023a). How-
ever, the digital elevation model data are released by the city
of Freiburg only on a restricted basis. Nevertheless, they can
be requested for scientific purposes from the Vermessungsamt
Freiburg. All spatial and meteorological data and model results
can be found at https://doi.org/10.5281/zenodo.7974307 (Briegel,
2023b).
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