Articles | Volume 16, issue 24
https://doi.org/10.5194/gmd-16-7411-2023
https://doi.org/10.5194/gmd-16-7411-2023
Model description paper
 | 
21 Dec 2023
Model description paper |  | 21 Dec 2023

INCHEM-Py v1.2: a community box model for indoor air chemistry

David R. Shaw, Toby J. Carter, Helen L. Davies, Ellen Harding-Smith, Elliott C. Crocker, Georgia Beel, Zixu Wang, and Nicola Carslaw

Related subject area

Atmospheric sciences
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024,https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024,https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024,https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024,https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Impact of ITCZ width on global climate: ITCZ-MIP
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024,https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary

Cited articles

Abbass, O. A., Sailor, D. J., and Gall, E. T.: Effect of fiber material on ozone removal and carbonyl production from carpets, Atmos. Environ., 148, 42–48, https://doi.org/10.1016/j.atmosenv.2016.10.034, 2017. a
Alicke, B.: OH formation by HONO photolysis during the BERLIOZ experiment, J. Geophys. Res., 108, 8247, https://doi.org/10.1029/2001JD000579, 2003. a
Arata, C., Zarzana, K. J., Misztal, P. K., Liu, Y., Brown, S. S., Nazaroff, W. W., and Goldstein, A. H.: Measurement of NO3 and N2O5 in a Residential Kitchen, Environ. Sci. Tech. Let., 5, 595–599, https://doi.org/10.1021/acs.estlett.8b00415, 2018. a
Bari, M. A. and Kindzierski, W. B.: Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment, Sci. Total Environ., 631–632, 627–640, https://doi.org/10.1016/j.scitotenv.2018.03.023, 2018. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Bari, M. A., Kindzierski, W. B., and Spink, D.: Twelve-year trends in ambient concentrations of volatile organic compounds in a community of the Alberta Oil Sands Region, Canada, Environ. Int., 91, 40–50, https://doi.org/10.1016/j.envint.2016.02.015, 2016. a, b, c, d, e, f, g, h
Download
Short summary
Exposure to air pollution is one of the greatest risks to human health, and it is indoors, where we spend upwards of 90 % of our time, that our exposure is greatest. The INdoor CHEMical model in Python (INCHEM-Py) is a new, community-led box model that tracks the evolution and fate of atmospheric chemical pollutants indoors. We have shown the processes simulated by INCHEM-Py, its ability to model experimental data and how it may be used to develop further understanding of indoor air chemistry.