Articles | Volume 16, issue 24
https://doi.org/10.5194/gmd-16-7223-2023
https://doi.org/10.5194/gmd-16-7223-2023
Model experiment description paper
 | 
14 Dec 2023
Model experiment description paper |  | 14 Dec 2023

A global grid model for the estimation of zenith tropospheric delay considering the variations at different altitudes

Liangke Huang, Shengwei Lan, Ge Zhu, Fade Chen, Junyu Li, and Lilong Liu

Related authors

NIGHTTIME TEC VARIATION ANALYSIS OF KLOBUCHAR MODEL BASED ON IGS DATA IN CHINA
Y. Z. Yang, L. L. Liu, L. K. Huang, Q. T. Wan, and S. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W10, 1065–1072, https://doi.org/10.5194/isprs-archives-XLII-3-W10-1065-2020,https://doi.org/10.5194/isprs-archives-XLII-3-W10-1065-2020, 2020
CONSTRUCTION OF REGIONAL WEIGHTED MEAN TEMPERATURE MODEL BASED ON OPTIMIZATION BP NEURAL NETWORK
Z. X. Chen, L. L. Liu, L. K. Huang, Q. T. Wan, and X. Q. Mo
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W10, 1099–1105, https://doi.org/10.5194/isprs-archives-XLII-3-W10-1099-2020,https://doi.org/10.5194/isprs-archives-XLII-3-W10-1099-2020, 2020
Research on Short-term Ionospheric Prediction Combining with EOF and ARIMA Model Over Guangxi Area
C. Li, H. Peng, L. K. Huang, L. L. Liu, and S. F. Xie
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W10, 1147–1153, https://doi.org/10.5194/isprs-archives-XLII-3-W10-1147-2020,https://doi.org/10.5194/isprs-archives-XLII-3-W10-1147-2020, 2020
ATMOSPHERIC WEIGHTED MEAN TEMPERATURE MODEL IN GUILIN
Z. X. Mo, L. K. Huang, H. Peng, L. L. Liu, and C. L. Kang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W10, 1155–1160, https://doi.org/10.5194/isprs-archives-XLII-3-W10-1155-2020,https://doi.org/10.5194/isprs-archives-XLII-3-W10-1155-2020, 2020
A REFINING METHOD OF NON-LINEAR REGIONAL TM MODEL BASED ON RANDOM FOREST
Q. T. Wan, L. L. Liu, L. K. Huang, W. Zhou, Y. Z. Yang, and Z. X. Chen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W10, 1169–1174, https://doi.org/10.5194/isprs-archives-XLII-3-W10-1169-2020,https://doi.org/10.5194/isprs-archives-XLII-3-W10-1169-2020, 2020

Related subject area

Atmospheric sciences
Sensitivity studies of a four-dimensional local ensemble transform Kalman filter coupled with WRF-Chem version 3.9.1 for improving particulate matter simulation accuracy
Jianyu Lin, Tie Dai, Lifang Sheng, Weihang Zhang, Shangfei Hai, and Yawen Kong
Geosci. Model Dev., 18, 2231–2248, https://doi.org/10.5194/gmd-18-2231-2025,https://doi.org/10.5194/gmd-18-2231-2025, 2025
Short summary
A Bayesian method for predicting background radiation at environmental monitoring stations in local-scale networks
Jens Peter Karolus Wenceslaus Frankemölle, Johan Camps, Pieter De Meutter, and Johan Meyers
Geosci. Model Dev., 18, 1989–2003, https://doi.org/10.5194/gmd-18-1989-2025,https://doi.org/10.5194/gmd-18-1989-2025, 2025
Short summary
Inclusion of the ECMWF ecRad radiation scheme (v1.5.0) in the MAR (v3.14), regional evaluation for Belgium, and assessment of surface shortwave spectral fluxes at Uccle
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025,https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Development of a fast radiative transfer model for ground-based microwave radiometers (ARMS-gb v1.0): validation and comparison to RTTOV-gb
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
Geosci. Model Dev., 18, 1947–1964, https://doi.org/10.5194/gmd-18-1947-2025,https://doi.org/10.5194/gmd-18-1947-2025, 2025
Short summary
Indian Institute of Tropical Meteorology (IITM) High-Resolution Global Forecast Model version 1: an attempt to resolve monsoon prediction deadlock
R. Phani Murali Krishna, Siddharth Kumar, A. Gopinathan Prajeesh, Peter Bechtold, Nils Wedi, Kumar Roy, Malay Ganai, B. Revanth Reddy, Snehlata Tirkey, Tanmoy Goswami, Radhika Kanase, Sahadat Sarkar, Medha Deshpande, and Parthasarathi Mukhopadhyay
Geosci. Model Dev., 18, 1879–1894, https://doi.org/10.5194/gmd-18-1879-2025,https://doi.org/10.5194/gmd-18-1879-2025, 2025
Short summary

Cited articles

Black, H. D.: An easily implemented algorithm for the tropospheric range correction, J. Geophys. Res., 83, 1825–1828, https://doi.org/10.1029/JB083iB04p01825, 1978. 
Böhm, J., Heinkelmann, R., and Schuh, H.: Short note: A global model of pressure and temperature for geodetic applications, J. Geodesy, 81, 679–683, https://doi.org/10.1007/s00190-007-0135-3, 2007. 
Böhm, J., Möller, G., Schindelegger, M., Pain, G., and Weber, R.: Development of an improved blind model for slant delays in the troposphere (GPT2w), GPS Solut., 19, 433–441, https://doi.org/10.1007/s10291-014-0403-7, 2015. 
Bonafoni, S., Biondi, R., Brenot, H., and Anthes, R.: Radio occultation and ground-based GNSS products for observing, understanding and predicting extreme events: A review, Atmos. Res., 230, 104624, https://doi.org/10.1016/j.atmosres.2019.104624, 2019. 
Chen, B. Y., Yu, W. K., Wang, W., Zhang, Z. T., and Dai, W. J.: A Global Assessment of Precipitable Water Vapor Derived From GNSS Zenith Tropospheric Delays With ERA5, NCEP FNL, and NCEP GFS Products, Earth and Space Science, 8, e2021EA001796, https://doi.org/10.1029/2021EA001796, 2021. 
Download
Short summary
The existing zenith tropospheric delay (ZTD) models have limitations such as using a single fitting function, neglecting daily cycle variations, and relying on only one resolution grid data point for modeling. This model considers the daily cycle variation and latitude factor of ZTD, using the sliding window algorithm based on ERA5 atmospheric reanalysis data. The ZTD data from 545 radiosonde stations and MERRA-2 atmospheric reanalysis data are used to validate the accuracy of the GGZTD-P model.
Share