Articles | Volume 16, issue 22
https://doi.org/10.5194/gmd-16-6531-2023
https://doi.org/10.5194/gmd-16-6531-2023
Model evaluation paper
 | 
15 Nov 2023
Model evaluation paper |  | 15 Nov 2023

Evaluating 3 decades of precipitation in the Upper Colorado River basin from a high-resolution regional climate model

William Rudisill, Alejandro Flores, and Rosemary Carroll

Related authors

Automated snow cover detection on mountain glaciers using space-borne imagery
Rainey Aberle, Ellyn Enderlin, Shad O'Neel, Caitlyn Florentine, Louis Sass, Adam Dickson, Hans-Peter Marshall, and Alejandro Flores
EGUsphere, https://doi.org/10.5194/egusphere-2024-548,https://doi.org/10.5194/egusphere-2024-548, 2024
Short summary
Understanding the effect of fire on vegetation composition and gross primary production in a semi-arid shrubland ecosystem using the Ecosystem Demography (EDv2.2) model
Karun Pandit, Hamid Dashti, Andrew T. Hudak, Nancy F. Glenn, Alejandro N. Flores, and Douglas J. Shinneman
Biogeosciences, 18, 2027–2045, https://doi.org/10.5194/bg-18-2027-2021,https://doi.org/10.5194/bg-18-2027-2021, 2021
Short summary
Examining cross-scale influences of forcing resolutions in a hillslope-resolving, integrated hydrologic model
Miguel A. Aguayo, Alejandro N. Flores, James P. McNamara, Hans-Peter Marshall, and Jodi Mead
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-451,https://doi.org/10.5194/hess-2020-451, 2020
Manuscript not accepted for further review
Developing and optimizing shrub parameters representing sagebrush (Artemisia spp.) ecosystems in the northern Great Basin using the Ecosystem Demography (EDv2.2) model
Karun Pandit, Hamid Dashti, Nancy F. Glenn, Alejandro N. Flores, Kaitlin C. Maguire, Douglas J. Shinneman, Gerald N. Flerchinger, and Aaron W. Fellows
Geosci. Model Dev., 12, 4585–4601, https://doi.org/10.5194/gmd-12-4585-2019,https://doi.org/10.5194/gmd-12-4585-2019, 2019
Short summary
Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling
Roland Baatz, Pamela L. Sullivan, Li Li, Samantha R. Weintraub, Henry W. Loescher, Michael Mirtl, Peter M. Groffman, Diana H. Wall, Michael Young, Tim White, Hang Wen, Steffen Zacharias, Ingolf Kühn, Jianwu Tang, Jérôme Gaillardet, Isabelle Braud, Alejandro N. Flores, Praveen Kumar, Henry Lin, Teamrat Ghezzehei, Julia Jones, Henry L. Gholz, Harry Vereecken, and Kris Van Looy
Earth Syst. Dynam., 9, 593–609, https://doi.org/10.5194/esd-9-593-2018,https://doi.org/10.5194/esd-9-593-2018, 2018
Short summary

Related subject area

Atmospheric sciences
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024,https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024,https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024,https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024,https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Impact of ITCZ width on global climate: ITCZ-MIP
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024,https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary

Cited articles

Anderson, E. A.: National Weather Service River Forecast System: Snow Accumulation and Ablation Model, U. S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, 1973. a
Araghi, A., Jaghargh, M. R., Maghrebi, M., Martinez, C. J., Fraisse, C. W., Olesen, J. E., and Hoogenboom, G.: Investigation of satellite-related precipitation products for modeling of rainfed wheat production systems, Agric. Water Manage., 258, 107222, https://doi.org/10.1016/j.agwat.2021.107222, 2021. a
Arsenault, R., Brissette, F., and Martel, J.-L.: The hazards of split-sample validation in hydrological model calibration, J. Hydrol., 566, 346–362, 2018. a
Ashouri, H., Hsu, K.-L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Dewayne Cecil, L., Nelson, B. R., and Prat, O. P.: PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies, B. Am. Meteorol. Soc., 96, 69–83, 2015. a
Boise State's Research Computing Department: R2: Dell HPC Intel E5v4 (High Performance Computing Cluster). Boise, ID: Boise State University, https://doi.org/10.18122/B2S41H, 2017. a
Download
Short summary
It is important to know how well atmospheric models do in mountains, but there are not very many weather stations. We evaluate rain and snow from a model from 1987–2020 in the Upper Colorado River basin against the available data. The model works rather well, but there are still some uncertainties in remote locations. We then use snow maps collected by aircraft, streamflow measurements, and some advanced statistics to help identify how well the model works in ways we could not do before.