Articles | Volume 16, issue 24
Model description paper
21 Dec 2023
Model description paper |  | 21 Dec 2023

INCHEM-Py v1.2: a community box model for indoor air chemistry

David R. Shaw, Toby J. Carter, Helen L. Davies, Ellen Harding-Smith, Elliott C. Crocker, Georgia Beel, Zixu Wang, and Nicola Carslaw

Related subject area

Atmospheric sciences
Implementation and evaluation of updated photolysis rates in the EMEP MSC-W chemistry-transport model using Cloud-J v7.3e
Willem E. van Caspel, David Simpson, Jan Eiof Jonson, Anna M. K. Benedictow, Yao Ge, Alcide di Sarra, Giandomenico Pace, Massimo Vieno, Hannah L. Walker, and Mathew R. Heal
Geosci. Model Dev., 16, 7433–7459,,, 2023
Short summary
Representation of atmosphere-induced heterogeneity in land–atmosphere interactions in E3SM–MMFv2
Jungmin Lee, Walter M. Hannah, and David C. Bader
Geosci. Model Dev., 16, 7275–7287,,, 2023
Short summary
A global grid model for the estimation of zenith tropospheric delay considering the variations at different altitudes
Liangke Huang, Shengwei Lan, Ge Zhu, Fade Chen, Junyu Li, and Lilong Liu
Geosci. Model Dev., 16, 7223–7235,,, 2023
Short summary
Data assimilation for the Model for Prediction Across Scales – Atmosphere with the Joint Effort for Data assimilation Integration (JEDI-MPAS 2.0.0-beta): ensemble of 3D ensemble-variational (En-3DEnVar) assimilations
Jonathan J. Guerrette, Zhiquan Liu, Chris Snyder, Byoung-Joo Jung, Craig S. Schwartz, Junmei Ban, Steven Vahl, Yali Wu, Ivette Hernández Baños, Yonggang G. Yu, Soyoung Ha, Yannick Trémolet, Thomas Auligné, Clementine Gas, Benjamin Ménétrier, Anna Shlyaeva, Mark Miesch, Stephen Herbener, Emily Liu, Daniel Holdaway, and Benjamin T. Johnson
Geosci. Model Dev., 16, 7123–7142,,, 2023
Short summary
Simulations of 7Be and 10Be with the GEOS-Chem global model v14.0.2 using state-of-the-art production rates
Minjie Zheng, Hongyu Liu, Florian Adolphi, Raimund Muscheler, Zhengyao Lu, Mousong Wu, and Nønne L. Prisle
Geosci. Model Dev., 16, 7037–7057,,, 2023
Short summary

Cited articles

Abbass, O. A., Sailor, D. J., and Gall, E. T.: Effect of fiber material on ozone removal and carbonyl production from carpets, Atmos. Environ., 148, 42–48,, 2017. a
Alicke, B.: OH formation by HONO photolysis during the BERLIOZ experiment, J. Geophys. Res., 108, 8247,, 2003. a
Arata, C., Zarzana, K. J., Misztal, P. K., Liu, Y., Brown, S. S., Nazaroff, W. W., and Goldstein, A. H.: Measurement of NO3 and N2O5 in a Residential Kitchen, Environ. Sci. Tech. Let., 5, 595–599,, 2018. a
Bari, M. A. and Kindzierski, W. B.: Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment, Sci. Total Environ., 631–632, 627–640,, 2018. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Bari, M. A., Kindzierski, W. B., and Spink, D.: Twelve-year trends in ambient concentrations of volatile organic compounds in a community of the Alberta Oil Sands Region, Canada, Environ. Int., 91, 40–50,, 2016. a, b, c, d, e, f, g, h
Short summary
Exposure to air pollution is one of the greatest risks to human health, and it is indoors, where we spend upwards of 90 % of our time, that our exposure is greatest. The INdoor CHEMical model in Python (INCHEM-Py) is a new, community-led box model that tracks the evolution and fate of atmospheric chemical pollutants indoors. We have shown the processes simulated by INCHEM-Py, its ability to model experimental data and how it may be used to develop further understanding of indoor air chemistry.