Articles | Volume 16, issue 24
https://doi.org/10.5194/gmd-16-7223-2023
https://doi.org/10.5194/gmd-16-7223-2023
Model experiment description paper
 | 
14 Dec 2023
Model experiment description paper |  | 14 Dec 2023

A global grid model for the estimation of zenith tropospheric delay considering the variations at different altitudes

Liangke Huang, Shengwei Lan, Ge Zhu, Fade Chen, Junyu Li, and Lilong Liu

Related authors

NIGHTTIME TEC VARIATION ANALYSIS OF KLOBUCHAR MODEL BASED ON IGS DATA IN CHINA
Y. Z. Yang, L. L. Liu, L. K. Huang, Q. T. Wan, and S. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W10, 1065–1072, https://doi.org/10.5194/isprs-archives-XLII-3-W10-1065-2020,https://doi.org/10.5194/isprs-archives-XLII-3-W10-1065-2020, 2020
CONSTRUCTION OF REGIONAL WEIGHTED MEAN TEMPERATURE MODEL BASED ON OPTIMIZATION BP NEURAL NETWORK
Z. X. Chen, L. L. Liu, L. K. Huang, Q. T. Wan, and X. Q. Mo
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W10, 1099–1105, https://doi.org/10.5194/isprs-archives-XLII-3-W10-1099-2020,https://doi.org/10.5194/isprs-archives-XLII-3-W10-1099-2020, 2020
Research on Short-term Ionospheric Prediction Combining with EOF and ARIMA Model Over Guangxi Area
C. Li, H. Peng, L. K. Huang, L. L. Liu, and S. F. Xie
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W10, 1147–1153, https://doi.org/10.5194/isprs-archives-XLII-3-W10-1147-2020,https://doi.org/10.5194/isprs-archives-XLII-3-W10-1147-2020, 2020
ATMOSPHERIC WEIGHTED MEAN TEMPERATURE MODEL IN GUILIN
Z. X. Mo, L. K. Huang, H. Peng, L. L. Liu, and C. L. Kang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W10, 1155–1160, https://doi.org/10.5194/isprs-archives-XLII-3-W10-1155-2020,https://doi.org/10.5194/isprs-archives-XLII-3-W10-1155-2020, 2020
A REFINING METHOD OF NON-LINEAR REGIONAL TM MODEL BASED ON RANDOM FOREST
Q. T. Wan, L. L. Liu, L. K. Huang, W. Zhou, Y. Z. Yang, and Z. X. Chen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W10, 1169–1174, https://doi.org/10.5194/isprs-archives-XLII-3-W10-1169-2020,https://doi.org/10.5194/isprs-archives-XLII-3-W10-1169-2020, 2020

Related subject area

Atmospheric sciences
The MESSy DWARF (based on MESSy v2.55.2)
Astrid Kerkweg, Timo Kirfel, Duong H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev., 18, 1265–1286, https://doi.org/10.5194/gmd-18-1265-2025,https://doi.org/10.5194/gmd-18-1265-2025, 2025
Short summary
An enhanced emission module for the PALM model system 23.10 with application for PM10 emission from urban domestic heating
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025,https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Identifying lightning processes in ERA5 soundings with deep learning
Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell
Geosci. Model Dev., 18, 1141–1153, https://doi.org/10.5194/gmd-18-1141-2025,https://doi.org/10.5194/gmd-18-1141-2025, 2025
Short summary
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev., 18, 1103–1118, https://doi.org/10.5194/gmd-18-1103-2025,https://doi.org/10.5194/gmd-18-1103-2025, 2025
Short summary
Explaining neural networks for detection of tropical cyclones and atmospheric rivers in gridded atmospheric simulation data
Tim Radke, Susanne Fuchs, Christian Wilms, Iuliia Polkova, and Marc Rautenhaus
Geosci. Model Dev., 18, 1017–1039, https://doi.org/10.5194/gmd-18-1017-2025,https://doi.org/10.5194/gmd-18-1017-2025, 2025
Short summary

Cited articles

Black, H. D.: An easily implemented algorithm for the tropospheric range correction, J. Geophys. Res., 83, 1825–1828, https://doi.org/10.1029/JB083iB04p01825, 1978. 
Böhm, J., Heinkelmann, R., and Schuh, H.: Short note: A global model of pressure and temperature for geodetic applications, J. Geodesy, 81, 679–683, https://doi.org/10.1007/s00190-007-0135-3, 2007. 
Böhm, J., Möller, G., Schindelegger, M., Pain, G., and Weber, R.: Development of an improved blind model for slant delays in the troposphere (GPT2w), GPS Solut., 19, 433–441, https://doi.org/10.1007/s10291-014-0403-7, 2015. 
Bonafoni, S., Biondi, R., Brenot, H., and Anthes, R.: Radio occultation and ground-based GNSS products for observing, understanding and predicting extreme events: A review, Atmos. Res., 230, 104624, https://doi.org/10.1016/j.atmosres.2019.104624, 2019. 
Chen, B. Y., Yu, W. K., Wang, W., Zhang, Z. T., and Dai, W. J.: A Global Assessment of Precipitable Water Vapor Derived From GNSS Zenith Tropospheric Delays With ERA5, NCEP FNL, and NCEP GFS Products, Earth and Space Science, 8, e2021EA001796, https://doi.org/10.1029/2021EA001796, 2021. 
Download
Short summary
The existing zenith tropospheric delay (ZTD) models have limitations such as using a single fitting function, neglecting daily cycle variations, and relying on only one resolution grid data point for modeling. This model considers the daily cycle variation and latitude factor of ZTD, using the sliding window algorithm based on ERA5 atmospheric reanalysis data. The ZTD data from 545 radiosonde stations and MERRA-2 atmospheric reanalysis data are used to validate the accuracy of the GGZTD-P model.
Share