Articles | Volume 16, issue 24
https://doi.org/10.5194/gmd-16-7223-2023
https://doi.org/10.5194/gmd-16-7223-2023
Model experiment description paper
 | 
14 Dec 2023
Model experiment description paper |  | 14 Dec 2023

A global grid model for the estimation of zenith tropospheric delay considering the variations at different altitudes

Liangke Huang, Shengwei Lan, Ge Zhu, Fade Chen, Junyu Li, and Lilong Liu

Related authors

NIGHTTIME TEC VARIATION ANALYSIS OF KLOBUCHAR MODEL BASED ON IGS DATA IN CHINA
Y. Z. Yang, L. L. Liu, L. K. Huang, Q. T. Wan, and S. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W10, 1065–1072, https://doi.org/10.5194/isprs-archives-XLII-3-W10-1065-2020,https://doi.org/10.5194/isprs-archives-XLII-3-W10-1065-2020, 2020
CONSTRUCTION OF REGIONAL WEIGHTED MEAN TEMPERATURE MODEL BASED ON OPTIMIZATION BP NEURAL NETWORK
Z. X. Chen, L. L. Liu, L. K. Huang, Q. T. Wan, and X. Q. Mo
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W10, 1099–1105, https://doi.org/10.5194/isprs-archives-XLII-3-W10-1099-2020,https://doi.org/10.5194/isprs-archives-XLII-3-W10-1099-2020, 2020
Research on Short-term Ionospheric Prediction Combining with EOF and ARIMA Model Over Guangxi Area
C. Li, H. Peng, L. K. Huang, L. L. Liu, and S. F. Xie
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W10, 1147–1153, https://doi.org/10.5194/isprs-archives-XLII-3-W10-1147-2020,https://doi.org/10.5194/isprs-archives-XLII-3-W10-1147-2020, 2020
ATMOSPHERIC WEIGHTED MEAN TEMPERATURE MODEL IN GUILIN
Z. X. Mo, L. K. Huang, H. Peng, L. L. Liu, and C. L. Kang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W10, 1155–1160, https://doi.org/10.5194/isprs-archives-XLII-3-W10-1155-2020,https://doi.org/10.5194/isprs-archives-XLII-3-W10-1155-2020, 2020
A REFINING METHOD OF NON-LINEAR REGIONAL TM MODEL BASED ON RANDOM FOREST
Q. T. Wan, L. L. Liu, L. K. Huang, W. Zhou, Y. Z. Yang, and Z. X. Chen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W10, 1169–1174, https://doi.org/10.5194/isprs-archives-XLII-3-W10-1169-2020,https://doi.org/10.5194/isprs-archives-XLII-3-W10-1169-2020, 2020

Related subject area

Atmospheric sciences
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024,https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024,https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024,https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024,https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024,https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary

Cited articles

Black, H. D.: An easily implemented algorithm for the tropospheric range correction, J. Geophys. Res., 83, 1825–1828, https://doi.org/10.1029/JB083iB04p01825, 1978. 
Böhm, J., Heinkelmann, R., and Schuh, H.: Short note: A global model of pressure and temperature for geodetic applications, J. Geodesy, 81, 679–683, https://doi.org/10.1007/s00190-007-0135-3, 2007. 
Böhm, J., Möller, G., Schindelegger, M., Pain, G., and Weber, R.: Development of an improved blind model for slant delays in the troposphere (GPT2w), GPS Solut., 19, 433–441, https://doi.org/10.1007/s10291-014-0403-7, 2015. 
Bonafoni, S., Biondi, R., Brenot, H., and Anthes, R.: Radio occultation and ground-based GNSS products for observing, understanding and predicting extreme events: A review, Atmos. Res., 230, 104624, https://doi.org/10.1016/j.atmosres.2019.104624, 2019. 
Chen, B. Y., Yu, W. K., Wang, W., Zhang, Z. T., and Dai, W. J.: A Global Assessment of Precipitable Water Vapor Derived From GNSS Zenith Tropospheric Delays With ERA5, NCEP FNL, and NCEP GFS Products, Earth and Space Science, 8, e2021EA001796, https://doi.org/10.1029/2021EA001796, 2021. 
Download
Short summary
The existing zenith tropospheric delay (ZTD) models have limitations such as using a single fitting function, neglecting daily cycle variations, and relying on only one resolution grid data point for modeling. This model considers the daily cycle variation and latitude factor of ZTD, using the sliding window algorithm based on ERA5 atmospheric reanalysis data. The ZTD data from 545 radiosonde stations and MERRA-2 atmospheric reanalysis data are used to validate the accuracy of the GGZTD-P model.